JPS63284481A - Passive ranging system - Google Patents

Passive ranging system

Info

Publication number
JPS63284481A
JPS63284481A JP11889287A JP11889287A JPS63284481A JP S63284481 A JPS63284481 A JP S63284481A JP 11889287 A JP11889287 A JP 11889287A JP 11889287 A JP11889287 A JP 11889287A JP S63284481 A JPS63284481 A JP S63284481A
Authority
JP
Japan
Prior art keywords
band
time difference
cross
moving target
correlation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11889287A
Other languages
Japanese (ja)
Other versions
JPH0693017B2 (en
Inventor
Masao Igarashi
正夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11889287A priority Critical patent/JPH0693017B2/en
Publication of JPS63284481A publication Critical patent/JPS63284481A/en
Publication of JPH0693017B2 publication Critical patent/JPH0693017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a calculation quantity without lowering position measurement accuracy by dividing the reception band of noises from a moving target into two, selecting their center frequencies and band widths under specific conditions, and performing arithmetic operations. CONSTITUTION:Radiation noises of the moving target which are received by receivers 11-13 are limited by band-limiting filters 21 and 22 to proper reception bands. Here, the center frequencies fC and f'C and band widths W and W' of the filters 21 and 22 are so selected that an inequality I holds. A signal of a 1st reception band is inputted to the circuit composed of mutual correlator 241 and 242, maximum point detectors 261 and 262, interpolators 281 and 282, and maximum point detectors 301 and 302, and a 1st estimated value of arrival time difference is obtained through the detectors 301 and 302. The mutual correlators 231 and 232 calculates a mutual function from a 2nd reception band within a range of delay time difference centered on the arrival time difference. Then the maximum value detectors 291 and 292 obtains time difference which maximizes the mutual function and a target position calculator 8 calculates the position of the moving target from said value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海水中などを移動する目標から放射される雑
音を、複数の受波器で受信し、該受波器における前記放
射雑音の到達時間差を推定することによシ、該移動目標
の位置を推定するパッシブレンジングシステムに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention uses a plurality of receivers to receive noise emitted from a target moving in seawater, etc. The present invention relates to a passive ranging system that estimates the position of a moving target by estimating the arrival time difference.

(従来の技術) 従来、この種のシステムは、 文献1 「A、H,Quazi:Effects of
 Signal andNoise 5pectral
 5lopes on Time Delay Est
imationin Pa5sive Localiz
ation”、U、S、Govemment VVor
kNUSO,J及び。
(Prior art) Conventionally, this type of system is described in Reference 1 "A, H, Quazi: Effects of
Signal and Noise 5pectral
5lopes on Time Delay Est
imationin Pa5sive Localiz
ation”, U, S, Government VVor
kNUSO, J. and.

文献2 「G、O,0arter、”Pa5sive 
Ranging Errorsdue  to Rec
eiving Hydrophone  Po5iti
on”。
Reference 2 “G,O,0arter,”Pa5sive
Ranging Errors due to Rec
eiving Hydrophone Po5iti
on”.

J、Acoust  Soc、Am、Vol、62.N
o、2.1979.JK開示されたものがあり、受波器
個数N=3の最っとも単純な場合について第3図〜第5
図に示す。
J, Acoust Soc, Am, Vol, 62. N
o, 2.1979. For the simplest case where the number of receivers N = 3, there is a method disclosed by JK, and Figures 3 to 5
As shown in the figure.

第3図において、受波器1□、1□、13で受信された
前記移動目標の放射雑音は、増幅器’1+22+23で
適正なレベルまで増幅された後、帯域制限フィルタ31
,3□、33によシ適正な受信帯域に制限された信号5
t(t) 、 52(t)、5a(t)間の相互相関関
数が相互相関器41,4□で算出される。第1図に示す
例では、相互相関器41によって81 (t)と82(
t)の相互相関関数几1,2(τm)を、相互相関器4
□によって、5a(Oと82 (t)の相互相関関数R
3,2(τm)を求めている。ここで、τ□は時間差領
域τをきざみ幅Δτで離散化した離散時間差であること
を示す。
In FIG. 3, the radiation noise of the moving target received by the receivers 1□, 1□, 13 is amplified to an appropriate level by the amplifier '1+22+23, and then the band-limiting filter 31
, 3□, 33, the signal 5 is limited to an appropriate reception band.
A cross-correlation function between t(t), 52(t), and 5a(t) is calculated by cross-correlators 41 and 4□. In the example shown in FIG. 1, 81 (t) and 82 (
The cross-correlation function 几1,2(τm) of
By □, the cross-correlation function R of 5a(O and 82 (t)
We are looking for 3,2(τm). Here, τ□ indicates a discrete time difference obtained by discretizing the time difference region τ with a step width Δτ.

第1の最大点検出器5□、5□は、前記相互相関関数几
□、2(τm)、Rs、z(τm)の領域τ□における
最大点を求め、該最大点を?□、□、2及び?□、3.
2として出力する。
The first maximum point detectors 5□, 5□ find the maximum point in the region τ□ of the cross-correlation functions ⇠□, 2(τm), Rs, z(τm), and determine the maximum point? □, □, 2 and? □, 3.
Output as 2.

補間器61+61は該第1の最大点検出器51+52の
出力?□、1.2及び?□211.の近傍における相互
相関関数几1,2(τ)及び几1,2(τ)を、前記離
散時間差領域における相互相関関数R+ 、x (Tm
)及びR3,2(Tm)から補間操作によって算出する
The interpolator 61+61 outputs the first maximum point detector 51+52? □, 1.2 and ? □211. The cross-correlation functions 几1,2(τ) and 几1,2(τ) in the vicinity of are expressed as the cross-correlation functions R+,x(Tm
) and R3,2(Tm) by interpolation.

