JPH06347530A - Estimation system for sound source position in water - Google Patents
Estimation system for sound source position in waterInfo
- Publication number
- JPH06347530A JPH06347530A JP16424993A JP16424993A JPH06347530A JP H06347530 A JPH06347530 A JP H06347530A JP 16424993 A JP16424993 A JP 16424993A JP 16424993 A JP16424993 A JP 16424993A JP H06347530 A JPH06347530 A JP H06347530A
- Authority
- JP
- Japan
- Prior art keywords
- sound source
- wave
- delay correlation
- similarity
- receivers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水中の音源位置を推定
する水中音源位置推定システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater sound source position estimating system for estimating a sound source position in water.
【0002】[0002]
【従来の技術】水中音波の音源位置は、深度及び測定点
までの水平距離で特定するが、水中の伝搬経路は複雑で
あるので、水中音源位置推定システムでは、深度方向に
直線的に配列した複数の受波器を用いてその音源位置を
推定するようにしている。この種の水中音源位置推定シ
ステムとしては、従来、例えば図4に示すものが知られ
ている。2. Description of the Related Art The sound source position of an underwater sound wave is specified by the depth and the horizontal distance to the measurement point. However, since the propagation path in water is complicated, the underwater sound source position estimation system linearly arranged in the depth direction. The sound source position is estimated using a plurality of wave receivers. As an underwater sound source position estimation system of this type, the one shown in FIG. 4 is conventionally known.
【0003】図4において、N個の受波器(#1〜#
N)は、深度方向に直線的に一定の間隔で配列される。
周波数分析器10は、これらN個の受波器の各受波信号
をそれぞれ周波数軸へ変換し、特定の周波数f1 につい
ての配列受波器上におけるエネルギー分布E0 を求め、
それを類似性計算器12の一方の入力へ与える。In FIG. 4, N wave receivers (# 1 to #)
N) are arranged linearly at regular intervals in the depth direction.
The frequency analyzer 10 converts each of the received signals of these N receivers into a frequency axis, and obtains an energy distribution E 0 on the arrayed receiver for a specific frequency f 1 ,
It is applied to one input of the similarity calculator 12.
【0004】一方、伝搬計算器11では、各受波器の深
度(Z1 〜ZN )のデータと仮想音源位置(P11〜
PXZ)のデータとが外部から与えられる。ここに、仮想
音源位置(P11〜PXZ)は、例えば図5に示すようにN
個の受波器の配列方向に平行な仮想格子面を音場内に設
定した場合の各格子の座標位置であって、各格子には音
源が仮想的に配置されるのである。On the other hand, in the propagation calculator 11, the data of the depth (Z 1 to Z N ) of each receiver and the virtual sound source position (P 11 to Z N ).
P XZ ) data and is given from the outside. Here, the virtual sound source position (P 11 to P XZ ) is N as shown in FIG. 5, for example.
This is the coordinate position of each lattice when a virtual lattice plane parallel to the array direction of the individual wave receivers is set in the sound field, and a sound source is virtually arranged in each lattice.
【0005】この伝搬計算器11では、各仮想音源位置
と各受波器との間の水平距離は既知であるので、各受波
器の深度データと各仮想音源位置のデータを受けて、F
FT処理によりP11〜PXZの各位置に存在する仮想音源
の音波をN個の受波器のそれぞれが受波するとした場合
の伝搬損失を特定の周波数f1 について計算し、その特
定周波数についての配列受波器上でのエネルギー分布
(E11〜EXZ)を類似性計算器12の他方の入力へ与え
る。In this propagation calculator 11, since the horizontal distance between each virtual sound source position and each wave receiver is known, the depth data of each wave receiver and the data of each virtual sound source position are received, and F
Propagation loss in the case where each of the N wave receivers receives the sound wave of the virtual sound source existing at each position of P 11 to P XZ by the FT process is calculated for the specific frequency f 1 , and the specific frequency is calculated. The energy distribution (E 11 to E XZ ) on the array receiver of is given to the other input of the similarity calculator 12.
【0006】類似性計算器12では、N個の受波器で測
定された音波のエネルギー分布E0(周波数分析器10
の出力)に対する伝搬計算により求めたN個の受波器そ
れぞれにおけるE11〜EXZのエネルギー分布の類似度を
最尤推定法や最小2乗法等の推定法を用いて計算し、各
々の類似度を位置検出器13へ出力する。In the similarity calculator 12, the energy distribution E 0 of the sound waves measured by the N number of receivers (frequency analyzer 10
Output) of each of the N receivers obtained by the propagation calculation, the similarity of the energy distributions of E 11 to E XZ is calculated using an estimation method such as the maximum likelihood estimation method or the least squares method, and the similarity of each is calculated. The degree is output to the position detector 13.
