JP2017181284A - Method of quantifying component of rubber composition - Google Patents

Method of quantifying component of rubber composition Download PDF

Info

Publication number
JP2017181284A
JP2017181284A JP2016068296A JP2016068296A JP2017181284A JP 2017181284 A JP2017181284 A JP 2017181284A JP 2016068296 A JP2016068296 A JP 2016068296A JP 2016068296 A JP2016068296 A JP 2016068296A JP 2017181284 A JP2017181284 A JP 2017181284A
Authority
JP
Japan
Prior art keywords
rubber composition
component
quantifying
quantified
standard sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016068296A
Other languages
Japanese (ja)
Other versions
JP6665629B2 (en
Inventor
宏明 山田
Hiroaki Yamada
宏明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016068296A priority Critical patent/JP6665629B2/en
Publication of JP2017181284A publication Critical patent/JP2017181284A/en
Application granted granted Critical
Publication of JP6665629B2 publication Critical patent/JP6665629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of quantifying components of a rubber composition, which can quantify components that are contained in minute quantities as well.SOLUTION: A method of quantifying components of a rubber composition involves obtaining a chromatogram by analyzing a solvent extract of a rubber composition containing a reference sample using a pyrolysis-gas chromatography-mass spectrometer, and quantifying a quantification target component on the basis of a ratio of area of a peak originating from the reference sample to area of a peak originating from the quantification target component in the chromatogram.SELECTED DRAWING: Figure 2

Description

本発明はゴム組成物中の成分の定量方法に関する。   The present invention relates to a method for quantifying components in a rubber composition.

例えば、タイヤのようなゴム製品は、ゴム組成物を用いて形成される。このゴム組成物は、ゴム成分以外に様々な成分を含んでいる。この成分として、しゃっかい剤、老化防止剤、加硫促進剤、加工助剤、光安定剤、可塑剤、軟化剤、加硫促進助剤、カップリング剤などが挙げられる。ゴム製品の性能把握の観点、問題解決の観点などから、ゴム組成物に含まれる成分を定性し、この成分の量を定量することが極めて重要である。   For example, a rubber product such as a tire is formed using a rubber composition. This rubber composition contains various components in addition to the rubber component. Examples of this component include a masking agent, an antioxidant, a vulcanization accelerator, a processing aid, a light stabilizer, a plasticizer, a softening agent, a vulcanization acceleration aid, and a coupling agent. From the viewpoint of grasping the performance of rubber products and from the viewpoint of solving problems, it is extremely important to qualify the components contained in the rubber composition and quantify the amount of these components.

ゴム組成物に含まれる成分の定性または定量には、ガスクロマトグラフ、液体クロマトグラフ等の機器を用いるのが一般的である(特許文献1〜3など参照)。   For qualitative or quantitative determination of the components contained in the rubber composition, it is common to use an instrument such as a gas chromatograph or a liquid chromatograph (see Patent Documents 1-3).

特開平10−339727号公報Japanese Patent Laid-Open No. 10-339727 特開平07−103959号公報Japanese Patent Application Laid-Open No. 07-103959 特開平09−257780号公報JP 09-257780 A

通常のゴム組成物中の成分の分析方法として、ゴム製品から切り出したゴム組成物の溶媒抽出液を前記の機器を用いた分析に用いる方法がある。一方、抽出物ではなく、ゴム製品から切り出したゴム組成物試料を直接機器に導入して分析する方法として、熱分解ガスクロマトグラフィーがある。この熱分解ガスクロマトグラフィーでは、ゴム組成物試料は熱分解されて気相成分を生成する。この気相成分がキャリアーガスに載せられて分離カラムに導入されて分離される。   As a method for analyzing components in a normal rubber composition, there is a method in which a solvent extract of a rubber composition cut out from a rubber product is used for analysis using the above-mentioned instrument. On the other hand, pyrolysis gas chromatography is a method for analyzing a rubber composition sample cut from a rubber product instead of an extract directly into an instrument. In this pyrolysis gas chromatography, a rubber composition sample is pyrolyzed to produce a gas phase component. This gas phase component is placed on a carrier gas, introduced into a separation column, and separated.