第2の最大点検出器7□、7□は、該相互相関関数几1
,2(τ)及びRs、z(τ)の領域τにおける最大点
を求め、該最大点を?□、2 + ?3.2として出力
する。目標位置算出器8は例えば文献2に示すような計
算式の原理に基づき、↑t、x l ?312 +前記
受波器1□、1□。
The second maximum point detectors 7□, 7□ detect the cross-correlation function 1
, 2(τ) and Rs, z(τ) in the area τ, and determine the maximum point as ? □、2+? Output as 3.2. The target position calculator 8 calculates ↑t, x l ? based on the principle of the calculation formula shown in Reference 2, for example. 312 + said receiver 1□, 1□.

13間の配列間隔及び信号の伝搬速度を用いて、前記移
動目標位置座標Xの推定値父を算出し、出力端子9に出
力する。
Using the array interval of 13 and the propagation speed of the signal, an estimated value of the moving target position coordinates X is calculated and outputted to the output terminal 9.

第4図は、第3図における相互相関器4□の第1の詳細
な実現例を示し、1o工、1o2は各々入力端子、11
は固定遅延器、12は可変遅延器、13は掛算器、14
は積分器、15は出力端子である。
FIG. 4 shows a first detailed implementation example of the cross-correlator 4□ in FIG.
is a fixed delay device, 12 is a variable delay device, 13 is a multiplier, 14
is an integrator, and 15 is an output terminal.

相互相関器として第3図の4.を想定すると、入力端子
10□、102には各々前記帯域制限された信号5t(
Oとs z(t)が入力される。固定遅延器1ノは入力
端子101から入力される信号52(t)に固定時間遅
延量τ。を与え、可変遅延器12は入力端子102から
入力される信号S□(1)に可変時間遅延量τ。+τ□
を与える。該遅延を受けた信号S、(t−τ。−τm)
と82(t−τ。)は掛算器13で積がとられ、積分器
14で積分された後、相互相関関数Rユ、z(Tm)が
前記相互相関器4□の出力として、出力端子15に出力
される。
4 in Figure 3 as a cross-correlator. Assuming that, the band-limited signal 5t (
O and s z (t) are input. The fixed delay device 1 applies a fixed time delay amount τ to the signal 52(t) inputted from the input terminal 101. The variable delay unit 12 applies a variable time delay amount τ to the signal S□(1) input from the input terminal 102. +τ□
give. The delayed signal S, (t-τ.-τm)
and 82(t-τ.) are multiplied by a multiplier 13 and integrated by an integrator 14, and then the cross-correlation function R,z(Tm) is sent to the output terminal as the output of the cross-correlator 4□. 15.

第4図は、第1図における相互相関器4□の第2の詳細
な実現例を示し、161,16.は各AD変換器(AD
O)、77□、172は各ディジタルフーリエ変換器(
DFT)、18は掛算器、19は逆ディジタルフーリエ
変換器(IDFT )、20は累加器である。
FIG. 4 shows a second detailed implementation example of the cross-correlator 4□ in FIG. 1, 161, 16 . is each AD converter (AD
O), 77□, 172 are each digital Fourier transformer (
18 is a multiplier, 19 is an inverse digital Fourier transform (IDFT), and 20 is an accumulator.

AD変換器161.16□は、帯域制限された信号51
(t) 、S 2 (t)を時間間隔T5でサンプリン
グし、ディジタル信号Sい(tk) 、5t(tk)に
変換する。デ(ジタルフーリエ変換器171は該ディジ
タル信号のに個の時系列信号S、(tk) : k=1
 、・・・、にのディジタルフーリエ変換値X x (
fk) : k =1 +・・・、Kを算出し、ディジ
タルフーリエ変換器17□は、52(tk) : k 
=1 、・・・Kのディジタルフーリエ変換値X2(f
k):に=1.・・・、Kを算出する。
The AD converter 161.16□ converts the band-limited signal 51
(t) and S 2 (t) are sampled at time intervals T5 and converted into digital signals S(tk) and 5t(tk). The digital Fourier transformer 171 transforms the digital signal into time series signals S, (tk): k=1
,..., digital Fourier transform value X x (
fk): k = 1 +..., K is calculated, and the digital Fourier transformer 17□ calculates 52(tk): k
=1,...K digital Fourier transform value X2(f
k): to=1. ..., calculate K.

掛算器18は、該フーリエ変換値X5(fk)とxz(
A)の積Yt、2(fk)= xscfk)・XxCf
k) : k=x 。
The multiplier 18 calculates the Fourier transform values X5(fk) and xz(
A) Product Yt, 2(fk) = xscfk)・XxCf
k): k=x.

・・・、Kを算出し、逆ディジタルフーリエ変換器19
は、該信号YCfk) : k=1 、・・・、にの逆
ディジタルフIJ工変換値を求め、更に累加器20で平
均操作を行った後相互相関関数几1,2(τm)として
、出力端子15に出力する。
..., calculate K, and inverse digital Fourier transformer 19
is the signal YCfk): k=1, . Output to output terminal 15.

(発明が解決しようとする問題点) 第3図〜5図に示す方法では、第3図の補間器68,6
2において補間操作によシ、相互相関関数の真の最大点
を推定するためには、相互相関器4.。
(Problems to be Solved by the Invention) In the method shown in FIGS. 3 to 5, the interpolators 68 and 6 in FIG.
In order to estimate the true maximum point of the cross-correlation function by an interpolation operation in step 2, the cross-correlator 4. .