【0007】例えば図5において、配列受波器上には
(ア)(イ)(ウ)の3つのエネルギー分布を示してあ
るが、(ア)はN個の受波器で測定された音波のエネル
ギー分布E0 、(イ)は真音源aの位置に近い格子位置
に配置した仮想音源b対する伝搬計算によるエネルギー
分布、(ウ)は真音源aの位置から遠い格子位置に配置
した仮想音源cに対する伝搬計算によるエネルギー分布
である。For example, in FIG. 5, three energy distributions (a), (b) and (c) are shown on the arrayed wave receiver, but (a) shows sound waves measured by N wave receivers. Energy distribution E 0 , (a) is the energy distribution by the propagation calculation for the virtual sound source b arranged at the lattice position close to the position of the true sound source a, and (c) is the virtual sound source arranged at the grid position far from the position of the true sound source a It is an energy distribution by the propagation calculation with respect to c.
【0008】類似性計算器12では、(ア)と(イ)、
(ア)と(ウ)をそれぞれ比較してそれぞれの類似度を
求めるが、真音源aの位置に近い位置にある仮想音源b
の類似度が遠い位置にある仮想音源cの類似度よりも高
い値を示すことが解る。In the similarity calculator 12, (a) and (a),
(A) and (c) are compared with each other to obtain the respective similarities, but the virtual sound source b located near the true sound source a is located.
It can be seen that the degree of similarity indicates a value higher than the degree of similarity of the virtual sound source c at a distant position.
【0009】位置検出器13では、予め設定したレベル
を越える類似度とそのエネルギー分布を生じた仮想音源
位置(格子点位置)を検出し、出力処理器14に与え
る。The position detector 13 detects a virtual sound source position (lattice point position) at which a similarity exceeding a preset level and its energy distribution are generated, and supplies it to the output processor 14.
【0010】出力処理器14では、類似度の大小関係や
時間的な連続性等を勘案して音源位置を推定する。The output processor 14 estimates the sound source position in consideration of the magnitude relation of the degree of similarity, the temporal continuity and the like.
【0011】[0011]
【発明が解決しようとする課題】上述した従来の水中音
源位置推定システムでは、仮想音源位置から真の音源位
置を推定するための計算データと測定データとの類似性
計算処理において、水中音場の深度方向に設定される配
列受波器上のエネルギー分布を比較データとして利用し
ているが、仮想音源位置に対する計算データの差異は僅
かであるので、類似性計算処理によりこれら多数の計算
データの中から真の音源位置に対応したデータを抽出で
きるようにするには、計算データの比較対象として詳細
なエネルギー分布の測定値が必要である。一方音源の発
する音波の周波数には各種あるが、想定される最小波長
の音波も正確に受波できるようにするため受波器の配列
間隔は半波長の法則に従い定める必要がある。In the above-mentioned conventional underwater sound source position estimation system, in the similarity calculation process of the calculation data for estimating the true sound source position from the virtual sound source position and the measurement data, the underwater sound field Although the energy distribution on the array receiver set in the depth direction is used as comparison data, the difference in the calculation data with respect to the virtual sound source position is small, so the similarity calculation process can be used to calculate In order to be able to extract the data corresponding to the true sound source position from, the detailed measured value of the energy distribution is required as the comparison target of the calculation data. On the other hand, although there are various frequencies of the sound waves emitted from the sound source, the array interval of the wave receivers must be determined according to the law of half-wavelength so that the sound waves of the assumed minimum wavelength can be accurately received.
【0012】従って、従来の水中音源位置推定システム
では、相当に多数の受波器を深度方向に配列する必要が
あり、システム規模が増大するという問題がある。Therefore, in the conventional underwater sound source position estimating system, it is necessary to arrange a considerably large number of wave receivers in the depth direction, and there is a problem that the system scale increases.
【0013】本発明は、このような問題に鑑みなされた
もので、その目的は、配列受波器の受波器数の大幅な低
減を可能とした水中音源位置推定システムを提供するこ
とにある。The present invention has been made in view of such a problem, and an object thereof is to provide an underwater sound source position estimation system capable of significantly reducing the number of receivers of an array receiver. .