溶媒抽出液を分析に用いる場合、分子量が大きい成分の抽出が困難であるという問題や、定量性に劣るという問題がある。また、ゴム組成物試料を直接、熱分解ガスクロマトグラフィーにより分析する方法では、感度が低く、微量しか含有していない成分を定量することは困難である。   When a solvent extract is used for analysis, there are problems that it is difficult to extract components having a large molecular weight, and that quantitative properties are poor. Further, in a method of directly analyzing a rubber composition sample by pyrolysis gas chromatography, it is difficult to quantify a component having low sensitivity and containing only a trace amount.

本発明は、微量しか含有していない成分をも定量できるゴム組成物中の成分の定量方法を提供することを目的とする。   An object of this invention is to provide the determination method of the component in the rubber composition which can also quantify the component which contains only a trace amount.

本発明は、ゴム組成物中の成分の定量方法であり、標準試料を含むゴム組成物の溶媒抽出物を熱分解ガスクロマトグラフ質量分析計により分析して得られたクロマトグラムにおける標準試料に由来するピークのピーク面積と定量対象成分に由来するピークのピーク面積との比に基づいて定量する定量方法に関する。   The present invention is a method for quantifying components in a rubber composition, and is derived from a standard sample in a chromatogram obtained by analyzing a solvent extract of a rubber composition containing a standard sample with a pyrolysis gas chromatograph mass spectrometer. The present invention relates to a quantification method for quantification based on a ratio between a peak area of a peak and a peak area of a peak derived from a quantification target component.

前記定量対象成分がしゃっかい剤であることが好ましい。   It is preferable that the component to be quantified is a crushing agent.

本発明のゴム組成物中の成分の定量方法によれば、微量しか含有していない成分をも定量することができる。   According to the method for quantifying components in the rubber composition of the present invention, a component containing only a trace amount can be quantified.

ゴム組成物1のガスクロマトグラムである。2 is a gas chromatogram of rubber composition 1. FIG. ゴム組成物2のガスクロマトグラムである。2 is a gas chromatogram of rubber composition 2. FIG. ゴム組成物3のガスクロマトグラムである。2 is a gas chromatogram of rubber composition 3. FIG. しゃっかい剤のガスクロマトグラムである。It is a gas chromatogram of a masking agent.

本発明のゴム組成物中の成分の定量方法は、標準試料を含むゴム組成物の溶媒抽出物を熱分解ガスクロマトグラフ質量分析計(GCMS)により分析することを特徴とし、得られたクロマトグラムにおける標準試料に由来するピークのピーク面積と定量対象成分に由来するピークのピーク面積との比に基づいて定量する定量方法である。   The method for quantifying components in the rubber composition of the present invention comprises analyzing a solvent extract of a rubber composition containing a standard sample with a pyrolysis gas chromatograph mass spectrometer (GCMS). This is a quantification method in which quantification is performed based on the ratio between the peak area of a peak derived from a standard sample and the peak area of a peak derived from a component to be quantified.

本発明の定量方法は、標準試料を含むゴム組成物の溶媒抽出液を得る抽出工程、溶媒抽出液を乾固させて溶媒抽出物を得る乾固工程、溶媒抽出物をGCMSにより分析する分析工程、分析工程で得られた定量対象成分および標準試料の結果から、対象成分を定量する定量工程を含む定量方法とすることが好ましい。   The quantification method of the present invention includes an extraction step for obtaining a solvent extract of a rubber composition containing a standard sample, a drying step for obtaining a solvent extract by drying the solvent extract, and an analysis step for analyzing the solvent extract by GCMS. It is preferable to use a quantification method including a quantification step for quantifying the target component from the results of the quantification target component and the standard sample obtained in the analysis step.