4□で算出される相互相関関数R14(τln)+几1
,2(τm)のτ□のきざみ幅Δτは補間定理が成シ立
っように選ばなければならないという制約があるので、
帯域制限フィルタの中心周波数をf。、帯域幅をWとが
ある。したがって、 ■移動目標の位置又は方位に関する事前情報が無く、 ■前記受波器の配列間隔が長く、該受波器信号間の到達
時間差の最大値が大きな場合、前記相互相関関数41,
4□で算出する必要のある相互相関関数の点数が最大し
、必要とする処理量が増大するという欠点があった。
Cross-correlation function R14 (τln) + 几1 calculated by 4□
, 2(τm) because there is a constraint that the step width Δτ of τ□ must be selected so that the interpolation theorem holds.
The center frequency of the band-limiting filter is f. , the bandwidth is W. Therefore, if (1) there is no prior information regarding the position or orientation of the moving target, (2) the arrangement interval of the receivers is long, and the maximum value of the arrival time difference between the receiver signals is large, the cross-correlation function 41,
4□ has the drawback that the number of cross-correlation function points that need to be calculated is maximized and the amount of processing required increases.

以上の問題点をよシ詳細に説明する。第6図は受波器個
数NがN=3の場合の受波器配列間隔d1□、d3□と
目標からの放射雑音の到達時間差で1□、τ、2との関
係を示す図であp、20は移動目標を示し、x、yは原
点を受波器1□に置き、Y軸が受波器1□を通るように
選んだ直交座標系、θアはY軸に関する目標20の方向
余弦角、rは受波器12からの目標20の距離である。
The above problems will be explained in detail. Figure 6 is a diagram showing the relationship between the receiver arrangement spacing d1□, d3□ and the arrival time difference of 1□, τ, 2 of the radiation noise from the target when the number of receivers N is 3. p, 20 indicate the moving target, x, y are the orthogonal coordinate system selected such that the origin is placed at the receiver 1□, and the Y axis passes through the receiver 1□, and θa is the coordinate of the target 20 with respect to the Y axis. The direction cosine angle, r, is the distance of the target 20 from the receiver 12.

第6図よシ、距離rが受波器配列間隔d1□より充分大
きいとき、信号の伝搬速度をCとすlと・1,2〜d・
・・°″′eyであり、したがって移動目標20の位置
又は方向に関する事前情報が無い場合にはτ1.がτ1
□=−!〜ム」の間CC のいずれかに存在するとして相互相関関数を算出するこ
とが必要となる。同様のことはτ3,2に関しても言え
るので、移動目標20の位置又は方向に関する事件情報
が無い場合は、前記相互相関器41・42で算出する必
要のある点数は各々次のようになる。
According to Fig. 6, when the distance r is sufficiently larger than the receiver array spacing d1□, the propagation speed of the signal is C and l and 1,2 to d.
...°″′ey, therefore, when there is no prior information regarding the position or direction of the moving target 20,
□=-! It is necessary to calculate the cross-correlation function assuming that the cross-correlation function exists in any of CC between . The same thing can be said about τ3 and τ2, so if there is no incident information regarding the position or direction of the moving target 20, the points that need to be calculated by the cross-correlators 41 and 42 are as follows.

ただし、λ―は受信周波数帯における最大周波数fc十
丁の波長を示す。
However, λ- indicates the wavelength of the maximum frequency fc in the receiving frequency band.

したがって、do、2及びd3,2が波長λ駆と比べ大
きいとき、M、とM2が大きくなシ、必要とする処理量
が増大する。例えばfc= 5.5 kHz 、 W=
 10 kHz、C=1500m/秒(海水中の音速)
、d、、2=d3,2=2.000 mとすると、 のオーダとなる。
Therefore, when do,2 and d3,2 are large compared to the wavelength λ, the amount of processing required increases as M and M2 become large. For example, fc=5.5 kHz, W=
10 kHz, C=1500 m/s (sound speed in seawater)
, d, , 2=d3, 2=2.000 m, then it is of the order of.

一方、前記文献で示されているように、パッシブレンジ
ングにおける目標20の位置の推定精度は、前記fc及
びWが大きい程、受波器配列間隔大きい程高くなる。し
たがって、パッシブレンジングにおいて高い精度を得よ
うとすればする程前記計算点数の増大が大きな問題とな
る。
On the other hand, as shown in the above-mentioned literature, the accuracy of estimating the position of the target 20 in passive ranging increases as the fc and W become larger and as the receiver array spacing becomes larger. Therefore, the higher the accuracy is sought in passive ranging, the more the number of calculation points increases.

従ってこの発明は、以上述べた、 ■ 移動目標の位置又は方向に関する事前情報がなく、
全方向に目標が存在すると仮定する必要があり、 ■ かつ、受波器配列の間隔が、受信帯域の最大周波数
fmaxの波長’minより大きな場合に問題となる相
互相関器における必要計算点数の増大の問題を除去し、
受信帯域幅が増大しかつ受波器配列の間隔が増大しても
、位置推定精度を低減することなく、前記計算点数の増
大を少なくできる・ぐツシブレンジング方式を提供する
ことを目的とする。
Therefore, this invention has the following advantages: ■ There is no prior information regarding the position or direction of the moving target;
It is necessary to assume that there are targets in all directions, and the number of required calculation points in the cross-correlator increases, which becomes a problem when the spacing between the receiver arrays is larger than the wavelength 'min of the maximum frequency fmax of the reception band. remove the problem of
It is an object of the present invention to provide a wide ranging method that can reduce the increase in the number of calculation points without reducing position estimation accuracy even when the reception bandwidth increases and the spacing between receiver arrays increases. .