【0014】[0014]
【課題を解決するための手段】前記目的を達成するた
め、本発明の水中音源位置推定システムは次の如き構成
を有する。即ち、本発明の水中音源位置推定システム
は、音波の到達時間差を測定できる程度に離隔した間隔
で深度方向に直線的に配列される複数の受波器と; 前
記複数の受波器における2つの受波器の受波信号間の遅
延相関度を計算する1または3以上の第1遅延相関処理
器と; 前記複数の受波器の配列方向に平行な仮想格子
面の各格子に仮想的に配置した仮想音源の音波を前記複
数の受波器のそれぞれが受波するとした場合の伝搬損失
を周波数毎に計算し、それを各受波器の各仮想音源に対
する受波信号へ変換して出力する伝搬計算器と; 前記
伝搬計算器が出力する複数の受波器それぞれの受波信号
のうちの2つの受波信号間の遅延相関度を計算する1ま
たは3以上の第2遅延相関処理器と; 前記第1遅延相
関処理器が計算した遅延相関度と第2遅延相関処理器が
計算した遅延相関度との類似性を計算する1または3以
上の類似性計算器と; 前記類似性が一定レベル以上と
なる場合の遅延相関度に対応した仮想音源位置を出力す
る1または3以上の位置検出器と; 前記検出器が検出
した仮想音源位置を順次記憶するメモリと; 前記記憶
された仮想音源位置のうち一定箇所に集中する仮想音源
位置を抽出し、それらの位置及び類似度等の情報を出力
する出力処理器と; を備えたことを特徴とするもので
ある。In order to achieve the above object, the underwater sound source position estimating system of the present invention has the following configuration. That is, the underwater sound source position estimation system of the present invention includes a plurality of wave receivers linearly arranged in the depth direction at intervals that are spaced apart so that the arrival time difference of sound waves can be measured; One or three or more first delay correlation processors that calculate the degree of delay correlation between the received signals of the wave receivers; and virtually on each lattice of a virtual lattice plane parallel to the arrangement direction of the plurality of wave receivers. Calculates the propagation loss for each frequency when the sound waves of the arranged virtual sound source are received by each of the plurality of wave receivers, converts it to the received signal for each virtual sound source of each wave receiver, and outputs it. A propagation calculator for calculating one or more second delay correlation processors for calculating the degree of delay correlation between two received signals of the plurality of receivers output by the propagation calculator A delay correlation degree calculated by the first delay correlation processor and a second delay correlation degree; 1 or 3 or more similarity calculators that calculate the similarity with the delay correlation degree calculated by the delay correlation processor; and output a virtual sound source position corresponding to the delay correlation degree when the similarity becomes a certain level or more. 1 or 3 or more position detectors; a memory that sequentially stores the virtual sound source positions detected by the detector; a virtual sound source position that is concentrated at a certain position among the stored virtual sound source positions; And an output processor for outputting information such as position and similarity.
【0015】[0015]
【作用】次に、前記の如く構成される本発明の水中音源
位置推定システムの作用を説明する。深度方向に直線的
に配列される複数の受波器は、音波の到達時間差を測定
できる程度に離隔した間隔で配置され、真の音源の音波
を受波するが、2つの受波器の受波信号間の遅延相関度
が第1遅延相関処理器で計算される。一方、伝搬計算器
で各受波器の各仮想音源に対する受波信号が計算され、
その計算された2つの受波器の受波信号間の遅延相関度
が第2相関処理器で計算される。これら2つの遅延相関
度の類似度が類似性計算器で計算され、類似性が一定レ
ベル以上となった場合の遅延相関度に対応した仮想音源
位置が位置検出器で検出され、メモリに順次記憶され
る。そして、記憶された仮想音源位置のうち一定箇所に
集中する仮想音源位置が抽出されそれらの位置及び類似
度等の情報が出力処理器から出力される。Next, the operation of the underwater sound source position estimating system of the present invention configured as described above will be described. The plurality of wave receivers linearly arranged in the depth direction are arranged at intervals so that the arrival time difference of the sound waves can be measured and receive the sound wave of the true sound source. The degree of delayed correlation between the wave signals is calculated by the first delayed correlation processor. On the other hand, the propagation calculator calculates the received signal for each virtual sound source of each receiver,
The calculated degree of delay correlation between the received signals of the two receivers is calculated by the second correlation processor. The similarity of these two delay correlations is calculated by the similarity calculator, and the virtual sound source position corresponding to the delay correlation when the similarity exceeds a certain level is detected by the position detector and sequentially stored in the memory. To be done. Then, of the stored virtual sound source positions, virtual sound source positions that are concentrated at a certain location are extracted, and information such as the position and the degree of similarity is output from the output processor.
【0016】以上要するに、本発明で実施される類似性
計算処理で用いる比較データは、従来のように空間領域
でのデータ分布ではなく、時間領域でのデータ分布であ
るので、従来のように空間的に詳細なデータ分布を測定
する必要がない。In summary, since the comparison data used in the similarity calculation process according to the present invention is not the data distribution in the spatial domain as in the conventional case but the data distribution in the time domain as in the conventional case, It is not necessary to measure the detailed data distribution.
【0017】従って、配列受波器の受波器数を大幅に減
らすことができ、システム規模の縮小化を可能にする。
なお、受波器数は、推定精度を問わなければ2個で良
く、一定の精度を確保する場合でも最低3個あれば足り
る。Therefore, the number of wave receivers of the array wave receiver can be greatly reduced, and the system scale can be reduced.
It should be noted that the number of wave receivers may be two as long as the estimation accuracy does not matter, and a minimum of three is sufficient even if a certain accuracy is secured.
【0018】[0018]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る水中音源位置推
定システムを示す。構成要素の中には名称が従来例(図
4)と同様のものもあるが、動作内容が異なる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an underwater sound source position estimation system according to an embodiment of the present invention. Some of the components have the same names as those of the conventional example (FIG. 4), but the operation contents are different.