前記抽出工程は、標準試料を含むゴム組成物の溶媒抽出液を得る工程である。標準試料はゴム組成物試料を抽出溶媒で抽出して得られた抽出液に特定の濃度となるように添加してもよいし、あらかじめ特定濃度となるように標準試料が添加された抽出溶媒を用いてゴム組成物試料を抽出してもよい。   The extraction step is a step of obtaining a solvent extract of a rubber composition containing a standard sample. The standard sample may be added to the extract obtained by extracting the rubber composition sample with the extraction solvent so as to have a specific concentration, or the extraction solvent to which the standard sample has been added in advance so that the specific concentration is obtained. It may be used to extract a rubber composition sample.

標準試料としては、揮発しない成分であり、GCMSにより検出可能な成分であれば特に限定されず、ジベンゾチオフェン、アントラセン、フェナントレン、ドデカン、安息香酸ベンジルなどが挙げられる。なかでも、定量対象成分とGCMSにより検出されるピークが、重複しないものが好ましい。   The standard sample is not particularly limited as long as it is a component that does not volatilize and can be detected by GCMS, and examples include dibenzothiophene, anthracene, phenanthrene, dodecane, and benzyl benzoate. Among them, it is preferable that the component to be quantified and the peak detected by GCMS do not overlap.

抽出工程に用いるゴム組成物試料の調整は特に限定されないが、抽出効率に優れることから0.5〜1.5mmの立方体状に裁断したものの質量を精秤することが好ましい。この質量は、定量精度の観点から150μg以上が好ましく、190μg以上がより好ましい。また、この質量は、250μg以下が好ましく、210μg以下がより好ましい。溶媒抽出物の精秤に用いるはかりの最小表示は0.1μg以下が好ましい。このようなはかりとしては、メトラートレド社製の商品名「XP2U ウルトラミクロ天びん」などが挙げられる。   Although adjustment of the rubber composition sample used for an extraction process is not specifically limited, Since it is excellent in extraction efficiency, it is preferable to precisely measure the mass of what was cut | judged to the 0.5-1.5 mm cube shape. This mass is preferably 150 μg or more, and more preferably 190 μg or more from the viewpoint of quantitative accuracy. The mass is preferably 250 μg or less, and more preferably 210 μg or less. The minimum display of the scale used for the precise balance of the solvent extract is preferably 0.1 μg or less. Examples of such scales include trade name “XP2U Ultra Micro Balance” manufactured by METTLER TOLEDO.

抽出溶媒としては、アセトン、テトラヒドロフラン、クロロホルム、トルエン、キシレン、2−プロパノール、メタノール、エタノール、酢酸エチル、ヘキサン、アセトニトリルなどが挙げられる。なかでも、溶出力に優れることから、アセトン、テトラヒドロフラン、クロロホルムが好ましく、アセトンがより好ましい。   Examples of the extraction solvent include acetone, tetrahydrofuran, chloroform, toluene, xylene, 2-propanol, methanol, ethanol, ethyl acetate, hexane, and acetonitrile. Of these, acetone, tetrahydrofuran, and chloroform are preferable, and acetone is more preferable because of its excellent dissolution power.

ゴム組成物試料(mg)に対する抽出溶媒量(ml)は特に限定されないが、十分な抽出効率が得られるという観点から、1(mg/ml)以上が好ましく、20(mg/ml)以上がより好ましい。また、抽出溶媒の量の上限は特に限定されないが、作業性の観点から、200(mg/ml)以下が好ましく、150(mg/ml)以下がより好ましい。   The amount of extraction solvent (ml) relative to the rubber composition sample (mg) is not particularly limited, but is preferably 1 (mg / ml) or more, more preferably 20 (mg / ml) or more from the viewpoint of obtaining sufficient extraction efficiency. preferable. The upper limit of the amount of the extraction solvent is not particularly limited, but is preferably 200 (mg / ml) or less, more preferably 150 (mg / ml) or less from the viewpoint of workability.

ゴム組成物試料を抽出溶媒に浸漬する方法は特に限定されず、従来の浸漬法などが挙げられる。浸漬法とする場合は20〜50℃の条件下で、12〜100時間、暗所で静置する方法が好ましい。浸漬の後、ガラス繊維フィルターや樹脂フィルターにより濾過することで溶媒抽出液を得ることができる。   The method for immersing the rubber composition sample in the extraction solvent is not particularly limited, and includes a conventional immersing method. When it is set as the immersion method, the method of leaving still in a dark place on the conditions of 20-50 degreeC for 12 to 100 hours is preferable. After immersion, a solvent extract can be obtained by filtering with a glass fiber filter or a resin filter.