(問題点を解決するための手段) この発明は、移動目標から放射される雑音をN個の受波
器で受信し、該受波器における前記放射雑音の到達時間
差?t、j(t<Nt j<N、trj)の推定値;i
IJを求め、該f、、jから前記移動目標の位置を推定
するパッシブレンジングシステムにおいて、受波器にお
ける受信帯域を、中心周波数がfcで帯域幅がw’の第
1の受信帯域と、中心周波数がfcで帯域幅がWの第2
の受信帯域とに分割し、f′cとW′をfIc+W′/
2<fc+W/2となるように選び、第1の受信帯域の
N個の信号間の相互相関関数R1s j (τm)及び
R1,j(τ)を算出し、該R15j(τ)を最大とす
るτを、前記放射雑音の到達時間差τitjの第1の推
定値71 t Jとし、τi、jの近傍において、前記
第2の受信帯域のN個の信号間の相互相関関数Ri、j
(堀)及びR153(τ)を算出し、該R15j(τ)
を最大とするτを前記放射雑音の到達時間差の第2の推
定値”isiとし・該T 1 、 jを用いて前記移動
目標の位置を算出しようとしたものである。
(Means for Solving the Problems) This invention receives noise radiated from a moving target using N receivers, and calculates the arrival time difference of the radiated noise at the receivers. Estimated value of t, j (t<Nt j<N, trj); i
In a passive ranging system that calculates IJ and estimates the position of the moving target from f,, j, the reception band in the receiver is divided into a first reception band whose center frequency is fc and whose bandwidth is w', and the center the second with frequency fc and bandwidth W
, and divide f′c and W′ into fIc+W′/
2<fc+W/2, calculate the cross-correlation functions R1s j (τm) and R1,j(τ) between the N signals in the first reception band, and maximize the R15j(τ). Let τ be the first estimated value 71 t J of the arrival time difference τitj of the radiation noise, and in the vicinity of τi,j, the cross-correlation function Ri,j between the N signals of the second reception band
(Hori) and R153(τ), and calculate the R15j(τ)
The second estimated value "isi" of the arrival time difference of the radiation noise is set to τ that maximizes the time difference, and the position of the moving target is calculated using the T 1 and j.

(作用) ■ 前記相互相関関数R’1 z j(τd)のτ領域
のきざみ幅をΔτ′≧M>lrと選ぶことによシ、”1
 t j (τ冨)の計算点数を減すとともに、■ 前
記相互相関関数RLj(τm)のτ領域の計算範囲を7
1 t jの近傍に限定することにより R1,j (
”m)の計算点数を減す ことにより、相互相関関数の総合的な計算点数を減すこ
とができる。
(Function) ■ By selecting the step width of the τ region of the cross-correlation function R'1 z j (τd) as Δτ'≧M>lr, "1
In addition to reducing the number of calculation points for t j (τ), ■ the calculation range of the τ region of the cross-correlation function RLj (τm) is reduced to 7.
By restricting to the vicinity of 1 t j, R1,j (
By reducing the number of calculation points of "m), the total number of calculation points of the cross-correlation function can be reduced.

(実施例) 第1図は、本発明の実施例を示す機能ブロック図テs 
、!l)パ21 ・′212・213は各帯域制限フィ
ルりB、227,22□、223は各帯域制限フィルタ
A1231.23□は各相互相関器B、241.24□
は各相互相関器A、251.25□は各第1の最大点検
出器B、261,262は各第1の最大点検出器A、2
74,27□は各補間器B、284,282は各補間器
A、291.29□は各第2の最大点検出器B1304
,302 は各第2の最大検出器Aである。
(Embodiment) FIG. 1 is a functional block diagram showing an embodiment of the present invention.
,! l) PA21 ・'212 and 213 are each band-limiting filter B, 227, 22□, 223 are each band-limiting filter A1231.23□ are each cross-correlator B, 241.24□
is each cross-correlator A, 251.25□ is each first maximum point detector B, 261, 262 is each first maximum point detector A, 2
74, 27□ are each interpolator B, 284, 282 are each interpolator A, 291.29□ are each second maximum point detector B1304
, 302 are each second maximum detector A.

この実施例の帯域制限フィルタB214,212゜21
3 と帯域制限フィルタA221.22□、223は第
2図に示すように、fc +W’/ 2 < 1c+ 
w/2のように選ぶ。すなわち、帯域制限フィルタA2
21,22□。
Band-limiting filter B214, 212°21 of this embodiment
3 and the band-limiting filters A221.22□, 223, as shown in FIG. 2, fc +W'/2 < 1c+
Choose something like w/2. That is, band-limiting filter A2
21, 22□.

223は第1の受信帯域の帯域幅W′の信号s、’(t
)。
223 is the signal s,'(t
).

s/(リ S3′(りを出力し、帯域制限フィルタB2
11゜21□、213は第2の受信帯域幅Wの信号S、
(す。
Output s/(ri S3'(ri)
11°21□, 213 is the signal S of the second reception bandwidth W,
(vinegar.

52(t)、 53(t)を出力する。52(t) and 53(t) are output.

相互相関器A241,242は前記第1の受信帯1域の
信号s、′(t)とs2′(t)及びs3′(t)とs
2′(t)に対する相互相関器で1)、前記相互相関関
数R1’、2(1g)及びR5′、2(τX)を算出す
る。補間器281,28□ の補間操作において補間定
理が成シ立つようにするため、τ′のきざみ幅Δτ′は したがって、相互相関関数の計算点数M1′及びMりは
各々およそ次のように与えられる。
The cross-correlators A241, 242 detect signals s,'(t) and s2'(t), s3'(t) and s of the first reception band 1.
1) The cross-correlation functions R1', 2 (1g) and R5', 2 (τX) are calculated using a cross-correlator for 2'(t). In order to make the interpolation theorem hold in the interpolation operations of the interpolators 281 and 28□, the increment width Δτ' of τ' is therefore given as follows: It will be done.

