JPS63283718A - Gas permeable conjugated film - Google Patents

Gas permeable conjugated film

Info

Publication number
JPS63283718A
JPS63283718A JP11736087A JP11736087A JPS63283718A JP S63283718 A JPS63283718 A JP S63283718A JP 11736087 A JP11736087 A JP 11736087A JP 11736087 A JP11736087 A JP 11736087A JP S63283718 A JPS63283718 A JP S63283718A
Authority
JP
Japan
Prior art keywords
film
gas permeable
substance
gas
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11736087A
Other languages
Japanese (ja)
Inventor
Midori Seki
関 美登利
Yukihiro Saito
斉藤 幸廣
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11736087A priority Critical patent/JPS63283718A/en
Publication of JPS63283718A publication Critical patent/JPS63283718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve both the permeability and selectivity of gases by using for gas separation a conjugated film having an active layer of a glassy compolymer which incorporates therein at least one of metallic phthalocyanines and at least one of phthalic acid derivative, amine or the like. CONSTITUTION:An active layer of a gas permeable conjugated film consists of a glassy polymer such as 1,2-disubstituted-polyacetylene and polyphenylene oxide incorporating therein at least one of metallic phthalocyanines and at least one of the tertiary substances (such as phthalic acid derivative, pyromellitic anhydride, amide, imide and amine). This gas separation film is excellent in both the permeability and selectivity of gases and, in the case of destitute of either metallic phthalocyanine or a third substance, it does not exert its effect. For example: PO2=9.00X10<-8>cc.cm/cm<2>.sec.cmHg,alphaN2O<2>=4.8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は混合気体から特定の気体を分離濃縮するのに用
いる気体透過複合膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas permeable composite membrane used to separate and concentrate a specific gas from a gas mixture.

従来の技術 近年、混合気体より特定の気体を分離濃縮する。Conventional technology In recent years, specific gases have been separated and concentrated from mixed gases.

のに選択的透過性を有する高分子膜を用いる方法が盛ん
に研究・実用化されている。例えば、天然ガスからのヘ
リウム採取や、工場排気からの水素ガスの回収等がある
が、なかでも大気中から酸素を選択的に透過させて酸素
富化空気を作る技術は応用分野が広く、各種化学プロセ
ス、汚泥処理、燃焼システム、医療等、産業界に与える
影響はきわめて大である。このような技術に利用される
高分子膜に求められる特性としては、分離すべき気体の
選択性と気体透過性が共に大きく、かつ長時間の運用に
際し性能が安定していると、いうことである。
Methods using selectively permeable polymer membranes are being actively researched and put into practical use. Examples include helium extraction from natural gas and recovery of hydrogen gas from factory exhaust, but the technology to selectively permeate oxygen from the atmosphere to create oxygen-enriched air has a wide range of applications and various The impact on industries such as chemical processes, sludge treatment, combustion systems, and medicine is extremely large. The characteristics required of polymer membranes used in such technology are high selectivity for the gases to be separated and gas permeability, and stable performance during long-term operation. be.

発明が解決しようとする問題点 現在知られている高分子の中でも、特に気体透過性に優
れるものとして、ポリトリメチルシリルプロピン(PM
SP)では酸素透過係数Po2が1.60 X 10−
’cc −am/cm2・sec−cmHg、 i/リ
コーンゴムではPo2が〜6.0×110−8CC−C
/Cm2・seC−CmHg等があるが、これらは酸素
と、窒素の分離係数a (f’o2 / P N2 ’
は前者が約1.4、後者で約2.0程度でしかない。一
方分離係数が大きい高分子材料は多数あるが、いずれも
気体透過性が悪く例えばポリフェニレンオキサイドでは
αが約4.0と大きくなるがPo2は2.8 X 10
−9cc−cn1/cm2・SeC−cmHgと極めて
小さい。このように高分子膜では一般に気体透過性と気
体選択性とは一方が大きくなるともう一方が低下すると
いう関係にあり、特定の気体を高濃度で多量に分離でき
るという選択性気体透過膜はまだ得られていなかった。
Problems to be Solved by the Invention Among currently known polymers, polytrimethylsilylpropyne (PM) has particularly excellent gas permeability.
SP), the oxygen permeability coefficient Po2 is 1.60 x 10-
'cc -am/cm2・sec-cmHg, i/Po2 for silicone rubber is ~6.0×110-8CC-C
/Cm2・seC-CmHg, etc., but these have a separation coefficient a (f'o2 / P N2 '
is only about 1.4 for the former and about 2.0 for the latter. On the other hand, there are many polymeric materials with large separation coefficients, but all of them have poor gas permeability.For example, polyphenylene oxide has a large α of about 4.0, but Po2 is 2.8 x 10
-9cc-cn1/cm2・SeC-cmHg, which is extremely small. In general, the relationship between gas permeability and gas selectivity in polymer membranes is such that as one increases, the other decreases, and selective gas permeable membranes that can separate large amounts of specific gases at high concentrations have not yet been developed. I wasn't getting it.