前記乾固工程は、抽出工程で得られた溶媒抽出液から乾燥などにより溶媒を除去することで、固体成分の濃縮物または固体成分のみの溶媒抽出物を得る工程である。抽出溶媒の乾燥方法としては特に限定されず、従来の方法を採用することができる。なかでも、乾燥時間を短縮できるという理由から、減圧乾燥が好ましい。   The drying step is a step of obtaining a solid component concentrate or a solid component-only solvent extract by removing the solvent from the solvent extract obtained in the extraction step by drying or the like. The method for drying the extraction solvent is not particularly limited, and a conventional method can be adopted. Among these, vacuum drying is preferable because the drying time can be shortened.

前記分析工程は、溶媒抽出物をGCMSにより、標準試料に由来するピークと定量対象成分に由来するピークとを検出する工程である。GCMSは、試料を熱分解装置により加熱し、この加熱により生成する気相成分に含まれる個々の成分を分離カラムにより分離し、単離された各成分を質量分析計により分析する方法である。   The analysis step is a step of detecting a peak derived from the standard sample and a peak derived from the component to be quantified by GCMS of the solvent extract. GCMS is a method in which a sample is heated by a thermal decomposition apparatus, individual components contained in gas phase components generated by this heating are separated by a separation column, and each isolated component is analyzed by a mass spectrometer.

前記熱分解装置としては、フロンティア・ラボ(株)製の縦型マイクロ電気炉型パイロライザー(商品名:PY−2020iD)などが挙げられる。なお、試料が架橋ゴムからなる場合、熱分解の容易性の観点から、熱分解の温度は500℃以上600℃以下が好ましい。   Examples of the thermal decomposition apparatus include a vertical micro electric furnace type pyrolyzer (trade name: PY-2020iD) manufactured by Frontier Laboratories. In addition, when a sample consists of crosslinked rubber, the temperature of thermal decomposition has preferable 500 to 600 degreeC from a viewpoint of the ease of thermal decomposition.

前記分離カラムとしては、フロンティア・ラボ社製のキャピラリーカラム「Ultra Alloy+−5(MS/HT)」(5%ジフェニル95%ジメチルポリシロキサン、長さ=30m、内径=0.25mm、フィルム厚さ=0.25μm)が挙げられる。また、前記質量分析計としては、(株)島津製作所製の商品名「QP2010シリーズ」などが挙げられる。 As the separation column, a capillary column “Ultra Alloy + -5 (MS / HT)” manufactured by Frontier Laboratories (5% diphenyl 95% dimethylpolysiloxane, length = 30 m, inner diameter = 0.25 mm, film thickness = 0.25 μm). Examples of the mass spectrometer include trade name “QP2010 series” manufactured by Shimadzu Corporation.

前記定量工程は、分析工程で検出された標準試料に由来するピークのピーク面積と定量対象成分に由来するピークのピーク面積との比に基づいて定量する工程である。ここで、熱分解ガスクロマトグラフ質量分析で得られたクロマトグラムのピーク面積は、通常の場合、成分の含有量を示すことから、濃度が既知の標準試料および定量対象成分に由来するピーク面積を比較することで、溶媒抽出液中の対象成分を定量することができる。さらに、抽出工程における抽出効率を考慮することで、ゴム組成物中の対象成分を定量することができる。   The quantification step is a step of quantifying based on a ratio between the peak area of the peak derived from the standard sample detected in the analysis step and the peak area of the peak derived from the component to be quantified. Here, the peak area of the chromatogram obtained by pyrolysis gas chromatograph mass spectrometry usually indicates the content of the component, so the peak areas derived from standard samples with known concentrations and the components to be quantified are compared. By doing so, the target component in the solvent extract can be quantified. Furthermore, the target component in the rubber composition can be quantified by considering the extraction efficiency in the extraction step.