ただし、んhは第1の受信帯域の最大周波数f′の波長
C/fシェを示す。
However, h indicates the wavelength C/f she of the maximum frequency f' of the first reception band.

ax 第1の最大点検出器A264,26□は、前記第3図の
第1の最大点検出器51.52と同様、前記R1,2(
τば)及びR;、2(τ4)が最大値をとるτ冨の値、
τM、1,2及び−23,2を求め、補間器2B1,2
g□は、前記第1図の補間器61,6□と同様、前記η
、1,2及び7′ の近傍において”1,2(τJ〕及
びRS、2(嘔)m、3.2 の補間値R’1,2(τ)及び”5.2 (τ)を算出
し、第2の最大点検出器A 301,30□は、前記第
3図の第2の最大点検出器71.7□ と同様、前記R
1,2(τ)及びR3,2(τ)が最大値をとるτの値
τ1,2及びτ3,2を求める。
ax The first maximum point detectors A264, 26□ are similar to the first maximum point detectors 51, 52 in FIG.
τ(τ) and R;, the value of τ(τ) where 2(τ4) takes the maximum value,
Find τM, 1, 2 and -23, 2, and interpolator 2B1, 2
g□ is the same as the interpolators 61 and 6□ in FIG.
, 1, 2, and 7', calculate the interpolated values R'1, 2 (τ) and 5.2 (τ) of However, the second maximum point detector A 301, 30□ is similar to the second maximum point detector 71.7□ in FIG.
1,2(τ) and R3,2(τ) take the maximum values, τ values τ1,2 and τ3,2 are determined.

相互相関器B234,23□は、該到達時間差τ1,2
及び73,2を中・心とした遅延時間幅Tの範囲で相互
相関関数R1,2(τm)及びR5,2Cτm)を算出
する。すなわち、該相互相関関数の算出点数M4. M
2はおよそ T ・ ヨ7(7) M2″″−77 となる。該時間幅Tは、少なくともτ1,2及びτ3.
2の推定誤差σ(71、2)及びσC;’3.2)に補
間計算に用いる補間関数の次数を加えた以上の大きさに
選ぶ必要がある。
The cross-correlators B234, 23□ calculate the arrival time difference τ1, 2
The cross-correlation functions R1,2(τm) and R5,2Cτm) are calculated within the range of the delay time width T centered on and 73,2. That is, the calculated score M4 of the cross-correlation function. M
2 is approximately T.yo7(7) M2″″−77. The time width T is at least τ1, 2 and τ3.
It is necessary to select a value larger than the estimated error σ (71, 2) and σC; '3.2) of 2 plus the order of the interpolation function used for interpolation calculation.

第1の最大点検出器B251,25□は、前記R,,2
(τm)及びR3,2(τm)が最大[−トルT。値、
τm、1.2及びτ  を求め、補間器27 .272
は、m、3.2                  
 1該”m、1.2及びτ□、3.2の近傍においてR
4,2(τm)及びR5,2(τ□)の補間値R1,2
(τ)及びR3,2(τ)を算出し、第2の最大点検出
器291,29□ は該R1,2(τ)及びR3,2(
τ)が最大値をとるτ値、?1,2及び?3,2を求め
、該推定値を前記目標位置の算出器8に算出し、第3図
と同様移動目標20の位置座標の推定値父を求め出力端
子9に出力する。
The first maximum point detector B251, 25□
(τm) and R3,2(τm) are maximum [-tor T. value,
Determine τm, 1.2 and τ, and use the interpolator 27. 272
is m, 3.2
1 In the vicinity of m, 1.2 and τ□, 3.2, R
Interpolated values R1,2 of 4,2(τm) and R5,2(τ□)
(τ) and R3,2(τ), and the second maximum point detector 291,29□ calculates R1,2(τ) and R3,2(
τ value at which τ) takes the maximum value, ? 1, 2 and? 3 and 2 are calculated, and the estimated values are calculated by the target position calculator 8, and the estimated value of the position coordinates of the moving target 20 is calculated and outputted to the output terminal 9 as in FIG.

本実施例によれば、例えば、f、= 5.5 kHz 
、 W =10kHz 、d、2=d2.、=2,00
0m 、  C= 1,500m/秒の場合、fc’ 
= 1 kHz 、 W’ = l kHzに選ぶと、
M、’ = M7 、p 4 X μ玉= 8 X 1
03□         (9) のオーダとなる。また、T=10XΔτ′のオーダに選
ぶと前記相互相関器231,234の計算点数M1゜M
2は、本例の場合Δτ2Δτ′/1oであるがらM1=
M2z100            αQのオーダと
なる。
According to this embodiment, for example, f, = 5.5 kHz
, W =10kHz, d,2=d2. ,=2,00
0m, when C=1,500m/sec, fc'
= 1 kHz, W' = l kHz, then
M,' = M7, p 4 x μ ball = 8 x 1
The order is 03□ (9). Moreover, if the order of T=10
2 is Δτ2Δτ′/1o in this example, but M1=
It is on the order of M2z100 αQ.

従って、相互相関関数の総合的な計算点数はおよそ1.
6X10’以上のオーダとなシ、従来の方法による計算
点数のオーダは、前記式(3〕から、 IOX 10’
のオーダとなり、従って本実施例によって約6分の1の
計算点数でよいことになる。
Therefore, the total calculation score of the cross-correlation function is approximately 1.
If it is on the order of 6X10' or more, the order of the number of points calculated by the conventional method is from the above formula (3), IOX 10'
Therefore, according to this embodiment, approximately one-sixth the number of calculation points is required.