本発明は上記のような問題点を解決するもので、気体透
過性と気体選択性の両方に優れた特性を有する気体透過
複合膜を提供することを目的とするものである。
The present invention solves the above-mentioned problems, and aims to provide a gas permeable composite membrane having excellent characteristics in both gas permeability and gas selectivity.

問題点を解決するための手段 本発明は、選択的気体透過性を有する膜の少なくとも一
層が、ガラス状高分子に少なくとも一種の金属フタ9シ
アンと少なくとも一種の第三の物質を含有させて成る気
体透過複合膜により上記の目的を達成するものである。
Means for Solving the Problems The present invention provides that at least one layer of a membrane having selective gas permeability is made of a glassy polymer containing at least one metal cap and at least one third substance. The above objective is achieved by a gas permeable composite membrane.

作    用 本発明はガラス状高分子に、金属フタロシアニンと第三
物質とを含有させることにより気体透過性と気体分離性
を同時に向上させることができる。
Function The present invention can improve gas permeability and gas separation property at the same time by incorporating a metal phthalocyanine and a third substance into a glassy polymer.

本発明に用いるガラス状高分子膜材料としては、ポリフ
ェニレンオキサイドあるいは1,2−ジ置換ポリアセチ
レン、ポリスルオン、ポリフマール酸エステル等が適し
ており、この高分子に含有させる金属フタロシアニンの
中心金属としては、Fe。
Suitable glassy polymer membrane materials used in the present invention include polyphenylene oxide, 1,2-disubstituted polyacetylene, polysulfone, polyfumaric acid ester, etc., and the central metal of the metal phthalocyanine contained in this polymer is Fe. .

Cu、 Ni、 Co等が良く、第三の物質としては、
フタルイミド、フタロニトリル、無水フタル酸のフタル
酸誘導体、無水ピロメリト酸等のメリト酸誘導体、アミ
ド、イミド、アミン、複素環式アミンなどのアミノ基を
有する化合物等が良い。
Cu, Ni, Co, etc. are good, and as a third substance,
Preferred examples include phthalimide, phthalonitrile, phthalic acid derivatives of phthalic anhydride, mellitic acid derivatives such as pyromellitic anhydride, and compounds having an amino group such as amides, imides, amines, and heterocyclic amines.

ガラス状高分子層に上記金属ブタロシアニンおよび上記
第三の物質を含有させる方法(複合化法)としては、ガ
ラス状高分子膜作製時に、製膜溶液中に高分子と共に溶
解させても良く、また適当な溶媒中に溶解させ、この中
に上記高分子膜を浸漬しても良く、膜表面に塗布しても
良いが、高分子膜(二蒸着するのが最も良い。金属フタ
ロシアニンと第三の物質を含有させる処理は同時でも二
回に別けても良く、この時処理法は別の方法を用いても
良い。また一般に金属フタロシアニンは溶媒に難溶・不
溶なので上記のように溶液を作る場合は、−CHs e
  C2Hs等の適当な置換基を付加し可溶性(;変え
てやれば良い。
As a method for incorporating the metal butalocyanine and the third substance into the glassy polymer layer (composite method), the metal butalocyanine and the third substance may be dissolved together with the polymer in a film forming solution during the production of the glassy polymer film; The polymer film may be dissolved in a suitable solvent and immersed in it, or it may be applied to the surface of the film. The treatment to contain the substance may be carried out simultaneously or in two separate steps, and in this case, a different treatment method may be used.In addition, metal phthalocyanines are generally poorly soluble or insoluble in solvents, so when a solution is made as described above. is -CHs e
You can change the solubility by adding an appropriate substituent such as C2Hs.