【0019】本実施例は、#1〜#3の3個の受波器を
使用した例を示す。これら3個の受波器は、深度方向に
直線的に配列されるが、配列間隔が音波の到達時間差を
測定できる程度に充分に離隔した間隔である点が従来と
異なる。This embodiment shows an example in which three wave receivers # 1 to # 3 are used. These three wave receivers are linearly arrayed in the depth direction, but differ from the prior art in that the array intervals are sufficiently separated so that the difference in arrival time of sound waves can be measured.
【0020】これら3個の受波器の受波信号は、ろ波処
理を受けず、つまり広帯域性を保持した状態で(第1
の)遅延相関処理器に入力すると共に、そのうちの1つ
の受波信号が伝搬計算器2に入力する。The received signals of these three receivers are not subjected to the filtering process, that is, in the state where the broadband property is maintained (first
No. 1) is input to the delay correlation processor, and one of the received signals is input to the propagation calculator 2.
【0021】(第1の)遅延相関処理器は、1aと1b
と1cの3個で構成され、それぞれ3個の受波器の受波
信号のうちの2個の受波信号間の遅延相関度を計算す
る。The (first) delay correlation processors are 1a and 1b.
And 1c, the delay correlation degree between two received signals of the received signals of the three receivers is calculated.
【0022】即ち、遅延相関処理器1aは、受波器#1
と同#2の受波信号間の遅延相関度Da0(τ)を計算す
る。同様に、遅延相関処理器1bは、受波器#2と同#
3の受波信号間の遅延相関度Db0(τ)を計算し、遅延
相関処理器1cは、受波器#1と同#3の受波信号間の
遅延相関度Dc0(τ)を計算する。That is, the delayed correlation processor 1a is the receiver # 1.
And the delay correlation D a0 (τ) between the received signals of # 2 and # 2 is calculated. Similarly, the delay correlation processor 1b is the same as the receiver # 2.
The delayed correlation degree D b0 (τ) between the three received signals is calculated, and the delayed correlation processor 1c calculates the delayed correlation degree D c0 (τ) between the received signals of the receivers # 1 and # 3. calculate.
【0023】また、伝搬計算器2では、従来と同様に各
受波器の深度(Z1 〜Z3 )のデータと仮想音源位置
(P11〜PXZ)のデータとが外部から与えられるが、更
に3個の受波器のうちの1つの受波器の受波信号がその
広帯域性を保持して入力し、従来と異なり次の4つの動
作を順次実行する。なお、仮想音源位置(P11〜PXZ)
に関しては従来と同様である。Further, in the propagation calculator 2, the data of the depths (Z 1 to Z 3 ) of the respective wave receivers and the data of the virtual sound source positions (P 11 to P XZ ) are given from the outside as in the conventional case. Further, the received signal of one of the three wave receivers is input while maintaining its wide band property, and unlike the conventional case, the following four operations are sequentially executed. The virtual sound source position (P 11 to P XZ )
Is the same as the conventional one.
【0024】(1)例えば図2の右方に示すような波形
をしている3個の受波器の受波信号(測定信号)のうち
の1つの受波器の測定信号、例えば受波器#3の測定信
号がリファレンス信号として与えられるとすると、それ
をFFT処理により周波数軸へ変換しそのリファレンス
信号を発した受波器#3の位置での測定信号のスペクト
ルレベルを得る。(1) Of the received signals (measurement signals) of the three receivers having the waveforms shown in the right side of FIG. 2, for example, the measured signal of one receiver, for example, the received wave If the measurement signal of the device # 3 is given as a reference signal, it is converted into a frequency axis by FFT processing, and the spectrum level of the measurement signal at the position of the receiver # 3 that issued the reference signal is obtained.
【0025】(2)仮想音源位置(P11〜PXZ)のデー
タと受波器#3の深度Z3 のデータに基づき、各仮想音
源位置から受波器#3へ至る伝搬経路毎の伝搬損失量を
周波数毎に計算し、それを前記測定信号のスペクトルレ
ベルに加算して各仮想音源位置での音源スペクトルレベ
ルを得る。(2) Propagation of each propagation path from each virtual sound source position to the receiver # 3 based on the data of the virtual sound source position (P 11 to P XZ ) and the data of the depth Z 3 of the receiver # 3. The loss amount is calculated for each frequency and added to the spectrum level of the measurement signal to obtain the sound source spectrum level at each virtual sound source position.
【0026】(3)各受波器の深度(Z1 、Z2 、Z
3 )のデータに基づき各受波器位置に対応した伝搬経路
毎の伝搬損失量を周波数毎に計算し、その損失量を前記
各仮想音源位置での音源スペクトルレベルに加算し、各
仮想音源位置に対する各受波器位置でのスペクトルレベ
ルを得る。(3) Depth of each receiver (Z 1 , Z 2 , Z
3 ) Calculate the propagation loss amount for each propagation path corresponding to each receiver position for each frequency based on the data of 3 ), add the loss amount to the sound source spectrum level at each virtual sound source position, and calculate each virtual sound source position. Obtain the spectral level at each receiver position for.