本発明の定量方法によれば、微量しか含有していない成分をも定量することができる。具体的には、ゴム組成物中の含有量が0.1質量%以下の成分を定量することができる。   According to the quantification method of the present invention, a component containing only a trace amount can be quantified. Specifically, the component having a content of 0.1% by mass or less in the rubber composition can be quantified.

本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。   The present invention will be described based on examples, but the present invention is not limited to the examples.

以下に実施例において用いた各種薬品をまとめて示す。
NR:TSR20
しゃっかい剤:大内新興化学工業(株)製のノクタイザーSD(有効成分(N−フェニルベンズアミド)を25%含有)
カーボンブラック:三菱化学(株)製のダイアブラックLH(N326)
老化防止剤:大内新興化学工業(株)製のノクラック224(2,2,4−トリメチル−1,2−ジヒドロキノリン重合体)
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
オイル:出光興産(株)製のダイアナプロセスオイルPA32
ステアリン酸コバルト:大日本インキ化学工業(株)製のcost−F(コバルト含有量:9.5質量%)
硫黄:鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーDZ(DCBS)
The various chemicals used in the examples are summarized below.
NR: TSR20
Shaking agent: Nokutizer SD manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (containing 25% active ingredient (N-phenylbenzamide))
Carbon black: Dia Black LH (N326) manufactured by Mitsubishi Chemical Corporation
Anti-aging agent: NOCRACK 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Oil: Diana Process Oil PA32 manufactured by Idemitsu Kosan Co., Ltd.
Cobalt stearate: cost-F (cobalt content: 9.5% by mass) manufactured by Dainippon Ink & Chemicals, Inc.
Sulfur: 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% oil content)
Vulcanization accelerator: Noxeller DZ (DCBS) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

ゴム組成物1〜3の調製
表1に示す配合内容に従い、上記各種薬品(硫黄および加硫促進剤を除く)を、神戸製鋼(株)製の1.7Lバンバリーミキサーにて混練りし、混練り物を得た。得られた混練り物に、硫黄および加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を加硫しゴム組成物1〜3を得た。
Preparation of rubber compositions 1 to 3 According to the contents shown in Table 1, the above various chemicals (excluding sulfur and a vulcanization accelerator) were kneaded with a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. and mixed. A kneaded paste was obtained. Sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was vulcanized to obtain rubber compositions 1 to 3.

Figure 2017181284
Figure 2017181284

ゴム組成物1〜3を200μg±10μgの範囲内で精秤した。これに、50μg/mlのジベンゾチオフェン(標準試料)を含むアセトンを、ゴム組成物試料(mg)に対する抽出溶媒量(ml)が100mg/mlとなるように加え、24時間室温(23℃)で静置することで抽出工程を行った。抽出液をパスツールピペットにより回収し、減圧下でアセトンを留去させて、溶媒抽出物を得た。   The rubber compositions 1 to 3 were precisely weighed within the range of 200 μg ± 10 μg. To this, acetone containing 50 μg / ml dibenzothiophene (standard sample) was added so that the extraction solvent amount (ml) with respect to the rubber composition sample (mg) was 100 mg / ml, and the mixture was kept at room temperature (23 ° C.) for 24 hours. The extraction process was performed by leaving still. The extract was collected with a Pasteur pipette, and acetone was distilled off under reduced pressure to obtain a solvent extract.