上記のような複合化法は、金属フタロシアニンのみまた
は上記の第三物質のみ用いた場合は効果が・無く、両者
を用いて複合化して初めて高分子膜の気体透過性が向上
する効果を得るものである。
The above-mentioned compounding method is ineffective or ineffective if only the metal phthalocyanine or the above third substance is used, and the effect of improving the gas permeability of the polymer membrane can only be obtained by compounding using both. It is.

実施例 以下、本発明の実施例を詳しく説明する。Example Examples of the present invention will be described in detail below.

〈実施例−1〉 ガラス状高分子としてポリトリメチルシリルプロピン(
−PMSP)を用いて2wt%トルエン溶液を作り、こ
れをガラス板上にキャストして厚さ40μmのフィルム
を作製した。このフィルムに、第三物質としてフタルイ
ミドを用い、10−5Torr の真空中で120°C
に加熱3分間蒸着し、次いで金属フタロシアニンとして
鉄フタロシアニンを用い10−5Torrの真空中で4
20°C(二加熱3分間蒸着した。この複合膜を低真空
法により気体透過性を測定したところ、酸素透過係数P
o2は9.00 X 100−8CC−C/Cm2Cm
2−8eC−Cで、酸素/窒素分離係数αは約4.8の
値を得た。未処理゛のPMSP膜に比べ、Po2は10
分の1になったがαを3.5倍も大きくすることができ
、これを従来の高分子例で述べたシリコーンゴム(Po
276、OX 10−8cc・cm/cm2−sec 
−cmHg 、α22.0)と比較するとPo2では1
.5倍、αでは2.4倍も良い特性である。
<Example-1> Polytrimethylsilylpropyne (
-PMSP) to prepare a 2 wt % toluene solution, and cast this onto a glass plate to produce a 40 μm thick film. This film was heated at 120°C in a vacuum of 10-5 Torr using phthalimide as a third substance.
4 minutes in a vacuum of 10-5 Torr using iron phthalocyanine as the metal phthalocyanine.
Vapor deposition was carried out at 20°C (heated twice for 3 minutes. When the gas permeability of this composite film was measured by a low vacuum method, the oxygen permeability coefficient P
o2 is 9.00 x 100-8CC-C/Cm2Cm
At 2-8 eC-C, an oxygen/nitrogen separation coefficient α of about 4.8 was obtained. Compared to untreated PMSP membrane, Po2 is 10
However, α can be increased by 3.5 times, and this can be compared to the silicone rubber (Po
276, OX 10-8cc・cm/cm2-sec
-cmHg, α22.0), 1 for Po2
.. The characteristics are 5 times better and 2.4 times better at α.

く比較例−1〉 実施例−IC=おいて金属フタロシアニンとして鉄フタ
ロシアニンのみを用いて10−5Torr の真空中で
420°Cに加熱3分間蒸着した場合、Po2は1.0
2×110−6CCIIC/Cm2・SeCjCmHg
、αは1.5であった。また第三物質としてフタルイミ
ドのみを用いて10−5Torrの真空中で120°C
に加熱3分間前着した場合、Po2は1.05 X 1
0””’cc・cm/cm2・sec−cmHg、αは
1.5であった。このように複合化処理において金属フ
タロシアニン、第三物質のど蔦らか一方ではαを向上さ
せることができず、この傾向は上記鉄フタロシアニン、
フタルイミドに限らず先記の他の物質についても同様に
見られた。本発明の効果を得るには金属フタロシアニン
を第三物質両者を必要とするものである。
Comparative Example-1> In Example-IC=, when only iron phthalocyanine was used as the metal phthalocyanine and was heated to 420°C for 3 minutes in a vacuum of 10-5 Torr, Po2 was 1.0.
2×110-6CCIIC/Cm2・SeCjCmHg
, α was 1.5. In addition, using only phthalimide as the third substance, the temperature was 120°C in a vacuum of 10-5 Torr.
When heated for 3 minutes, Po2 is 1.05 x 1
0""'cc·cm/cm2·sec-cmHg, α was 1.5. In this way, in the composite treatment, it is not possible to improve α with either the metal phthalocyanine or the third substance, and this tendency is reflected in the above-mentioned iron phthalocyanine,
Similar findings were observed not only with phthalimide but also with the other substances mentioned above. To obtain the effects of the present invention, both the metal phthalocyanine and the third substance are required.