【0027】(4)IFFT処理により各受波器位置で
のスペクトルレベルを時間軸へ変換し、図2の左方に示
すように、各仮想音源位置に対する各受波器位置での広
帯域性を保持した受波信号(伝搬計算による信号)を得
る。(4) The spectrum level at each receiver position is converted to the time axis by the IFFT processing, and as shown on the left side of FIG. 2, the broadband property at each receiver position for each virtual sound source position is obtained. The received wave signal (the signal obtained by the propagation calculation) that is held is obtained.
【0028】次に、(第2の)遅延相関処理器は、3a
と3bと3cの3個で構成され、それぞれ伝搬計算器2
が出力する3個の受波器の受波信号(伝搬計算による信
号)のうちの2個の受波信号間の遅延相関度を計算す
る。Next, the (second) delay correlation processor 3a
, 3b and 3c, each of which is a propagation calculator 2
Calculates the delay correlation between two wave-received signals of the wave-received signals (the signals obtained by the propagation calculation) of the three wave receivers.
【0029】即ち、遅延相関処理器3aは、受波器#1
と同#2の受波信号間の遅延相関度(Da11(τ)〜D
aXZ(τ))を計算する。同様に、遅延相関処理器3b
は、受波器#2と同#3の受波信号間の遅延相関度(D
b11(τ)〜DbXZ(τ))を計算する。また、遅延相関処
理器1cは、受波器#1と同#3の受波信号間の遅延相
関度(Dc11(τ)〜DcXZ(τ))を計算する。That is, the delay correlation processor 3a is provided with the receiver # 1.
And the delay correlation between received signals of # 2 (D a11 (τ) ~ D
Calculate aXZ (τ)). Similarly, the delay correlation processor 3b
Is the degree of delay correlation between the received signals of the receivers # 2 and # 3 (D
b11 (τ) to D bXZ (τ)) are calculated. The delay correlation processor 1c calculates the degree of delay correlation (D c11 (τ) to D cXZ (τ)) between the received signals of the receivers # 1 and # 3.
【0030】類似性計算器は、4aと4bと4cの3個
で構成され、それぞれ両遅延相関処理器が出力する遅延
相関度間の類似性を最尤推定法や最小2乗法等の推定法
を用いて計算する。The similarity calculator is composed of three units, 4a, 4b and 4c, and the similarity between the delay correlations output by both delay correlation processors is estimated by a maximum likelihood estimation method or a least squares method. Calculate using.
【0031】即ち、類似性計算器4aは、遅延相関処理
器1aからの遅延相関度Da0(τ)と遅延相関処理器3
aからの遅延相関度(Da11(τ)〜DaXZ(τ))との類
似性を計算する。類似性計算器4bは、遅延相関器1b
からの遅延相関度Db0(τ)と遅延相関器3bからの遅
延相関度(Db11(τ)〜DbXZ(τ))との類似性を計算
する。類似性計算器4cは、遅延相関器1cからの遅延
相関度Dc0(τ)と遅延相関器3aからの遅延相関度
(Dc11(τ)〜DcXZ(τ))との類似性を計算する。That is, the similarity calculator 4a calculates the delay correlation degree D a0 (τ) from the delay correlation processor 1a and the delay correlation processor 3a.
Compute the similarity with the degree of delayed correlation from a (D a11 (τ) to D aXZ (τ)). The similarity calculator 4b is a delay correlator 1b.
From the delay correlator D b0 (τ) to the delay correlator (D b11 (τ) to D bXZ (τ)) from the delay correlator 3 b. The similarity calculator 4c calculates the similarity between the delay correlation degree D c0 (τ) from the delay correlator 1c and the delay correlation degree (D c11 (τ) to D cXZ (τ)) from the delay correlator 3a. To do.
【0032】例えば、3個の受波器と真音源や仮想音源
とが図3(A)に示す位置関係にあるとすれば、遅延相
関処理器1aでは図3(B)に示すように、真音源aに
対する受波器#1の測定信号と受波器#2の測定信号と
の遅延相関度が求められる。For example, assuming that the three wave receivers and the true sound source or the virtual sound source have the positional relationship shown in FIG. 3 (A), the delay correlation processor 1a, as shown in FIG. 3 (B), The degree of delay correlation between the measurement signal of the receiver # 1 and the measurement signal of the receiver # 2 for the true sound source a is obtained.
【0033】一方、遅延相関処理器3aでは、図3
(C)に示すように真音源aに近い位置にある仮想音源
bに対する受波器#1の伝搬計算信号と受波器#2の伝
搬計算信号との遅延相関度が求められると共に、図3
(D)に示すように真音源aから遠い位置にある仮想音
源cに対する受波器#1の伝搬計算信号と受波器#2の
伝搬計算信号との遅延相関度が求められる。On the other hand, in the delay correlation processor 3a, as shown in FIG.
As shown in (C), the degree of delay correlation between the propagation calculation signal of the wave receiver # 1 and the propagation calculation signal of the wave receiver # 2 for the virtual sound source b located near the true sound source a is obtained, and as shown in FIG.