得られた各溶媒抽出物を、熱分解ガスクロマトグラフ質量分析計により分析することで各ゴム組成物のガスクロマトグラムを得た(図1〜3)。参考例としてしゃっかい剤のみを熱分解ガスクロマトグラフ質量分析計により分析してガスクロマトグラムを得た(図4)。ゴム組成物2および3のガスクロマトグラムから、しゃっかい剤の有効成分である「N−フェニルベンズアミド」に由来するピークのピーク面積、およびジベンゾチオフェン(標準試料)に由来するピークのピーク面積を算出し、標準試料のピーク面積に対するしゃっかい剤のピーク面積(標準比)をn=3で求めた。さらに、標準比のバラツキ(RSD)を算出した。結果を表2に示す。   The obtained solvent extracts were analyzed by a pyrolysis gas chromatograph mass spectrometer to obtain gas chromatograms of the respective rubber compositions (FIGS. 1 to 3). As a reference example, only the masticant was analyzed by a pyrolysis gas chromatograph mass spectrometer to obtain a gas chromatogram (FIG. 4). From the gas chromatograms of rubber compositions 2 and 3, the peak area of the peak derived from “N-phenylbenzamide”, which is an active ingredient of the scuffing agent, and the peak area of the peak derived from dibenzothiophene (standard sample) are calculated. Then, the peak area (standard ratio) of the chewing agent relative to the peak area of the standard sample was determined by n = 3. Furthermore, the standard ratio variation (RSD) was calculated. The results are shown in Table 2.

GCMS装置および測定条件は、以下の通りである。
ガスクロマトグラフ:(株)島津製作所製の「GCMS−QP2010」
熱分解装置:Frontier Lab社製の「PY−2020iD」
分離カラム:Frontier Lab社製の「Ultra ALLOY+−5(MS/HT)」(5%ジフェニル95%ジメチルポリシロキサン、長さ30m、内径0.25mm、膜厚0.25μm)
熱分解温度:550℃
試料注入部温度:300℃
オーブン温度:40℃/3min−(昇温速度8℃/min)−300℃/4.5min
The GCMS apparatus and measurement conditions are as follows.
Gas chromatograph: “GCMS-QP2010” manufactured by Shimadzu Corporation
Thermal decomposition apparatus: “PY-2020iD” manufactured by Frontier Lab
Separation column: “Ultra ALLOY + −5 (MS / HT)” manufactured by Frontier Lab (5% diphenyl 95% dimethylpolysiloxane, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Thermal decomposition temperature: 550 ° C
Sample injection part temperature: 300 ° C
Oven temperature: 40 ° C./3 min- (temperature increase rate 8 ° C./min)-300° C./4.5 min

Figure 2017181284
Figure 2017181284

表2の結果より、ゴム組成物2および3の標準比としゃっかい剤有効成分の濃度とが比例関係にあることから、標準試料を含むゴム組成物の溶媒抽出物を熱分解ガスクロマトグラフ質量分析計(GCMS)により分析することを特徴とし、得られたクロマトグラムにおける標準試料に由来するピークのピーク面積と定量対象成分に由来するピークのピーク面積との比に基づいて定量する本発明の定量方法によれば、微量しか含有していない成分をも定量することができることがわかる。   From the results in Table 2, since the standard ratio of rubber compositions 2 and 3 and the concentration of the active ingredient of the chelating agent are in a proportional relationship, the solvent extract of the rubber composition containing the standard sample is subjected to pyrolysis gas chromatographic mass. The analysis is performed by an analyzer (GCMS), and quantification is performed based on the ratio of the peak area of the peak derived from the standard sample and the peak area of the peak derived from the component to be quantified in the obtained chromatogram. According to the quantification method, it can be seen that even a component containing only a trace amount can be quantified.

Claims (2)

ゴム組成物中の成分の定量方法であり、
標準試料を含むゴム組成物の溶媒抽出物を熱分解ガスクロマトグラフ質量分析計により分析して得られたクロマトグラムにおける標準試料に由来するピークのピーク面積と定量対象成分に由来するピークのピーク面積との比に基づいて定量する定量方法。
A method for quantifying ingredients in a rubber composition,
The peak area of the peak derived from the standard sample and the peak area derived from the component to be quantified in the chromatogram obtained by analyzing the solvent extract of the rubber composition containing the standard sample with a pyrolysis gas chromatograph mass spectrometer Quantification method based on the ratio of
前記定量対象成分がしゃっかい剤である請求項1記載の定量方法。 The quantification method according to claim 1, wherein the component to be quantified is a masking agent.
JP2016068296A 2016-03-30 2016-03-30 Method for quantifying components in rubber composition Active JP6665629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068296A JP6665629B2 (en) 2016-03-30 2016-03-30 Method for quantifying components in rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068296A JP6665629B2 (en) 2016-03-30 2016-03-30 Method for quantifying components in rubber composition

Publications (2)

Publication Number Publication Date
JP2017181284A true JP2017181284A (en) 2017-10-05
JP6665629B2 JP6665629B2 (en) 2020-03-13

Family

ID=60005997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068296A Active JP6665629B2 (en) 2016-03-30 2016-03-30 Method for quantifying components in rubber composition

Country Status (1)

Country Link
JP (1) JP6665629B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426952A (en) * 2018-02-08 2018-08-21 河南中烟工业有限责任公司 The detection method of citric acid ester plasticizer content in a kind of essence spice for cigarette
CN108445096A (en) * 2018-02-08 2018-08-24 河南中烟工业有限责任公司 The detection method of benzoates plasticizer content in a kind of essence spice for cigarette
CN108562659A (en) * 2018-02-08 2018-09-21 河南中烟工业有限责任公司 The detection method of benzoates plasticizer content in a kind of cigarette paper wrapper
CN111060628A (en) * 2019-12-31 2020-04-24 卓和药业集团有限公司 Method for detecting tacrolimus residual solvent
CN112834655A (en) * 2020-12-31 2021-05-25 上海微谱化工技术服务有限公司 Qualitative detection method for vulcanization accelerator in rubber and application thereof
CN114460200A (en) * 2022-02-09 2022-05-10 上海市质量监督检验技术研究院 Method for identifying silk cotton methacrylamide grafting weight gain
EP4345451A1 (en) * 2022-09-28 2024-04-03 Sumitomo Rubber Industries, Ltd. Analyzer, analysis method, and analysis program for rubber composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023124354A (en) * 2022-02-25 2023-09-06 住友ゴム工業株式会社 Free sulfur quantification method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284463A (en) * 1987-05-15 1988-11-21 Fujikura Ltd Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene
JP2003139755A (en) * 2001-11-05 2003-05-14 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for simultaneous identification and quantitative determination for widely used multi-component in chromatograph/mass spectrograph
JP2005345401A (en) * 2004-06-07 2005-12-15 Denki Kagaku Kogyo Kk Silicone analyzing method
CN102288715A (en) * 2011-07-21 2011-12-21 广东出入境检验检疫局检验检疫技术中心 Method for detecting mirex content of rubber part of electronic/electric product
JP2013057641A (en) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd Polymer sample analyzer
KR20140047190A (en) * 2012-10-04 2014-04-22 현대자동차주식회사 Quantitative analysis method for rubber composition of synthetic rubber and natural rubber compound
JP2015108559A (en) * 2013-12-05 2015-06-11 住友ゴム工業株式会社 Method for measuring ratio of sulfur crosslinking density and improving crack growth resistance
KR20160032741A (en) * 2014-09-16 2016-03-25 현대모비스 주식회사 Analyzing method for rubber and additives in rubber composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284463A (en) * 1987-05-15 1988-11-21 Fujikura Ltd Method for determining decomposition residue of crosslinking agent of crosslinked polyethylene
JP2003139755A (en) * 2001-11-05 2003-05-14 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for simultaneous identification and quantitative determination for widely used multi-component in chromatograph/mass spectrograph
JP2005345401A (en) * 2004-06-07 2005-12-15 Denki Kagaku Kogyo Kk Silicone analyzing method
CN102288715A (en) * 2011-07-21 2011-12-21 广东出入境检验检疫局检验检疫技术中心 Method for detecting mirex content of rubber part of electronic/electric product
JP2013057641A (en) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd Polymer sample analyzer
KR20140047190A (en) * 2012-10-04 2014-04-22 현대자동차주식회사 Quantitative analysis method for rubber composition of synthetic rubber and natural rubber compound
JP2015108559A (en) * 2013-12-05 2015-06-11 住友ゴム工業株式会社 Method for measuring ratio of sulfur crosslinking density and improving crack growth resistance
KR20160032741A (en) * 2014-09-16 2016-03-25 현대모비스 주식회사 Analyzing method for rubber and additives in rubber composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426952A (en) * 2018-02-08 2018-08-21 河南中烟工业有限责任公司 The detection method of citric acid ester plasticizer content in a kind of essence spice for cigarette
CN108445096A (en) * 2018-02-08 2018-08-24 河南中烟工业有限责任公司 The detection method of benzoates plasticizer content in a kind of essence spice for cigarette
CN108562659A (en) * 2018-02-08 2018-09-21 河南中烟工业有限责任公司 The detection method of benzoates plasticizer content in a kind of cigarette paper wrapper
CN111060628A (en) * 2019-12-31 2020-04-24 卓和药业集团有限公司 Method for detecting tacrolimus residual solvent
CN112834655A (en) * 2020-12-31 2021-05-25 上海微谱化工技术服务有限公司 Qualitative detection method for vulcanization accelerator in rubber and application thereof
CN114460200A (en) * 2022-02-09 2022-05-10 上海市质量监督检验技术研究院 Method for identifying silk cotton methacrylamide grafting weight gain
CN114460200B (en) * 2022-02-09 2023-08-08 上海市质量监督检验技术研究院 Method for identifying weight gain of silk floss methacrylamide grafted polymer
EP4345451A1 (en) * 2022-09-28 2024-04-03 Sumitomo Rubber Industries, Ltd. Analyzer, analysis method, and analysis program for rubber composition

Also Published As

Publication number Publication date
JP6665629B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6665629B2 (en) Method for quantifying components in rubber composition
Alves et al. New approach for assessing human perfluoroalkyl exposure via hair
Wolf et al. Determination of chromium and beryllium at the picogram level by gas chromatography-mass spectrometry
Vallecillos et al. Fully automated determination of macrocyclic musk fragrances in wastewater by microextraction by packed sorbents and large volume injection gas chromatography–mass spectrometry
CN107782824A (en) The quick determination method of a variety of UV stabilizers in a kind of PET bottle
CN104359998B (en) A kind of gas chromatography tandem mass spectrometry detects the method for methyl mesylate
Qian et al. Rapid polymer identification by in-source direct pyrolysis mass spectrometry and library searching techniques
CN104535665A (en) Detection method of radix codonopsis medicinal material
CN106226417B (en) The detection method of polyol ethers and its ester type compound in a kind of tobacco juice for electronic smoke
Ying-Jun et al. Solid-phase extraction for analysis of short-chain chlorinated paraffins in water samples
JP2008058041A (en) Determination method of carbon black
Schettgen et al. Plasma levels of unintentionally produced non-Aroclor polychlorinated biphenyl (PCB) congeners in workers from the silicone rubber industry
CN103995074A (en) Method for detecting residual quantity of organochlorine pesticides in raw milk
CN111257455A (en) Method for measuring acrylamide in edible oil
CN108535387B (en) Combined phase chromatography tandem mass spectrometry determination method of NNK and NNN in tobacco
CN106442784A (en) UPLC-MS/MS (ultra performance liquid chromatography-tandem mass spectrometry) detection method for concentrations of hippuric acid, methyl hippuric acid and asaronic acid in human urine
CN107632081B (en) Method for detecting content of octamethylcyclotetrasiloxane in textile by gas chromatography-mass spectrometry
CN113866336B (en) Integrated detection method for safrole and dihydrosafrole in ginger and ginger powder
Mirmoghaddam et al. Application of response surface modeling for optimization and determination of malondialdialdehyde by vortex-assisted dispersive liquid-liquid microextraction and GC-FID
CN101581708A (en) Method for measuring low-concentration methylcyclopentadienyl manganese tricarbonyl by gas chromatography internal standard method
CN108181393B (en) Method for detecting hydroxyethyl hexahydro-s-triazine in plastic product
CN103926363B (en) Gas chromatography/mass spectrometry (GC/MS) method for detecting dimethyl fumarate in food additive
CN108195958B (en) Method for detecting N, N-diglycidyl-4-glycidyloxyaniline in plastic product
CN106018628A (en) Method for detecting furfurals in saliva of smokers
Zheng et al. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from biological samples using ultra‐high‐performance liquid chromatography with isotope dilution tandem mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250