(発明の効果) 以上、□詳細に説明したように、本発明によれば、受信
帯域を中心周波数がf/で帯域幅がτ′の第1の受信帯
域と、中心周波数がfcで帯域幅がWの第2の受信帯域
とに分割し、t工=fc’ + W ’/2をf  =
f+W/2 よシ小さく選ぶことにより、まmax  
     c ず第1の受信帯域の信号を用いて相互相関関数を算出し
て、放射雑音の到達時間差の疎い推定値?1.を求め、
次に、?′□、jの近傍においてのみ第21、コ の受信帯域の信号を用いて相互相関関数を算出して、細
かい推定値τl+3を求めるようにしたので、移動目標
の位置又は方向の事前情報が無くとも、位置推定精度を
落すことなく、大幅に計算量を減すことができるという
利点を有する。
(Effects of the Invention) As described above in detail, according to the present invention, the reception band is divided into a first reception band whose center frequency is f/ and whose bandwidth is τ', and a first reception band whose center frequency is fc and whose bandwidth is is divided into W's second reception band, and t = fc' + W'/2 is divided into f =
f+W/2 By choosing a smaller value, max
c. First, calculate the cross-correlation function using the signal in the first reception band, and obtain a loose estimate of the arrival time difference of the radiation noise. 1. seek,
next,? Since the cross-correlation function is calculated using the signals of the 21st and K reception bands only in the vicinity of '□, j, and a detailed estimate τl+3 is obtained, there is no prior information about the position or direction of the moving target. Both methods have the advantage that the amount of calculation can be significantly reduced without reducing the accuracy of position estimation.

前記の説明で示したように、本発明は受波器配列の間隔
dと受信周波数帯における最大周波数fmslxの波長
λmi□の比d/λmi□が大きい場合程、すなわち、
高精度なパッシブレンジングを実現する必要のある場合
程有効でsb、例えば、fc= 5.5 kHz、W 
= 10kHz 1d = 2,000mの場合、fc
’= 1 kHz 。
As shown in the above explanation, the present invention applies when the ratio d/λmi□ of the spacing d between the receiver array and the wavelength λmi□ of the maximum frequency fmslx in the receiving frequency band is large, that is,
It is more effective when it is necessary to realize high-precision passive ranging, for example, fc = 5.5 kHz, W
= 10kHz 1d = 2,000m, fc
' = 1 kHz.