As shown in (D), the degree of delay correlation between the propagation calculation signal of the wave receiver # 1 and the propagation calculation signal of the wave receiver # 2 for the virtual sound source c located far from the true sound source a is obtained.
【0034】そこで、類似性計算器4aでは、図3
(B)の測定による遅延相関度の形状と図3(C)の伝
搬計算による遅延相関度の形状とを比較し、また図3
(B)の測定による遅延相関度の形状と図3(D)の伝
搬計算による遅延相関度の形状とを比較し、それぞれの
比較結果(類似度)を出力する。図示の例では仮想音源
bに対応した遅延相関度の方がより大きな類似度を示す
ことになる。Therefore, in the similarity calculator 4a, as shown in FIG.
The shape of the delay correlation degree measured by (B) and the shape of the delay correlation degree calculated by the propagation calculation of FIG. 3C are compared, and FIG.
The shape of the delay correlation degree measured by (B) and the shape of the delay correlation degree calculated by the propagation calculation of FIG. 3D are compared, and respective comparison results (similarity) are output. In the illustrated example, the degree of delay correlation corresponding to the virtual sound source b indicates a greater degree of similarity.
【0035】位置検出器は、5aと5bと5cの3個で
構成され、位置検出器5aには類似性計算器4aの出力
が、位置検出器5bには類似性計算器4bの出力が、位
置検出器5cには類似性計算器4cの出力がそれぞれ入
力し、設定レベルを超える類似度とその遅延相関度を生
ずる仮想音源の位置とを検出する。The position detector is composed of three elements 5a, 5b and 5c. The position detector 5a receives the output of the similarity calculator 4a and the position detector 5b receives the output of the similarity calculator 4b. The output of the similarity calculator 4c is input to the position detector 5c, and the position of the virtual sound source that produces the degree of similarity exceeding the set level and its delayed correlation is detected.
【0036】これら3個の位置検出器の検出出力はそれ
ぞれメモリ6に順次記憶されるが、以上の説明から推察
できるように、メモリ6には3系統の仮想音源位置がそ
れらのうちの1個または複数個の仮想音源位置が重複し
た形で記憶される。The detection outputs of these three position detectors are sequentially stored in the memory 6, respectively. As can be inferred from the above description, the memory 6 has one of three virtual sound source positions. Alternatively, a plurality of virtual sound source positions are stored in a duplicated form.
【0037】そこで、出力処理器7では、メモリ6をア
クセスして重複する仮想音源位置を抽出し、その抽出し
た仮想音源の位置(格子座標位置)及び対応する類似度
等の情報を出力する。この出力情報から真音源aの位置
(深度及び水平距離)を推定する。Therefore, the output processor 7 accesses the memory 6 to extract overlapping virtual sound source positions, and outputs information such as the positions (lattice coordinate positions) of the extracted virtual sound sources and corresponding similarities. The position (depth and horizontal distance) of the true sound source a is estimated from this output information.
【0038】なお、水中音源は、連続波やパルス波を含
む各種状態の音波を発するのが一般的であるが、3個の
受波器を使用すれば上述したように仮想格子面内におい
て仮想音源位置の1つの塊を抽出できるので、音源の種
類を問わずその位置推定が可能であり、受波器数が更に
増えればそれだけ精度が向上する。It should be noted that the underwater sound source generally emits sound waves in various states including continuous waves and pulse waves, but if three wave receivers are used, as described above, virtual waves are generated in the virtual lattice plane. Since one block of the sound source position can be extracted, the position can be estimated regardless of the kind of the sound source, and the accuracy is improved as the number of receivers is further increased.
【0039】一方、受波器が2個の場合は、3個ある遅
延相関処理器等はそれぞれ1系統となるが、音源がパル
ス波も発するものである場合、最大レベルを示す仮想音
源位置が広い範囲に渡って多数検出され音源位置の推定
が困難となる場合があるが、音源の存在範囲を知ること
は可能であり、またパルス波を発しない音源に対しては
精度は劣るが位置の推定が可能である。On the other hand, when there are two wave receivers, each of the three delay correlation processors has one system, but when the sound source also emits a pulse wave, the virtual sound source position showing the maximum level is It may be difficult to estimate the position of the sound source due to the large number of points detected over a wide range, but it is possible to know the range of existence of the sound source. Estimates are possible.
【0040】[0040]
【発明の効果】以上説明したように、本発明の水中音源
位置推定システムでは、測定データと計算データの類似
性計算処理において、2つの受波器間に生ずる音源信号
の到達時間差に注目し、それらの遅延相関度を比較デー
タとするようにしたので、従来のように空間的に詳細な
データ分布を測定する必要がなく、配列受波器の受波器
数を大幅に減らすことができ、システム規模の縮小化が
図れる効果がある。As described above, in the underwater sound source position estimating system of the present invention, attention is paid to the difference in the arrival time of the sound source signal generated between the two receivers in the similarity calculation process of the measurement data and the calculation data, Since the delay correlation is used as comparison data, it is not necessary to measure spatially detailed data distribution as in the conventional case, and the number of array receivers can be significantly reduced. This has the effect of reducing the system scale.
