JPS63284463A - Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene - Google Patents

Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene

Info

Publication number
JPS63284463A
JPS63284463A JP11815487A JP11815487A JPS63284463A JP S63284463 A JPS63284463 A JP S63284463A JP 11815487 A JP11815487 A JP 11815487A JP 11815487 A JP11815487 A JP 11815487A JP S63284463 A JPS63284463 A JP S63284463A
Authority
JP
Japan
Prior art keywords
crosslinking agent
decomposition residue
internal standard
crosslinked polyethylene
agent decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11815487A
Other languages
Japanese (ja)
Inventor
Toshio Koide
小出 年男
Moriaki Kojima
小島 盛昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP11815487A priority Critical patent/JPS63284463A/en
Publication of JPS63284463A publication Critical patent/JPS63284463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To measure the quantities of respective ions without being disturbed by co-existing other components by using a mass spectrograph for a detector for a gas chromatograph and making component detection by specific M/Z (M is mass and Z is electric charge). CONSTITUTION:An internal standard soln. is added to the extraction liquid obtd. by subjecting a crosslinked polyethylene to solvent extraction and the liquid is separated to respective components by the gas chromatograph mass spectrograph. The quantity of the respective ions of M/Z of the plural compds. corresponding to this internal standard liquid and the decomposition residue of the crosslinking agent are thereby measured. The ratio of the quantity of the response ions (peak area or peak height) between the component corresponding to the internal standard soln. and the compd. corresponding to the decomposition residue of the crosslinking agent is determined and the concn. in the decomposition residue of each crosslinking agent in the sample soln. is determined from the calibration curve previously formed by using the standard soln., by which the decomposition residues of the plural crosslinking agents from the crosslinked polyethylene are simultaneously detected and determined with good accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、架橋ポリエチレンの架橋度を把握するための
架橋剤分解残さ定量法、とくにはガスクロマトグラフ質
量分析装置による架橋ポリエチレンの架橋剤分解残さ定
量法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for quantifying crosslinking agent decomposition residue in order to understand the degree of crosslinking of crosslinked polyethylene, and in particular, a method for quantifying crosslinking agent decomposition residue in crosslinked polyethylene using a gas chromatograph mass spectrometer. It is related to quantitative methods.

(従来技術とその問題点) 従来、架橋ポリエチレンの架橋度を把握するための架橋
剤分解残さの定量法としては、液体クロマトグラフィー
、ガスクロマトグラフィーなどにより行なわれていたが
、得られるクロマトグラムの目的成分のピークが共存す
る他成分のピークと重なり、目的成分の正確な定量を阻
害することがあったほか、分析装置への試料注入量が変
化すると精度が悪くなるという欠点があった。さらに、
従来の検出器は質量分析の場合に比べて一桁以上も低感
度のため詳細な情報を得るには不十分であった・ (問題点を解決するための手段) 本発明者らは上記問題点の解決のため鋭意検討の結果、
架橋ポリエチレンを溶媒抽出して得られる抽出液に、内
部標準溶液を加えてガスクロマトグラフ質量分析装置に
より各成分に分離し、この内部標準溶液および架橋剤分
解残さに対応する複数の化合物のM/Z (Zは荷電を
、Mは質量を表わす)の各イオン量を測定し、内部標準
溶液に対応する化合物と架橋剤分解残さに対応する化合
物の応答イオン量(ピーク面積またはピーク高さ)の比
を求め、あらかじめ標準溶液を用いて作成した検量線よ
り各架橋剤分解残さの試料溶液中の濃度を求めることに
より、架橋ポリエチレンからの複数の架橋剤分解残さを
同時に精度良く検出定量できることを見出し、本発明を
完成するに至ったものである。
(Prior art and its problems) Conventionally, liquid chromatography, gas chromatography, etc. have been used to quantify the crosslinking agent decomposition residue in order to determine the degree of crosslinking of crosslinked polyethylene. In addition to the fact that the peak of the target component overlaps with the peak of other coexisting components, which sometimes impedes accurate quantification of the target component, there is also a drawback that accuracy deteriorates when the amount of sample injected into the analyzer changes. moreover,
The sensitivity of conventional detectors is more than one order of magnitude lower than that of mass spectrometry, so it was insufficient to obtain detailed information. (Means for solving the problem) The present inventors have solved the above problem. As a result of intensive study to resolve the issue,
An internal standard solution is added to the extract obtained by solvent extraction of crosslinked polyethylene and separated into each component using a gas chromatograph mass spectrometer, and the M/Z of multiple compounds corresponding to this internal standard solution and crosslinking agent decomposition residue is determined. Measure the amount of each ion (Z represents charge and M represents mass), and calculate the ratio of the response ion amount (peak area or peak height) of the compound corresponding to the internal standard solution and the compound corresponding to the crosslinking agent decomposition residue. By determining the concentration of each crosslinking agent decomposition residue in the sample solution from a calibration curve prepared in advance using standard solutions, we discovered that it is possible to simultaneously detect and quantify multiple crosslinking agent decomposition residues from crosslinked polyethylene with high accuracy. This has led to the completion of the present invention.

つぎに1本発明の方法を、ポリエチレンの架橋剤として
ジクミルパーオキサイドを用いた場合の架橋剤分解残さ
の定量法を例として、より具体的に説明する。
Next, the method of the present invention will be explained in more detail by taking as an example a method for quantifying the decomposition residue of a crosslinking agent when dicumyl peroxide is used as a crosslinking agent for polyethylene.

まずヘキサンまたはアセトン80醜lを抽出溶剤として
、試料2gをソックスレー抽出器に入れ、6時間抽出す
る。この抽出液を100g+1メスフラスコに移し入れ
、これに内部標準n−ノニルアルコールの0.5容量%
のヘキサン溶液を2ml加えてヘキサンで標線まで希釈
する。この溶液を試料としてガスクロマトグラフ質量分
析装置によりn−ノニルアルコールおよびジクミルパー
オキサイドの分解残さであるα−メチルスチレン、アセ
トフェノン、クミルアルコールの各化合物に対応するM
/Z:83.118.105.121の各イオンをマス
フラグメントグラフィーにより測定する。得られるM/
Z:118.105.121のマスフラグメントグラム
のそれぞれα−メチルスチレン、アセトフェノン、クミ
ルアルコールの保持時間におけるピーク面積またはピー
ク高さと。
First, using 80 liters of hexane or acetone as an extraction solvent, 2 g of the sample was placed in a Soxhlet extractor and extracted for 6 hours. Transfer 100g of this extract to a volumetric flask and add 0.5% by volume of the internal standard n-nonyl alcohol.
Add 2 ml of hexane solution and dilute to the marked line with hexane. Using this solution as a sample, a gas chromatograph mass spectrometer was used to determine the M
/Z: Each ion of 83.118.105.121 is measured by mass fragmentography. Obtained M/
Z: The peak area or peak height at the retention time of α-methylstyrene, acetophenone, and cumyl alcohol in the mass fragment gram of 118.105.121.

M/Z:83のマスフラグメントグラムのn−ノニルア
ルコールの保持時間におけるピーク面積またはピーク高
さの比を求め、あらかじめ標準溶液を用いて作成した検
量線により各架橋剤分解残さの試料溶液中の濃度を求め
る。
M/Z: The ratio of the peak area or peak height at the retention time of n-nonyl alcohol in the mass fragment gram of 83 was determined, and the ratio of the peak area or peak height in the sample solution of each crosslinking agent decomposition residue was determined using a calibration curve prepared in advance using a standard solution. Find the concentration.

検体架橋ポリエチレン中の含有量は次式によって算出す
る。
The content in the sample crosslinked polyethylene is calculated using the following formula.

架橋ポリエチレン中の架橋剤分解残さ量(%)本発明の
方法は、ジクミルパーオキサイド以外の架橋剤を用いた
架橋ポリエチレンの定量にも同様にして適用することが
できる。
Crosslinking agent decomposition residue amount (%) in crosslinked polyethylene The method of the present invention can be similarly applied to the quantitative determination of crosslinked polyethylene using crosslinking agents other than dicumyl peroxide.

(発明の効果) 本発明によれば、 ■ガスクロマトグラフの検出器に質量分析装置を使用し
て特定のM/Zにより成分の検出をしているので、共存
する他成分の妨害を受けずに定量を行なうことができる
、 ■内部標準法により測定を行なっているので、精度良く
定量を行なうことができる、 などの効果を奏するため、従来法に比べて一桁以上の高
感度化が達成され、絶縁材料の基本物性研究、品質管理
、押出し条件設定など広範な利用が期待される。
(Effects of the Invention) According to the present invention, ■ Since a mass spectrometer is used as a gas chromatograph detector to detect components at a specific M/Z, there is no interference from other coexisting components. Quantitative measurements can be performed with high accuracy because measurements are performed using the internal standard method.As a result, sensitivity is one order of magnitude higher than that of conventional methods. It is expected to be used in a wide range of applications, including research on the basic physical properties of insulating materials, quality control, and setting extrusion conditions.

Claims (1)

【特許請求の範囲】[Claims] 1、架橋ポリエチレンを溶媒抽出して得られる抽出液に
、内部標準溶液を加えてガスクロマトグラフ質量分析装
置により各成分に分離し、この内部標準溶液および架橋
剤分解残さに対応する複数の化合物のM/Z(Zは荷電
を、Mは質量を表わす)の各イオン量を測定し、内部標
準溶液に対応する化合物と架橋剤分解残さに対応する化
合物の応答イオン量(ピーク面積またはピーク高さ)の
比を求め、あらかじめ標準溶液を用いて作成した検量線
より各架橋剤分解残さの試料溶液中の濃度を求めること
により、複数の架橋剤分解残さを同時に検出定量するこ
とを特徴とする架橋ポリエチレンの架橋剤分解残さ定量
法。
1. Add an internal standard solution to the extract obtained by solvent extraction of cross-linked polyethylene, separate it into each component using a gas chromatograph mass spectrometer, and calculate the M of multiple compounds corresponding to this internal standard solution and cross-linking agent decomposition residue Measure the amount of each ion /Z (Z represents charge, M represents mass), and calculate the response ion amount (peak area or peak height) of the compound corresponding to the internal standard solution and the compound corresponding to the crosslinking agent decomposition residue. A cross-linked polyethylene characterized in that a plurality of cross-linking agent decomposition residues can be detected and quantified simultaneously by determining the concentration of each cross-linking agent decomposition residue in a sample solution from a calibration curve prepared in advance using a standard solution. A method for quantifying crosslinking agent decomposition residue.
JP11815487A 1987-05-15 1987-05-15 Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene Pending JPS63284463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11815487A JPS63284463A (en) 1987-05-15 1987-05-15 Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11815487A JPS63284463A (en) 1987-05-15 1987-05-15 Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene

Publications (1)

Publication Number Publication Date
JPS63284463A true JPS63284463A (en) 1988-11-21

Family

ID=14729432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11815487A Pending JPS63284463A (en) 1987-05-15 1987-05-15 Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene

Country Status (1)

Country Link
JP (1) JPS63284463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235345A (en) * 1991-01-09 1992-08-24 Nec Corp Method and apparatus for measuring average molecular weight of organic polymer compound
JP2017181284A (en) * 2016-03-30 2017-10-05 住友ゴム工業株式会社 Method of quantifying component of rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235345A (en) * 1991-01-09 1992-08-24 Nec Corp Method and apparatus for measuring average molecular weight of organic polymer compound
JP2017181284A (en) * 2016-03-30 2017-10-05 住友ゴム工業株式会社 Method of quantifying component of rubber composition

Similar Documents

Publication Publication Date Title
Silva et al. Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry
Ferrer et al. Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography–time-of-flight mass spectrometry
CN107247093B (en) The detection method for metanephrine substance of dissociating in urine
Rodziewicz et al. Rapid determination of chloramphenicol residues in milk powder by liquid chromatography–elektrospray ionization tandem mass spectrometry
Kaufmann Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100 000 full width at half maximum
CN108918711B (en) Detection method of polyphenol compounds in tobacco leaves
CN110031557B (en) Method for detecting 5-isoquinoline methyl sulfonate and 5-isoquinoline ethyl sulfonate in fasudil hydrochloride
Wu et al. Quantitative structure–ion intensity relationship strategy to the prediction of absolute levels without authentic standards
Ebbel et al. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry
Li et al. An integrated liquid chromatography–tandem mass spectrometry approach for the ultra-sensitive determination of catecholamines in human peripheral blood mononuclear cells to assess neural-immune communication
CN108490096A (en) The detection method of 25(OH)VD in human serum
CN110133156A (en) The analysis method of super more target flavor components in a kind of high throughput assay tobacco juice for electronic smoke
WO2020214811A1 (en) Methods and systems for the detection of 11-oxo androgens by lc-ms/ms
KOKOT Creatinine determination in urine by liquid chromatography-electrospray ionization-tandem mass spectrometry method
Adamowicz et al. Simple approach for evaluation of matrix effect in the mass spectrometry of synthetic cannabinoids
Yao et al. Development, validation, and application of a liquid chromatography–tandem mass spectrometry method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human hair
JPS63284463A (en) Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene
Chen et al. Simple, sensitive and rapid LC–ESI–MS method for the quantitation of lafutidine in human plasma—application to pharmacokinetic studies
Renaud et al. Normalization of LC-MS mycotoxin determination using the N-alkylpyridinium-3-sulfonates (NAPS) retention index system
Duan et al. Derivatization of β‐dicarbonyl compound with 2, 4‐dinitrophenylhydrazine to enhance mass spectrometric detection: application in quantitative analysis of houttuynin in human plasma
Eshghi et al. Targeted analyte detection by standard addition improves detection Limits in MALDI mass spectrometry
Zhang et al. Simultaneous determination of catecholamines and related metabolites by capillary electrophoresis with amperometric detection
CN114577950A (en) Method for determining anti-infective drugs in cosmetics
Delatour Performance of quantitative analyses by liquid chromatography–electrospray ionisation tandem mass spectrometry: from external calibration to isotopomer-based exact matching
Blokland et al. Confirmatory analysis of Trenbolone using accurate mass measurement with LC/TOF-MS