〈実施例−2〉 実施例−1においてPMSPフィルムとして厚さ19μ
mのものを作製し、これに鉄フタロシアニン+フタルイ
ミド混合物(重量比7:3)を真空度10−5Torr
で120〜200°Cで1分間、200〜400°Cで
4分間前着した。この複合膜のT’o2は1.10 X
 10−’cc#cm/cm2asec#cmHg1α
は約4.6であり、未処理のPMSP膜に比べPo2は
10分の1になったが、αは3.3倍も大きくすること
ができた。
<Example-2> In Example-1, the thickness of the PMSP film was 19 μm.
A mixture of iron phthalocyanine and phthalimide (weight ratio 7:3) was added to it at a vacuum level of 10-5 Torr.
Pre-coating was carried out at 120-200°C for 1 minute and at 200-400°C for 4 minutes. The T'o2 of this composite membrane is 1.10X
10-'cc#cm/cm2asec#cmHg1α
was approximately 4.6, and Po2 was reduced to one-tenth of that of the untreated PMSP film, but α was able to be increased by 3.3 times.

〈実施例−3〉 実施例−1にねいてガラス状高分子としてポリフェニレ
ンオキサイド(PPO)を用いて同様に複合化したとこ
ろ、Po2は1.32 X 10−9cc −cm/a
m2・seC−cmHgでαは6.9の値を得、未処理
のpp。
<Example-3> When composited in the same manner as in Example-1 using polyphenylene oxide (PPO) as the glassy polymer, Po2 was 1.32 x 10-9cc-cm/a.
m2·seC-cmHg, α obtained a value of 6.9, and untreated pp.

に比べ、αは1.7倍も大きくなった。Compared to , α was 1.7 times larger.

〈実施例−4〉 ガラス状高分子としてPMSPを用いて2wt%ベンゼ
ン溶液を調整し、これをテフロン板上にキャストして1
2μmのフィルムを作製した。これに第三物質として無
水ピロメリット酸を用い、1O−5Torrの真空度で
2800Cに加熱、5分間前着し、次いで可溶性の金属
フタロシアニンとしてアルシアンブルーを用い、1wt
%メタノール溶液を調整し、この中に上記のフィルムを
1時間浸漬した。
<Example-4> A 2 wt % benzene solution was prepared using PMSP as the glassy polymer, and this was cast on a Teflon plate.
A 2 μm film was produced. Pyromellitic anhydride was used as the third substance, heated to 2800C in a vacuum of 1O-5 Torr, and pre-deposited for 5 minutes, then Alcian blue was used as the soluble metal phthalocyanine, and 1wt.
% methanol solution was prepared, and the above film was immersed therein for 1 hour.

さらに80°Cのオープンで30分加熱乾燥し複合膜化
した。この複合膜の気体透過性はPO2ン2.8×10
″′″8CC@Cm/Cm2・seC@CmHg、αは
約3.2であった。
Further, it was heated and dried at 80°C for 30 minutes to form a composite film. The gas permeability of this composite membrane is 2.8×10
″′″8CC@Cm/Cm2·seC@CmHg, α was approximately 3.2.

なお上記実施例ではガラス状高分子としてPMsp、p
po、金属フタロシアニンとしては鉄フタロシアニン、
°アルシアンブルー、第三°物質としてはフタルイミド
、無水ピロメリト酸についてのみ説明したが、これに限
定されるものではない。
In the above example, PMsp, p was used as the glassy polymer.
po, iron phthalocyanine as metal phthalocyanine,
Although only phthalimide and pyromellitic anhydride have been described as Alcian blue and tertiary substances, the present invention is not limited thereto.

発明の効果 以上本発明は、選択的気体透過性を有する膜の少なくと
も一層が、ガラス状高分子に少なくとも一種の金属フタ
ロシアニンと少なくとも一種の第三物質を含有させてな
る気体透過複合膜を提供するもので、従来の気体透過膜
に比べ、気体透過性と気体分離性の両者に優れた高性能
の気体透過膜が得られる利点を有する。
Effects of the Invention The present invention provides a gas permeable composite membrane in which at least one layer of the membrane having selective gas permeability contains at least one metal phthalocyanine and at least one third substance in a glassy polymer. Compared to conventional gas permeable membranes, this method has the advantage of providing a high-performance gas permeable membrane with excellent gas permeability and gas separation properties.

Claims (3)

【特許請求の範囲】[Claims] (1)選択的気体透過性を有する膜の少なくとも一層が
、ガラス状高分子に少なくとも一種の金属フタロシアニ
ンと少なくとも一種の第三物質を含有させて成ることを
特徴とする気体透過複合膜。
(1) A gas permeable composite membrane characterized in that at least one layer of the membrane having selective gas permeability is made of a glassy polymer containing at least one metal phthalocyanine and at least one third substance.
(2)第三物質が、フタル酸誘導体、メリト酸誘導体、
アミン、複素環式アミンからなる群より選ばれる特許請
求の範囲第1項記載の気体透過複合膜。
(2) The third substance is a phthalic acid derivative, a mellitic acid derivative,
The gas permeable composite membrane according to claim 1, which is selected from the group consisting of amines and heterocyclic amines.
(3)ガラス状高分子が、1,2−ジ置換ポリアセチレ
ンまたはポリフェニレンオキサイドである特許請求の範
囲第1項記載の気体透過複合膜。
(3) The gas permeable composite membrane according to claim 1, wherein the glassy polymer is 1,2-disubstituted polyacetylene or polyphenylene oxide.
JP11736087A 1987-05-14 1987-05-14 Gas permeable conjugated film Pending JPS63283718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11736087A JPS63283718A (en) 1987-05-14 1987-05-14 Gas permeable conjugated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11736087A JPS63283718A (en) 1987-05-14 1987-05-14 Gas permeable conjugated film

Publications (1)

Publication Number Publication Date
JPS63283718A true JPS63283718A (en) 1988-11-21

Family

ID=14709752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11736087A Pending JPS63283718A (en) 1987-05-14 1987-05-14 Gas permeable conjugated film

Country Status (1)

Country Link
JP (1) JPS63283718A (en)

Similar Documents

Publication Publication Date Title
US9975092B2 (en) Gas separation membrane and gas separation membrane module
US4071590A (en) Composite asymmetrical membranes
JP2003062422A (en) Gas separation membrane and method for manufacturing the same
WO1993022040A1 (en) Separating membrane made from polyion complex
JPS63283718A (en) Gas permeable conjugated film
JPH0852332A (en) Composite gas separation membrane and production thereof
JP2984716B2 (en) Aromatic separation membrane
JPS60232205A (en) Gas separating molded body
JPS6380826A (en) Selective gas-permeable composite membrane
EP4130012A1 (en) Metal-organic framework, separation film, and method for producing metal-organic framework
JPS63305904A (en) Modifying method for sulfonic acid-type semi permeable membrane
JPS62183837A (en) Gas permeable membrane
JPS63126524A (en) Gas permselective composite membrane
JPH04341329A (en) Oxygen permeable polymer film
JPS62227422A (en) Composite membrane and manufacture of same
JPS6233526A (en) Gas permeable membrane
JPS61146320A (en) Gas permeable membrane
JPH04110030A (en) Aromatic copolymerized separating membrane
JPH0321331A (en) Gas permselective membrane and production thereof
JPH01119324A (en) Preparation of gas separation membrane
JPH0352631A (en) Polymer membrane for oxygen enrichment
JPH0761433B2 (en) Selective gas permeable composite membrane
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane
JPS6171820A (en) Gas permeable membrane
Nomura et al. Permselectivities of various polymer membranes toward some aromatic compounds in organic media in the reverse osmosis process