【図1】本発明の水中音源位置推定システムの一構成例
のブロック図である。FIG. 1 is a block diagram of a configuration example of an underwater sound source position estimation system of the present invention.
【図2】本発明の伝搬計算処理の動作説明図である。FIG. 2 is an operation explanatory diagram of a propagation calculation process of the present invention.
【図3】本発明の類似性計算処理の動作説明図であり、
(A)は配列受波器と音源との位置関係図、(B)は真
音源aについての遅延相関度の説明図、(C)は仮想音
源bについての遅延相関度の説明図、(D)は仮想音源
cについての遅延相関度の説明図である。FIG. 3 is an operation explanatory diagram of the similarity calculation processing of the present invention,
(A) is a positional relationship diagram between an array wave receiver and a sound source, (B) is an explanatory diagram of a delay correlation degree for a true sound source a, (C) is an explanatory diagram of a delay correlation degree for a virtual sound source b, (D) 8] is an explanatory diagram of a degree of delay correlation for a virtual sound source c.
【図4】従来の水中音源位置推定システムの構成ブロッ
ク図である。FIG. 4 is a configuration block diagram of a conventional underwater sound source position estimation system.
【図5】従来の類似性計算処理の動作説明図である。FIG. 5 is an operation explanatory diagram of a conventional similarity calculation process.
1a 遅延相関処理器 1b 遅延相関処理器 1c 遅延相関処理器 2 伝搬計算器 3a 遅延相関処理器 3b 遅延相関処理器 3c 遅延相関処理器 4a 類似性計算器 4b 類似性計算器 4c 類似性計算器 5a 位置検出器 5b 位置検出器 5c 位置検出器 6 メモリ 7 出力処理器 1a Delay Correlation Processor 1b Delay Correlation Processor 1c Delay Correlation Processor 2 Propagation Calculator 3a Delay Correlation Processor 3b Delay Correlation Processor 3c Delay Correlation Processor 4a Similarity Calculator 4b Similarity Calculator 4c Similarity Calculator 5a Position detector 5b Position detector 5c Position detector 6 Memory 7 Output processor
Claims (1)
隔した間隔で深度方向に直線的に配列される複数の受波
器と; 前記複数の受波器における2つの受波器の受波
信号間の遅延相関度を計算する1または3以上の第1遅
延相関処理器と; 前記複数の受波器の配列方向に平行
な仮想格子面の各格子に仮想的に配置した仮想音源の音
波を前記複数の受波器のそれぞれが受波するとした場合
の伝搬損失を周波数毎に計算し、それを各受波器の各仮
想音源に対する受波信号へ変換して出力する伝搬計算器
と; 前記伝搬計算器が出力する複数の受波器それぞれ
の受波信号のうちの2つの受波信号間の遅延相関度を計
算する1または3以上の第2遅延相関処理器と; 前記
第1遅延相関処理器が計算した遅延相関度と第2遅延相
関処理器が計算した遅延相関度との類似性を計算する1
または3以上の類似性計算器と; 前記類似性が一定レ
ベル以上となる場合の遅延相関度に対応した仮想音源位
置を出力する1または3以上の位置検出器と; 前記検
出器が検出した仮想音源位置を順次記憶するメモリと;
前記記憶された仮想音源位置のうち一定箇所に集中す
る仮想音源位置を抽出し、それらの位置及び類似度等の
情報を出力する出力処理器と; を備えたことを特徴と
する水中音源位置推定システム。1. A plurality of wave receivers linearly arrayed in the depth direction at intervals that are spaced apart so that a difference in arrival time of sound waves can be measured; and received signals of two wave receivers in the plurality of wave receivers. One or three or more first delay correlation processors for calculating the degree of delay correlation between two or more; and a sound wave of a virtual sound source virtually arranged on each lattice of a virtual lattice plane parallel to the array direction of the plurality of wave receivers. A propagation calculator that calculates, for each frequency, a propagation loss when each of the plurality of wave receivers receives a wave, and converts the propagation loss into a wave reception signal for each virtual sound source of each wave receiver and outputting the wave reception signal; One or three or more second delay correlation processors that calculate the degree of delay correlation between two received signals of the received signals of the plurality of receivers output from the propagation calculator; and the first delayed correlation. The degree of delay correlation calculated by the processor and the delay calculated by the second delay correlation processor 1 to calculate the similarity between Sekido
Or 3 or more similarity calculators; 1 or 3 or more position detectors that output virtual sound source positions corresponding to the degree of delay correlation when the similarity is a certain level or more; virtual detected by the detectors A memory for sequentially storing sound source positions;
An underwater sound source position estimation, comprising: an output processor that extracts virtual sound source positions that are concentrated at a fixed location from the stored virtual sound source positions and outputs information such as the position and similarity degree; system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5164249A JP2570110B2 (en) | 1993-06-08 | 1993-06-08 | Underwater sound source localization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5164249A JP2570110B2 (en) | 1993-06-08 | 1993-06-08 | Underwater sound source localization system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06347530A true JPH06347530A (en) | 1994-12-22 |
JP2570110B2 JP2570110B2 (en) | 1997-01-08 |
Family