W’ = l kHzに選んだとすると計算量は約6分
の1以上に減すことができる。
If W' = l kHz, the amount of calculation can be reduced to about one-sixth or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す機能ブロック図、第2図
は第1図における帯域制限フィルタA、Bの特性説明図
、第3図〜第5図は従来技術の説明図、第6図は解決す
べき問題点の説明図である。 21 .21□、213は各帯域制限フィルタB。 221.22□、225は各帯域制限フィルタA、23
1゜23゜は各相互相関器B、241.24□は各相互
相関器A、251,252は6第1の最大点検出器B、
261,26□は6第1の最大点検出器A、27.。 272 は各補間器B、281,2g□は各補間器A、
29、j292 は6第2の最大点検出器B、30.。 30゜は6第2の最大点検出器Aである。 51(t) 、 52(t) 、 s3(す・・・受信
帯域の帯域制限フィルタBで帯域制限された受信信号、 S1’(t) 、 S2’(t) 、 83′(す・・
・受信帯域の帯域制限フィルタAで帯域制限された受信
信号、 τ、τ□、τ暫・・・時間差、 R(τ)、R(τ) * R1’、2(1m)”’3.
2(1g)・・・相1.2  m      3.2 
  m互相関関数、 ”i   ?   、?’  、τ′  ・・・相互相
関関数rrl+ 1.2 ’  mr 3,2    
m、 1 + 2    mr j 2が最大値をとる
τ。、τ冨の値、 R1,2(τ)、R3,2(τ)、R4′、2(τ)、
R3’、2(す・・・最大値近傍における補間値、 τ1,21 5.2 ’♀1,2.τ3,2・・・補間
値が最大値をとるτの値。 特許出願人   沖電気工業株式会社 2!E、7 凹r¥yk6.4’l Pll イ)v7
 fl’F%’A2第2図 −5艮貝漁の5乞1月しろ 第6図 手続補正書(睦) 1、事件の表示 昭和62年 特  許 願第118892号2、発明の
名称 パッシブレンジングシステム 3、補正をする者 事件との関係      特 許 出 願 人住 所(
〒105)  東京都港区虎ノ門1丁目7番12号4、
代理人 住 所(〒105)  東京都港区虎ノ門1丁目7番1
2号6、補正の内容 (1)明細書「特許請求の範囲」の欄を別紙の通り補正
する。 (2)同書第5頁第7行目に「第4図は」とあるのを 「第5図は」と補正する。 (3)  同書第7頁第4行目に「点数が最大し、」と
あるのを 「点数が増大し、」と補正する。 (4)同書第12頁(5)式、(6)式を下記の通り補
正する。 (5)同省第16頁第8行目に「計算量は」とあるのを 「計算量を」と補正する。 (6)同書第17頁第3行目及び第5行目に「受信帯域
の」とあるのを削除する。 (7)同書同頁第10行目にr Tmr 1e 2 ’
 Tm+5+2 ’で □11+2.τm+3+2’とあるのをr ?mg 1
 t2 ’ Tm+5+2 ’ ?jn1112 ’ 
?’17115@2 jと補正する。 (8)図面「第6図」を別紙の通り補正する。 特許請求の範囲 移動目標から放射される雑音’k、N個の受波器で受信
し、該受波器における前記放射雑音の到達時間差τi、
j口≦N、j≦N、i#j)の推定値τi、jを求め、
その推定値τ3.から前記移動目標の位置1+コ を推定するパッジブレンソングシステムにおいて、a)
前記受波器における受信帯域を、中心周波数がfclで
帯域幅がW′の第1の受信帯域と、中心周波数がfcで
帯域幅がWの第2の受信帯域とに分割し、 b)前記中心周波数f′と帯域幅W′とを、f ’+W
/2 (fc+W/2  となるように選び、C)前記
第1の受信帯域のN個の信号間の相互相関関数を算出し
、その相互相関関数を最大とする時間差τを、前記到達
時間差τ1.jの第1の推定値τ1+Jとし、 d)該その第1の推定値τ1+Jの近傍において、前記
第2の受信帯域のN個の信号間の相互相関関数を算出し
、該相互相関関数を最大とする時間差τを、前記到達時
間差τ11.の第2の*’i@T、ヨ左し、 目標の位置を推定することを特徴とするノ<?ツシブレ
ンジングシステム。
FIG. 1 is a functional block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of characteristics of band-limiting filters A and B in FIG. 1, FIGS. 3 to 5 are explanatory diagrams of the prior art, The figure is an explanatory diagram of the problem to be solved. 21. 21□, 213 are respective band-limiting filters B; 221.22□, 225 are each band-limiting filter A, 23
1°23° is each cross-correlator B, 241.24□ is each cross-correlator A, 251, 252 is 6th maximum point detector B,
261, 26□ are 6 first maximum point detectors A, 27. . 272 is each interpolator B, 281, 2g□ is each interpolator A,
29, j292 is 6 second maximum point detector B, 30. . 30° is the 6th second maximum point detector A. 51(t), 52(t), s3(su... Received signal band-limited by band-limiting filter B in the receiving band, S1'(t), S2'(t), 83'(su...
・Received signal band-limited by band-limiting filter A in the reception band, τ, τ□, τ... time difference, R(τ), R(τ) * R1', 2(1m)''3.
2 (1g)...Phase 1.2m 3.2
m cross-correlation function, ``i?,?', τ'... cross-correlation function rrl+1.2' mr 3,2
τ for which m, 1 + 2 mr j 2 takes the maximum value. , τ value, R1,2(τ), R3,2(τ), R4',2(τ),
R3', 2 (S... Interpolated value near the maximum value, τ1,21 5.2 '♀1,2.τ3,2... Value of τ at which the interpolated value takes the maximum value. Patent applicant: Oki Electric Kogyo Co., Ltd. 2!E, 7 Concave r\yk6.4'l Pll A) v7
fl'F%'A2 Figure 2-5 Shellfish fishing 5 years ago Figure 6 Procedural amendment (Mutsu) 1. Indication of the case 1988 Patent Application No. 118892 2. Name of the invention Passive Ranging System 3, Relationship with the case of the person making the amendment Patent application Person address (
105) 1-7-12-4 Toranomon, Minato-ku, Tokyo.
Agent address (105) 1-7-1 Toranomon, Minato-ku, Tokyo
No. 2 No. 6, Contents of amendment (1) The "Claims" column of the specification is amended as shown in the attached sheet. (2) On page 5, line 7 of the same book, the phrase ``Figure 4'' is corrected to ``Figure 5 is''. (3) In the fourth line of page 7 of the same book, the phrase ``scores are maximized,'' is amended to ``scores increase,''. (4) Formulas (5) and (6) on page 12 of the same book are corrected as follows. (5) In the 8th line of page 16 of the Ministry, the phrase ``The amount of calculation is'' will be corrected to ``The amount of calculation.'' (6) Delete the words ``receiving band'' in the third and fifth lines of page 17 of the same book. (7) Same book, same page, line 10: r Tmr 1e 2'
At Tm+5+2' □11+2. τm+3+2' is r? mg 1
t2'Tm+5+2'?jn1112'
? Correct it as '17115@2 j. (8) Amend the drawing “Figure 6” as shown in the attached sheet. Claims: Noise 'k radiated from a moving target, received by N receivers, arrival time difference τi of the radiated noise at the receivers,
Find the estimated value τi,j of j mouth≦N, j≦N, i#j),
The estimated value τ3. In a Pudgebrenson system that estimates the position 1+ of the moving target from: a)
dividing the reception band in the receiver into a first reception band with a center frequency of fcl and a bandwidth of W' and a second reception band with a center frequency of fc and a bandwidth of W; Let the center frequency f' and the bandwidth W' be f'+W
/2 (fc+W/2), C) Calculate the cross-correlation function between the N signals in the first reception band, and calculate the time difference τ that maximizes the cross-correlation function as the arrival time difference τ1. .. d) Calculate the cross-correlation function between the N signals in the second reception band in the vicinity of the first estimated value τ1+J, and maximize the cross-correlation function. The arrival time difference τ11. The second *'i@T is characterized by estimating the position of the target. Tsushi cleansing system.

Claims (1)

【特許請求の範囲】 移動目標から放射される雑音を、N個の受波器で受信し
、該受波器における前記放射雑音の到達時間差τ_i_
、_j(i≦N、j≦、i≠j)の推定値■_i_,_
jを求め、その推定値■_i_,_jから前記移動目標
の位置を推定するパッシブレンジングシステムにおいて
、a)前記受波器における受信帯域を、中心周波数がf
_c′で帯域幅がW′の第1の受信帯域と、中心周波数
がf_cで帯域幅がWの第2の受信帯域とに分割し、 b)前記中心周波数f_c′と帯域幅W′とを、f_c
′+W′/2<f_c+W/2となるように選び、c)
前記第1の受信帯域のN個の信号間の相互相関関数を算
出し、その相互相関関数を最大とする時間差τを、前記
到達時間差τ_i_,_jの第1の推定値■_i_,_
jとし、 d)該その第1の推定値■_i_,_jの近傍において
、前記第2の受信帯域のN個の信号間の相互相関関数を
算出し、該相互相関関数を最大とする時間差τを、前記
到達時間差τ_i_,_jの第2の推定値とし、e)該
第2の推定値に基づいて、前記移動目標の位置を推定す
ることを特徴とするパッシブレンジングシステム。
[Claims] The noise radiated from a moving target is received by N receivers, and the arrival time difference τ_i_ of the radiated noise at the receivers is
, _j (i≦N, j≦, i≠j) ■_i_, _
In a passive ranging system that calculates j and estimates the position of the moving target from the estimated values ■_i_, _j, a) the reception band in the receiver is set to a center frequency f
b) divide the center frequency f_c' and the bandwidth W' into a first reception band with a center frequency f_c and a bandwidth W'; , f_c
'+W'/2<f_c+W/2, c)
The cross-correlation function between the N signals in the first reception band is calculated, and the time difference τ that maximizes the cross-correlation function is determined as the first estimated value of the arrival time difference τ_i_,_j ■_i_,_
j, and d) Calculate the cross-correlation function between the N signals of the second reception band in the vicinity of the first estimated value ■_i_,_j, and calculate the time difference τ that maximizes the cross-correlation function. is a second estimated value of the arrival time difference τ_i_,_j, and e) the position of the moving target is estimated based on the second estimated value.
JP11889287A 1987-05-18 1987-05-18 Passive ranging system Expired - Lifetime JPH0693017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11889287A JPH0693017B2 (en) 1987-05-18 1987-05-18 Passive ranging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11889287A JPH0693017B2 (en) 1987-05-18 1987-05-18 Passive ranging system

Publications (2)

Publication Number Publication Date
JPS63284481A true JPS63284481A (en) 1988-11-21
JPH0693017B2 JPH0693017B2 (en) 1994-11-16

Family

ID=14747734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11889287A Expired - Lifetime JPH0693017B2 (en) 1987-05-18 1987-05-18 Passive ranging system

Country Status (1)

Country Link
JP (1) JPH0693017B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288823A (en) * 1992-04-07 1993-11-05 Kansai Tec:Kk Detection method of very weak radiated electromagnetic waves, & position detection method of their radiation source, and dertection appartus of very weak radiated electromgnetic waves utilizing them
WO1997024575A1 (en) * 1995-12-28 1997-07-10 Unisearch Ltd. Projectile location system
JP2002062348A (en) * 2000-08-24 2002-02-28 Sony Corp Apparatus and method for processing signal
JP2002071784A (en) * 2000-08-30 2002-03-12 Tech Res & Dev Inst Of Japan Def Agency Method and device for orienting track from sailing body radiant noise
CN110095766A (en) * 2019-05-24 2019-08-06 西安电子科技大学 Maneuvering target coherent accumulation detection method based on non-uniform sampling technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288823A (en) * 1992-04-07 1993-11-05 Kansai Tec:Kk Detection method of very weak radiated electromagnetic waves, & position detection method of their radiation source, and dertection appartus of very weak radiated electromgnetic waves utilizing them
WO1997024575A1 (en) * 1995-12-28 1997-07-10 Unisearch Ltd. Projectile location system
JP2002062348A (en) * 2000-08-24 2002-02-28 Sony Corp Apparatus and method for processing signal
JP2002071784A (en) * 2000-08-30 2002-03-12 Tech Res & Dev Inst Of Japan Def Agency Method and device for orienting track from sailing body radiant noise
CN110095766A (en) * 2019-05-24 2019-08-06 西安电子科技大学 Maneuvering target coherent accumulation detection method based on non-uniform sampling technology
CN110095766B (en) * 2019-05-24 2023-03-21 西安电子科技大学 Maneuvering target coherent accumulation detection method based on non-uniform resampling technology

Also Published As

Publication number Publication date
JPH0693017B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US9182475B2 (en) Sound source signal filtering apparatus based on calculated distance between microphone and sound source
JPH11304906A (en) Sound-source estimation device and its recording medium with recorded program
Boucher et al. Analysis of discrete implementation of generalized cross correlator
US20020097885A1 (en) Acoustic source localization system and method
Ajdler et al. Acoustic source localization in distributed sensor networks
KR101529516B1 (en) Sound sourcelocalization device and sound sourcelocalization method
EP2369853B1 (en) Apparatus and method for reducing noise input from a rear direction
CN109669158B (en) Sound source positioning method, system, computer equipment and storage medium
US7397427B1 (en) Phase event detection and direction of arrival estimation
JP6203714B2 (en) Sound source localization using phase spectrum
JPS63284481A (en) Passive ranging system
JP2826494B2 (en) Target signal detection method and device
JP2985982B2 (en) Sound source direction estimation method
US20150369922A1 (en) System and method for determining location of an interfering signal source
CN113687305A (en) Method, device and equipment for positioning sound source azimuth and computer readable storage medium
Jan et al. Sound source localization in reverberant environments using an outlier elimination algorithm
Cai et al. Accelerated steered response power method for sound source localization using orthogonal linear array
RU2305295C1 (en) Phase method for direction finding
JPH0138270B2 (en)
Mahdinejad et al. Implementation of time delay estimation using different weighted generalized cross correlation in room acoustic environments
JPH06347530A (en) Estimation system for sound source position in water
RU2047278C1 (en) Method for scanning environment by hydroacoustic system and device for implementation of said method
Rogers et al. Passive broadband source localization in shallow-water multipath acoustic channels
WO2021251182A1 (en) Signal processing device, method, and program
JP5713933B2 (en) Sound source distance measuring device, acoustic direct ratio estimating device, noise removing device, method and program thereof