ID=15789514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5164249A Expired - Fee Related JP2570110B2 (en) | 1993-06-08 | 1993-06-08 | Underwater sound source localization system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2570110B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221444A (en) * | 1997-01-31 | 1998-08-21 | Nec Corp | Method and device for measuring seabed acoustic characteristic |
JP2002071784A (en) * | 2000-08-30 | 2002-03-12 | Tech Res & Dev Inst Of Japan Def Agency | Method and device for orienting track from sailing body radiant noise |
JP2016218078A (en) * | 2007-01-26 | 2016-12-22 | マイクロソフト テクノロジー ライセンシング,エルエルシー | Multi-sensor sound source localization |
JP2018031606A (en) * | 2016-08-22 | 2018-03-01 | 株式会社Ihi | Oscillation source position estimation method and oscillation source position estimation system |
KR101854353B1 (en) * | 2017-09-28 | 2018-05-03 | 엘아이지넥스원 주식회사 | Method for receiving digital sound and processing alignment using thereof |
KR101854352B1 (en) * | 2017-09-28 | 2018-05-03 | 엘아이지넥스원 주식회사 | Apparatus for digital sound receiver and system for processing alignment using thereof |
-
1993
- 1993-06-08 JP JP5164249A patent/JP2570110B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221444A (en) * | 1997-01-31 | 1998-08-21 | Nec Corp | Method and device for measuring seabed acoustic characteristic |
JP2002071784A (en) * | 2000-08-30 | 2002-03-12 | Tech Res & Dev Inst Of Japan Def Agency | Method and device for orienting track from sailing body radiant noise |
JP2016218078A (en) * | 2007-01-26 | 2016-12-22 | マイクロソフト テクノロジー ライセンシング,エルエルシー | Multi-sensor sound source localization |
JP2018031606A (en) * | 2016-08-22 | 2018-03-01 | 株式会社Ihi | Oscillation source position estimation method and oscillation source position estimation system |
KR101854353B1 (en) * | 2017-09-28 | 2018-05-03 | 엘아이지넥스원 주식회사 | Method for receiving digital sound and processing alignment using thereof |
KR101854352B1 (en) * | 2017-09-28 | 2018-05-03 | 엘아이지넥스원 주식회사 | Apparatus for digital sound receiver and system for processing alignment using thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2570110B2 (en) | 1997-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5568450A (en) | System and processor for real-time extraction of ocean bottom properties | |
US7929375B2 (en) | Method and apparatus for improved active sonar using singular value decomposition filtering | |
US8270252B2 (en) | Method for estimating target range error and sonar system thereof | |
US5475651A (en) | Method for real-time extraction of ocean bottom properties | |
CN109444896B (en) | Underwater sound array positioning system and positioning method thereof | |
JPH04215090A (en) | Hydroacoustic ranging system | |
AU2014412888A1 (en) | Methods and systems for spectral analysis of sonar data | |
JP2019117055A (en) | Estimation method, estimation device and program | |
KR20120108823A (en) | Line array sonar and method for detecting target bearing of the same | |
EP0187851B1 (en) | Adaptive predictor of surface reverberation in a bistatic sonar | |
US5420827A (en) | Passive multipath target range and depth estimation using a variable depth sonar | |
KR880012995A (en) | Simultaneous and Non-Coherent Processors for Sonar Detection Signals | |
US6714481B1 (en) | System and method for active sonar signal detection and classification | |
JPH06347530A (en) | Estimation system for sound source position in water | |
US8116169B2 (en) | Active sonar system and active sonar method using noise reduction techniques and advanced signal processing techniques | |
WO1999053565A2 (en) | System for canceling interferers from broadband active sonar signals using adaptive beamforming methods | |
KR20190140362A (en) | Method and apparatus for estimating the number of signals in radar system | |
JP2016212034A (en) | Sound source location estimation device, method and program | |
KR102471995B1 (en) | Method and apparatus for estimating the number of signals, by considering SML cost function and hypothesis test | |
US5854601A (en) | Methods for estimating the number of emitters and their parameters | |
JP7234947B2 (en) | OBJECT IDENTIFICATION DEVICE, OBJECT IDENTIFICATION METHOD AND OBJECT IDENTIFICATION PROGRAM | |
JPH07260922A (en) | Position transducer for underwater navigation body | |
JP2905785B2 (en) | Scattering coefficient estimation method | |
JP2001083232A (en) | Apparatus for determining passive target position | |
Grall et al. | Theoretical analysis of a new approach to order determination for a modified Prony method in swath mapping application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20071024 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20081024 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20091024 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |