JPS63283492A - Motor controller for compressor - Google Patents

Motor controller for compressor

Info

Publication number
JPS63283492A
JPS63283492A JP62118208A JP11820887A JPS63283492A JP S63283492 A JPS63283492 A JP S63283492A JP 62118208 A JP62118208 A JP 62118208A JP 11820887 A JP11820887 A JP 11820887A JP S63283492 A JPS63283492 A JP S63283492A
Authority
JP
Japan
Prior art keywords
induction motor
temperature
current
compressor
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62118208A
Other languages
Japanese (ja)
Inventor
Kenji Kawagishi
川岸 賢至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62118208A priority Critical patent/JPS63283492A/en
Publication of JPS63283492A publication Critical patent/JPS63283492A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high correcting effect at all times in the whole operating area of a compressor including stopping condition, by correcting the constant of an induction motor based on the delivery pipe temperature or the delivery gas temperature of the compressor. CONSTITUTION:A temperature sensor 23 is provided on the delivery pipe 24 of a compressor 1 and detects the temperature of delivery gas or the delivery pipe of the compressor 1. A control circuit 24 corrects the constant of an induction motor based on the delivery gas temperature or the delivery pipe temperature, which keeps a given temperature relation with the secondary rotor temperature of the induction motor, and controls the induction motor 2 in accordance with the corrected value of the constant. According to this method, the effect of the change of the resistance of a secondary windings due to the temperature change of the induction motor may be corrected correctly at all times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電動圧縮機における誘導電動機の電流と周
波数を制御することにより、該誘導電動機の回転数及び
トルクをIIJ御する圧縮機用電動機の制御装置に関す
るものである。
Detailed Description of the Invention [Field of Industrial Application] This invention provides a compressor motor that controls the rotational speed and torque of the induction motor in an electric compressor by controlling the current and frequency of the induction motor. The present invention relates to a control device.

(従来の技術〕 従来、この種の圧縮機用語導電動機の1ljfl装置と
しては第6図に示すようなものがある1図において、1
は電動圧縮機、2はその誘導電動機、3は誘導電動機2
の回転速度ω、を検出するための回転検出器、4は誘導
電動Ja2の一次電流を検出するための電流検出器、5
は誘導電動機2を可変周波数で駆動する可変周波数電力
変換装置、6はトルク指令TH゛を発生するためのトル
ク指令発生器、7はトルク指令TN◆を入力しこれと所
定の対応関係をもつトルク電流成分指令It◆を発生す
る発生回路、8は二次磁束指令Φ2$を発生する磁束指
令発生器、9は二次磁束指令Φ2串を入力しこれと所定
の対応関係をもつ励磁電流成分指令IE−を発生する発
生回路、10は上記トルク電流成分指令1t”&励磁電
流成分指令IEIを入力し後述の演算により誘導電動機
2に供給すべき一次電流の振幅指令II+・1、位相指
令θt・及びすべり角周波数指令ωS°を発生する電流
ベクトル演算回路、llは電流ベクトル演算回路10の
出力及び上記回転速度ω「を入力し誘導電動機2に供給
すべき一次電流の指令を演算する電流指令発生回路、1
2は電流指令発生回路11の出力及び電流検出器4の出
力から可変周波数電力変換装置5への制御信号を発生す
る電流制御回路である。
(Prior Art) Conventionally, a 1ljfl device for this type of compressor term conduction motor is shown in Fig. 6.
is the electric compressor, 2 is its induction motor, and 3 is the induction motor 2.
4 is a current detector for detecting the primary current of the induction motor Ja2; 5 is a current detector for detecting the primary current of the induction motor Ja2;
is a variable frequency power converter that drives the induction motor 2 at a variable frequency; 6 is a torque command generator for generating the torque command TH; and 7 is a torque generator that inputs the torque command TN◆ and has a predetermined correspondence relationship therewith. A generation circuit that generates the current component command It◆, 8 a magnetic flux command generator that generates the secondary magnetic flux command Φ2$, and 9 an exciting current component command that inputs the secondary magnetic flux command Φ2 and has a predetermined correspondence relationship therewith. A generating circuit 10 that generates IE- inputs the torque current component command 1t''& excitation current component command IEI, and calculates an amplitude command II+.1 and a phase command θt.of the primary current to be supplied to the induction motor 2 through calculations described later. and a current vector calculation circuit that generates the slip angular frequency command ωS°; 11 is a current command generation circuit that inputs the output of the current vector calculation circuit 10 and the rotational speed ω and calculates a command for the primary current to be supplied to the induction motor 2; circuit, 1
Reference numeral 2 denotes a current control circuit that generates a control signal to the variable frequency power converter 5 from the output of the current command generation circuit 11 and the output of the current detector 4.

上記電流ベクトル演算回路10は、各相別の回路10a
〜10cから成り、次式で示される+f?f述の演算処
理を行なう。
The current vector calculation circuit 10 includes a circuit 10a for each phase.
~10c, +f? The arithmetic processing described in f is performed.

It、”l=、/i”Tπ”  −−−−−−(1)θ
? ”= tan−’ (It ”/ Ig”) −−
−一−−(2)但し、T2 = L2/R2−−−−−
−−−−−−−(4)(R2、L2はそれぞれ誘導電動
機2の二次巻線抵抗、二次巻線インダクタンスである。
It, "l=, /i"Tπ" --------(1) θ
? "= tan-'(It"/Ig") --
-1--(2) However, T2 = L2/R2--
-------(4) (R2 and L2 are the secondary winding resistance and secondary winding inductance of the induction motor 2, respectively.

)また、電流指令発生回路11は、次式で示される演算
処理を行ない、誘導電動機2のU相巻線及びV相巻線に
供給すべき一次電流指令tus′及びivs′を発生ず
る。
) Further, the current command generating circuit 11 performs the calculation process shown by the following equation, and generates the primary current commands tus' and ivs' to be supplied to the U-phase winding and V-phase winding of the induction motor 2.

t us’ =l I l”l・cos (ω。t+θ
−C1)1 vg” = l I l’l・cos (
ω。t+θ、−一π)但し、ω。=ω、+ω!!’  
−−−−−−−−−−−−−(fi)そして、電流−1
#4回路12では、上述の−・次電流指令1 us” 
+  1 vs”が電流検出器4から得られた実際の一
次電流jLIIl+lVsとそれぞれ比較され、その電
流指令波形と実際の電流波形とが一致する様に、可変周
波数電力変換装置5への制御信号が演算される。
t us' =l I l"l・cos (ω.t+θ
-C1)1 vg” = l I l'l・cos (
ω. t+θ, -1π) However, ω. =ω, +ω! ! '
−−−−−−−−−−−−(fi) and current −1
In the #4 circuit 12, the above-mentioned −・next current command 1 us”
+ 1 vs” is compared with the actual primary current jLIIl+lVs obtained from the current detector 4, and a control signal to the variable frequency power converter 5 is sent so that the current command waveform matches the actual current waveform. Calculated.

この時、W相巻線を流れる一次電流に関しては、電流制
御回路12中で次式の関係式を用いて一次電流指令t 
ws” +  iwsが演算され、−次電流1u*+I
Vjと同様に制御される。
At this time, regarding the primary current flowing through the W-phase winding, the primary current command t is determined using the following relational expression in the current control circuit 12.
ws” + iws is calculated, and the −order current 1u*+I
It is controlled in the same way as Vj.

Iws’ =  (1us” + l v++’ ) 
−−−−−−−(7)1 ws  ”  (j 1ll
l+ j vs) −−−−−−−−−−−(8)以上
の(1)〜(7)式の関係式に従って一次電流指令! 
um’ +  f vll  及びI Wm”を演算し
、且つ実際の一次電流I Llll+  1 v11+
及び五−が対応する指令に一致する様に制御する制御方
式は、通常ベクトル制御方式と呼ばれ、特に励磁電流成
分指令11が一定の場合には、誘導電動機2のトルクが
トルク電流成分指令111に比例して変化し、安定で且
つ高速応答の誘導電動機2の可変速制御が実現できるこ
とが知られている。
Iws' = (1us" + lv++')
----------(7) 1 ws ” (j 1ll
l+ j vs) −−−−−−−−−−(8) Primary current command according to the relational expressions (1) to (7) above!
um' + f vll and I Wm'', and calculate the actual primary current I Lllll+ 1 v11+
A control method in which control is performed so that 5- and 5- coincide with the corresponding commands is usually called a vector control method. In particular, when the excitation current component command 11 is constant, the torque of the induction motor 2 is equal to the torque current component command 111. It is known that variable speed control of the induction motor 2 that changes in proportion to and is stable and has a high speed response can be realized.

ところで、この制御方式は一次電流指令を演算するため
、上記(3)式の関係式かられかるように誘導電動a2
の定数である二次巻線抵抗R2及び二次巻線インダクタ
ンスL2の値を必要とする。しかし、二次巻線抵抗R2
は温度によって変化するので、電流ベクトル演算回路1
0中のR2或はT2=L2/R2の値を何らかの手段で
修正しないと、トルク電流成分指令It°に対するトル
クの線形性が失われ、誘導電動機2のトルクや二次磁束
をそれぞれの指令通りに制御することが不可能となる。
By the way, since this control method calculates the primary current command, the induction motor a2
The values of the secondary winding resistance R2 and the secondary winding inductance L2, which are constants, are required. However, the secondary winding resistance R2
changes with temperature, so current vector calculation circuit 1
If the value of R2 or T2=L2/R2 in 0 is not corrected by some means, the linearity of the torque with respect to the torque current component command It° will be lost, and the torque and secondary magnetic flux of the induction motor 2 will not match the respective commands. It becomes impossible to control the

この二次巻線抵抗R2の値の温度変化に対する補正回路
としては、例えば、第7図に示すものがある(IEEE
  Trans 、IA  Vol、IA−16、No
、2  PP173−178.1980 ) 、図中、
13は誘導電動機2の一次電圧V、、、V、、及び−次
電流111s+IVsを入力し後述の演算により誘導電
動機2中で発生した無効電力に関係する電力量FOを検
出する第1の電力演算回路、14は二次磁束指令Φ2−
 トルク電流成分指令X1・、すべり角周波数指令ωS
・及び誘導電動機2の回転速度ωrを入力し後述の演算
により前記電力量FOに相当する電力量Fo中を演算す
る第2の電力演算回路、15は修正回路である。
As a correction circuit for temperature changes in the value of the secondary winding resistance R2, for example, there is a circuit shown in FIG. 7 (IEEE
Trans, IA Vol, IA-16, No.
, 2 PP173-178.1980), in the figure,
13 is a first power calculation which inputs the primary voltages V, , V, and the negative current 111s+IVs of the induction motor 2 and detects the amount of power FO related to the reactive power generated in the induction motor 2 by a calculation described later. circuit, 14 is the secondary magnetic flux command Φ2-
Torque current component command X1・, slip angle frequency command ωS
A second power calculation circuit 15 is a correction circuit which inputs the rotational speed ωr of the induction motor 2 and calculates a power amount Fo corresponding to the power amount FO by a calculation described later.

次に、上記電力iFo、Fo・の演算式及び補正方式に
ついて説明する。尚、以下の説明で石屑に本印が付いて
いるのは電流ベクトル演算回路10等の制御回路中の誘
導電動機2の定数である。
Next, the calculation formula and correction method for the above-mentioned powers iFo and Fo. will be explained. In the following explanation, the stone chips with a book mark are constants of the induction motor 2 in the control circuit such as the current vector calculation circuit 10.

公知のように、固定子座標軸(d−q座標軸とする)上
の誘導電動機2の固定子側(−次側)の電圧方程式は次
式で与えられる。
As is well known, the voltage equation on the stator side (-next side) of the induction motor 2 on the stator coordinate axis (d-q coordinate axis) is given by the following equation.

Vd5= (R+ +PL1 σ)ids+−PΦ2d
■qs= (R+ +PLl  σ)iqs+   P
Φ21一−−−−−−−−−− (9) Vds l vqs ;−次電圧のd軸、q軸成分ld
s、lqs;−次電流のd軸、qM成分Φ2d、Φ2q
;二次磁束のd軸、q軸成分但し、R,、L、、M、L
2はそれぞれ誘導電動機2の一次巻線抵抗、−次巻線イ
ンダクタンス、−次、二次相互巻線インダクタンス、二
次巻線インダクタンスである。またaは漏れ係数で次式
で与えられる。
Vd5= (R+ +PL1 σ)ids+-PΦ2d
■qs= (R+ +PLl σ)iqs+ P
Φ21---------- (9) Vds l vqs ;-d-axis and q-axis components ld of the -order voltage
s, lqs; - d-axis of the next current, qM component Φ2d, Φ2q
; d-axis and q-axis components of secondary magnetic flux However, R, , L, , M, L
2 are the primary winding resistance, -order winding inductance, -order, secondary mutual winding inductance, and secondary winding inductance of the induction motor 2, respectively. Further, a is a leakage coefficient and is given by the following equation.

上記(9)式より、無効電力Qは次式で示される。From the above equation (9), the reactive power Q is expressed by the following equation.

Q =Vds” lqs  ” Vqs” ldsυ +L、  σ(iq、・Plds  jds・Piq、
)−−−−−−(I I) ところで、前述の(1)〜(7)式の関係式に従って誘
導電動機2の一次電流を制御する場合、公知のように次
式の関係が知られている。
Q = Vds" lqs "Vqs" ldsυ +L, σ(iq,・Plds jds・Piq,
) --------(I I) By the way, when controlling the primary current of the induction motor 2 according to the above-mentioned relational expressions (1) to (7), the following relationship is known as well-known. There is.

i ds” = [B”CO3ω。t−1z”*sin
 0g ti qs’  = I F、”sin ωo
 t+1℃”・cos ω。t−一−−−−−(12) Φ2d’  ”Φ2”CO3(1)。tΦ、q′=Φ2
’sin ωot    −−−一−−−(13)但し
、j ds” +  lqs’ + Φ2d” 、Φ2
Jは、それぞれj ds+  1 q$+Φ2c++Φ
2Qの指令である。また、ω0は首記(6)式によって
与えられる。
i ds” = [B”CO3ω. t-1z”*sin
0g ti qs' = I F, "sin ωo
t+1℃"・cos ω.t-1---(12) Φ2d'"Φ2"CO3(1).tΦ,q'=Φ2
'sin ωot ---1---(13) However, j ds" + lqs' + Φ2d", Φ2
J is respectively j ds+ 1 q$+Φ2c++
This is a 2Q directive. Moreover, ω0 is given by the above equation (6).

尚、上記(12)式の関係式は、前記(1)〜(5)弐
及び後述の(17)式から一次電流指令j un’ +
  iv、、’を消去することによっても得られる。
In addition, the relational expression of the above-mentioned equation (12) can be calculated from the above-mentioned (1) to (5) 2 and the below-mentioned equation (17) to obtain the primary current command j un' +
It can also be obtained by eliminating iv,,'.

そして、(12)、(13)式より次式の関係が得られ
る。
Then, from equations (12) and (13), the following relationship is obtained.

−−−−−−−(+4) この(14)式に相当する関係式は、(11)式より次
式となる。
--------(+4) The relational expression corresponding to this equation (14) becomes the following equation from equation (11).

(iqsPΦ2d   tdsPΦ29)=Q−L1 
σ (tqsφP ids   Lds” P 1qs
)ここで、上記(15)式には二次巻線抵抗R2が含ま
れないので、R2の値の温度変化の影響を受けず、しか
も誘導電動機2の一次電圧及び−次電流を用いて容易に
演算できる。それに対し、(14)式には二次巻線抵抗
R2の値は直接食まれていないが、IE◆+ I? ”
 +Φ2参は全て指令値であるので、R2Iの値が実際
のR2の値と一致しないと、誘導電動機中の励磁電流I
[、トルク電流エニー二次磁束Φ2がそれぞれの指令に
一致しなくなる。そのため、(14)式を用いて演算さ
れた値と(15)式を用いて演算された値との間に偏差
が発生する。従って、この偏差が零となるように、電流
ベクトル演算回路lO中のR2°或はT2・の値を補正
することができる。第7図の回路では、この原理に基い
てT2−の値が補正される。
(iqsPΦ2d tdsPΦ29)=Q-L1
σ (tqsφP ids Lds” P 1qs
) Here, since the secondary winding resistance R2 is not included in the above equation (15), the value of R2 is not affected by temperature changes, and moreover, it can be easily calculated using the primary voltage and negative current of the induction motor 2. can be calculated. On the other hand, although the value of the secondary winding resistance R2 is not directly included in equation (14), IE◆+I? ”
+Φ2 are all command values, so if the value of R2I does not match the actual value of R2, the exciting current I in the induction motor
[, the torque current any secondary magnetic flux Φ2 no longer matches the respective commands. Therefore, a deviation occurs between the value calculated using equation (14) and the value calculated using equation (15). Therefore, the value of R2° or T2· in the current vector calculation circuit IO can be corrected so that this deviation becomes zero. In the circuit shown in FIG. 7, the value of T2- is corrected based on this principle.

ところで、−次電圧のd軸、q軸成分Vds。By the way, the d-axis and q-axis components of the negative voltage Vds.

■Q3と一次′社圧V lls+ V VM及び−次’
+TE m (7) d 軸、q構成分1ds+Iv+
+の間の関係式は、公知のように次式で′j、えられる
■Q3 and primary 'company pressure Vlls+V VM and -next'
+TE m (7) d axis, q component 1ds+Iv+
As is well known, the relational expression between + is given by the following equation.

ト記(16)、(17)式と(15)式の右辺に代入し
て一次電圧のd軸、9構成分V。。
Substitute into the right-hand side of equations (16), (17), and (15) to obtain the d-axis and 9 components of the primary voltage, V. .

V qs、−次電流のd軸、q構成分1ds+1.1g
を消去することにより、電動機F。の演算式は次式とな
る。
V qs, d-axis of -order current, q component 1ds + 1.1g
By erasing the electric motor F. The calculation formula is as follows.

Fo =J”””J (Vusl vs  Vv、t 
1111Ll (71vsP i um+ LI Q 
l usP 1 vj” ””■((vus  L +
  Cj P 1 us)  1 v++(Vv++−
Lr OP j vs) 1 usl −−−(18)
また、電力量Fo−の演算式は、(14)式の右辺即ち
次式となる。
Fo = J"""J (Vusl vs Vv, t
1111Ll (71vsP i um+ LI Q
l usP 1 vj” ””■((vus L +
Cj P 1 us) 1 v++ (Vv++-
Lr OP j vs) 1 usl---(18)
Further, the calculation formula for the power amount Fo- is the right side of the formula (14), that is, the following formula.

次に、第7図に示された補正回路の動作について説明す
る。先ず、第1の電力演算回路13、第2の演算回路1
4の出力として、それぞれ(18)、(19)式の演算
から電力量FO。
Next, the operation of the correction circuit shown in FIG. 7 will be explained. First, the first power calculation circuit 13 and the second calculation circuit 1
As the output of 4, the electric energy FO is obtained from the calculations of equations (18) and (19), respectively.

Fo拳が求められる。そして、減算器15aで電力量F
o゛と同FOの偏差ΔFOを得、この偏差を積分塁15
bで積分することにより、定数設定値T2・の補正量Δ
T2中が得られる。この補正量ΔT2中と定数設定値T
z参の設定量T 20◆とを加算器15cで加算するこ
とにより、補正された設定値T2・が得られる。その結
果、第6図における電流ベクトル演算回路10中のT2
°の値が補正されるので、温度変化によって二次巻線抵
抗R2の値が変化しても、トルク電流成分指令11・と
トルクとの間の線形性が保たれる。
Fo fist is required. Then, in the subtracter 15a, the electric energy F
Obtain the deviation ΔFO of the same FO as o゛, and integrate this deviation as 15
By integrating with b, the correction amount Δ of the constant setting value T2
T2 medium is obtained. During this correction amount ΔT2 and constant setting value T
By adding the setting amount T 20◆ of reference z with the adder 15c, the corrected setting value T2· is obtained. As a result, T2 in the current vector calculation circuit 10 in FIG.
Since the value of ° is corrected, even if the value of the secondary winding resistance R2 changes due to a temperature change, the linearity between the torque current component command 11 and the torque is maintained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の圧縮機用電動機の制御装置は以上のように構成さ
れており、運転中誘導電動機の二次巻線抵抗値の温度変
化に対処すべく、電流制御回路中の二次巻線抵抗値を補
正しているが、補正回路中で用いる電力量Fo中の演算
には全て励磁電流成分指定IE−)ルク電流成分指令I
Cなどの指令値が用いられている。ところが、実際の一
次電流ius+ivs+及びiwsをそれぞれの指令に
一致するように制御するための電流制御回路の特性によ
って、−次電流の実際値と指令値との間に偏差が生じた
り、可変周波数電力変換装置の電流耐量、電圧耐量など
の耐量の制限より、運転状態によっては制御系が飽和し
たりすると、二次巻線抵抗の値は正しく補正されていて
も指令通りの励磁電流成分IE及びトルク電流成分It
を誘導電動機に供給できなくなる。この様な場合、二次
巻線抵抗値は正しく補正されているにもかかわらず、電
力量Fo”と電力I F o との間に偏差が生じ、補
正回路が間違った補正結果を出力するという問題点かっ
た。
Conventional compressor motor control devices are configured as described above, and in order to cope with temperature changes in the secondary winding resistance of the induction motor during operation, the secondary winding resistance in the current control circuit is adjusted. However, all calculations in the electric energy Fo used in the correction circuit use the excitation current component specification IE-) torque current component command I
A command value such as C is used. However, due to the characteristics of the current control circuit for controlling the actual primary currents ius+ivs+ and iws to match their respective commands, a deviation may occur between the actual value of the -order current and the command value, or the variable frequency power If the control system becomes saturated depending on the operating condition due to limitations in the current and voltage withstand capacity of the converter, the excitation current component IE and torque may not match the command even if the secondary winding resistance value has been correctly corrected. Current component It
cannot be supplied to the induction motor. In such a case, even though the secondary winding resistance value has been correctly corrected, a deviation will occur between the electric energy Fo'' and the electric power I Fo, and the correction circuit will output an incorrect correction result. There was a problem.

しかも二次巻線抵抗R2の補正を行なうための電力量F
Oを演算するのには、−次電流1us+ivsを測定す
る必要があり、また演算式が複雑になるという問題点が
あった。
Moreover, the amount of electric power F for correcting the secondary winding resistance R2
In order to calculate O, it is necessary to measure the negative current 1us+ivs, and there is a problem that the calculation formula becomes complicated.

この発明は、このような問題点を解決するためになされ
たもので、電流制御回路の特性に基く°電流制御偏差や
可変周波数電力変換装置の電流耐量、電圧耐量などの制
限によって生じる制御系の飽和などの影響を受けず、温
度変化による二次巻線の抵抗変化の影響を常に正確に補
正できる圧縮機用電動機の制御装置を得ることを目的と
している。
This invention was made in order to solve these problems, and is based on the characteristics of the current control circuit.The present invention is based on the characteristics of the current control circuit.The present invention is based on the characteristics of the current control circuit. The present invention aims to provide a control device for a compressor motor that is not affected by saturation and can always accurately correct the influence of changes in resistance of a secondary winding due to temperature changes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の圧縮機用電動機の制御装置は、圧縮機の吐出
ガス温度或は吐出管温度を検出する温度センサと、圧縮
機に接続された誘導電動機を可変周波数で駆動する可変
周波数電力変換装置と、前記誘導電動機に供給する一次
電流をトルク指令値及び磁束指令値に従って該誘導電動
機の定数に基いた関数関係を持ってベクトル量として演
算し少なくともすへり周波数或はすべり角の何れかを出
力する電流ベクトル演算回路と、誘導電動機の回転速度
或はすべり周波数を検出する検出り段と、+fff記電
流ベクトル演算回路及び検出手段の出力から誘導電動機
に供給すべき一次電流の指令値を演算する電流指令発生
回路とを備え、前記吐出ガス温度或は吐出管温度に基い
て前記電流ベクトル演算回路、検出手段などで演算に使
用される誘導電動機の定数を修正する修正回路を設けた
ものである。
The compressor motor control device of the present invention includes a temperature sensor that detects the discharge gas temperature or discharge pipe temperature of the compressor, and a variable frequency power converter that drives an induction motor connected to the compressor at a variable frequency. , calculating the primary current supplied to the induction motor as a vector quantity with a functional relationship based on a constant of the induction motor according to a torque command value and a magnetic flux command value, and outputting at least either a shear frequency or a slip angle. A current vector calculation circuit, a detection stage for detecting the rotational speed or slip frequency of the induction motor, and a current for calculating a command value of the primary current to be supplied to the induction motor from the output of the current vector calculation circuit and detection means described in +fff. A correction circuit is provided for correcting the constant of the induction motor used for calculation by the current vector calculation circuit, detection means, etc. based on the discharge gas temperature or discharge pipe temperature.

(作用) この発明の圧縮機用電動機の制御装置においては、誘導
電動機の二次側の回転子温度と−・定の温度関係を保つ
圧縮機の吐出ガス温度或は吐出管温度にJ^づいて誘導
電動機の定数が修正され、その修正値に従フて誘導電動
機が制御される。これにより、誘導電動機の温度変化に
よる二次巻線の抵抗変化の影響が常に正確に補正される
(Function) In the compressor motor control device of the present invention, the temperature of the discharge gas or discharge pipe of the compressor maintains a constant temperature relationship with the rotor temperature on the secondary side of the induction motor. The constant of the induction motor is corrected, and the induction motor is controlled according to the corrected value. As a result, the influence of changes in the resistance of the secondary winding due to changes in temperature of the induction motor is always accurately corrected.

〔実施例〕〔Example〕

以F、この発明の一実施例を図面について説明する。尚
、前述の従来装置と同一の構成要素に対しては同一符号
を付して説明する。第1図は電動圧縮機を使用した空気
調和機の概略図であり、図において、lは電動圧縮機、
2は誘導電動機、5は可変周波数電力変換装置、16.
17は室内側及び室外側の各々の熱交換器、18.19
はこれらの熱交換器16.17に設けられたファン、2
0は冷暖房の切換弁である四方弁、21は膨張弁、22
は前記各冷凍サイクルのNIi戊部品を連結している配
管で、この配管22内には外気や水などから熱(温Φ冷
熱)を吸収する冷媒(例えばフロン)が流れている。2
3は圧縮機1の吐出管24に設置された温度センサで、
圧縮機1の吐出ガス或は吐出管温度を検出する。24は
圧縮機lの駆動系を制御する制御回路である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the same reference numerals are given to the same components as those of the conventional device described above. FIG. 1 is a schematic diagram of an air conditioner using an electric compressor, and in the figure, l is the electric compressor,
2 is an induction motor, 5 is a variable frequency power converter, 16.
17 is an indoor heat exchanger and an outdoor heat exchanger, 18.19
are the fans installed in these heat exchangers 16 and 17, 2
0 is a four-way valve that is a switching valve for heating and cooling, 21 is an expansion valve, 22
A pipe 22 connects the NIi components of each refrigeration cycle, and a refrigerant (for example, fluorocarbon) that absorbs heat (hot and cold) from the outside air and water flows through the pipe 22. 2
3 is a temperature sensor installed in the discharge pipe 24 of the compressor 1;
The discharge gas or discharge pipe temperature of the compressor 1 is detected. 24 is a control circuit that controls the drive system of the compressor l.

第2図は第1図の可変周波数電力変換装置5及び制御回
路25の詳細を示すブロック図である。
FIG. 2 is a block diagram showing details of the variable frequency power converter 5 and control circuit 25 of FIG. 1.

図中、26は交流電源、27は交流電源26に接続され
たダイオードブリッジから成る整流器、28は整流器2
7の出力電圧を平滑する平滑コンデンサ、29は平滑コ
ンデンサ28で平滑された直流電圧を検出する直流電圧
検出器、30は平滑コンデンサ28と可変周波数電力変
換装′a5を流れる直流電流を検出する直流電流検出器
、31は可変周波数電力変換装215の出力電圧■1の
基本波振幅を検出する基本波電圧検出器、32は直流電
圧検出器28で検出された直流電圧VDC1直流社流検
出器30で検出された直流電流IDC1及び前記−次電
圧の基本波振幅IV+lより誘導電動機2の回転速度或
はすべり周波数ω$を演算して検出するすべり周波数演
算器(検出手段)、33は誘導電動機5の指令回転数ω
−と回転数ωrとの差を求める加算器、34は加算器3
3からの出力を比例・積分するスピードコントローラ、
35はスピードコントローラ34からの出力よりすべり
周波数指令ω、参を演算するすべり周波数指令演算器、
36は上記すべり周波数指令05本とすべり周波数ωS
との差を求める加算器、37はすべり周波数コントロー
ラ、38はすベリ周波数コントローラ37からの出力と
速度指令ωreを加算する加算器、39は同じくすべり
周波数指令ωJと回転数ω、を加算する加算器、40は
一次周波数ω1を積分して回転角θ0を求める積分器、
41はスピードコントローラ34からの出力及び積分器
40からの回転角度θ。を基にして一次電流指令1+”
を演算する電流ベクトル演算回路で、少なくともすべり
周波数或はすべり角の何わかを出力する。42は加算器
43からの一次電流指令t、−h−次電流11との誤差
を基にして−・次゛を圧指令V + ”を出力する電流
コントローラで、電流指令発生回路44を構成している
。45は一次電圧指令VげをPWM (パルス幅変調)
信号に変換するPWM変換回路、46は温度センサ23
のイパ号を受けて面述した二次抵抗R2等の定数を補正
する補正回路である。
In the figure, 26 is an AC power supply, 27 is a rectifier consisting of a diode bridge connected to the AC power supply 26, and 28 is a rectifier 2.
7 is a smoothing capacitor for smoothing the output voltage, 29 is a DC voltage detector for detecting the DC voltage smoothed by the smoothing capacitor 28, and 30 is a DC voltage detector for detecting the DC current flowing through the smoothing capacitor 28 and the variable frequency power converter 'a5. A current detector; 31 is a fundamental wave voltage detector that detects the fundamental wave amplitude of the output voltage 1 of the variable frequency power converter 215; 32 is a DC voltage VDC1 detected by the DC voltage detector 28; a DC current detector 30; 33 is an induction motor 5 which calculates and detects the rotational speed or slip frequency ω$ of the induction motor 2 from the detected DC current IDC1 and the fundamental wave amplitude IV+l of the negative voltage; command rotation speed ω
- and the rotation speed ωr; 34 is the adder 3;
A speed controller that proportionally and integrally integrates the output from 3.
35 is a slip frequency command calculator for calculating slip frequency commands ω and ω from the output from the speed controller 34;
36 is the above slip frequency command 05 and slip frequency ωS
37 is a slip frequency controller, 38 is an adder that adds the output from the Suberi frequency controller 37 and the speed command ωre, and 39 is an adder that also adds the slip frequency command ωJ and the rotation speed ω. 40 is an integrator that integrates the primary frequency ω1 to obtain the rotation angle θ0;
41 is the output from the speed controller 34 and the rotation angle θ from the integrator 40; Primary current command 1+”
A current vector calculation circuit that calculates at least a fraction of the slip frequency or slip angle. 42 is a current controller that outputs a pressure command V+'' based on the error between the primary current command t from the adder 43 and the -h-th order current 11, and constitutes the current command generation circuit 44. 45 uses PWM (Pulse Width Modulation) to control the primary voltage command.
A PWM conversion circuit that converts into a signal, 46 is a temperature sensor 23
This is a correction circuit that corrects constants such as the secondary resistance R2 mentioned above in response to the IPA code.

次に上記のように構成された制御装置の動作について説
明する。
Next, the operation of the control device configured as described above will be explained.

先ず、第1図の冷媒回路における暖房運転について説明
する。圧縮機1で圧縮された冷媒は、高温高圧の状態で
室内側熱交換器!6に流れる。
First, the heating operation in the refrigerant circuit shown in FIG. 1 will be explained. The refrigerant compressed by compressor 1 is sent to the indoor heat exchanger at high temperature and pressure! It flows to 6.

ここで、室内側のファン8が室内の冷たい空気を熱交換
器16に送り、冷媒のもつ温度を奪う。これにより″が
内が暖房される。この時、冷媒は逆に冷却され、低温の
液体となる。冷却された冷媒は、膨張ブ「21で膨張さ
れ、低温低圧の液体となる。そして、この液体冷媒は室
外側熱交換器17に送られる。この時の冷媒の温度は例
えば0℃などの外気温より1分に低いので、外気から熱
を吸収することができる。その際、室外側のファン19
は、外気のもつ熱を冷媒に与える役割を果す。そして、
液体の冷媒は熱を吸収して再びガス状になり、再び圧縮
機1に戻って圧縮される。ここで、誘導電動機2は圧縮
機lに接続されており、その回転動作が圧縮動作に変換
される。以上の動作により室内の暖房が行なわれる。可
変周波数電力変換装置5は前記第6図の説明と同じ動作
を行なう。一方、吐出管24に設置された温度センサ2
3の検出信号は、圧縮機1の加熱保護及び空気調和器の
温度コントロールのために可変周波数電力変換装置5に
入力されている。この時吐出ガス温度(吐出管温度)は
、誘導電動機2の回転子温度と相関関係をもって変化す
る。
Here, the fan 8 on the indoor side sends cold indoor air to the heat exchanger 16 to take away the temperature of the refrigerant. This heats the inside of the ``.At this time, the refrigerant is cooled and becomes a low-temperature liquid.The cooled refrigerant is expanded by the expansion valve ``21'' and becomes a low-temperature, low-pressure liquid. The liquid refrigerant is sent to the outdoor heat exchanger 17.The temperature of the refrigerant at this time is one minute lower than the outside air temperature, such as 0°C, so it can absorb heat from the outside air. fan 19
plays the role of imparting heat from the outside air to the refrigerant. and,
The liquid refrigerant absorbs heat, becomes gaseous again, returns to the compressor 1, and is compressed again. Here, the induction motor 2 is connected to a compressor 1, and its rotation operation is converted into compression operation. The above operation heats the room. The variable frequency power converter 5 performs the same operation as described in FIG. 6 above. On the other hand, the temperature sensor 2 installed in the discharge pipe 24
The detection signal No. 3 is input to the variable frequency power converter 5 for overheating protection of the compressor 1 and temperature control of the air conditioner. At this time, the discharge gas temperature (discharge pipe temperature) changes in correlation with the rotor temperature of the induction motor 2.

上記圧縮機lの接続されている誘導電動機2を速度制御
しようとする場合、直流型圧検出塁29からの直流電圧
VDC1直流電流検出器30からの直流電流Idc及び
基本波電圧検出器31からの一次電圧の基本波振幅lV
+lより、すベリ周波数推定値32は次式によりすべり
周波数推定値むを演算して求める。
When trying to control the speed of the induction motor 2 connected to the compressor 1, the DC voltage VDC from the DC pressure detection base 29, the DC current Idc from the DC current detector 30, and the fundamental wave voltage detector 31 Fundamental wave amplitude of primary voltage lV
+l, the estimated slip frequency value 32 is calculated by calculating the estimated slip frequency value 32 using the following equation.

Pc = IocXVoc P2 :PC−WC−W+ 1q=P2/eq Φ2 =eq/ω0 ω9=R2・ iq/Φ2 eq=正0“−1゛1す PC:入力電力 P2 :2次入力 Wc:)ランジスタ損失など W+:1次銅損、鉄損など iq:内部有効電流 eq:内部有効電圧 ωow1次周波数 周波数:2次磁束 R1,R2:1,2次抵抗 ωS :すべり周波数 M :相互インダクタンス L :自己インダクタンス ここで、各数値の右上の記号本は(例えばωSつは指令
値を示し、真上の記号へ(例えば介)は推定値をそれぞ
れ示す。
Pc= Ioc Loss, etc. W+: Primary copper loss, iron loss, etc. iq: Internal effective current eq: Internal effective voltage ωow Primary frequency Frequency: Secondary magnetic flux R1, R2: 1, Secondary resistance ωS: Slip frequency M: Mutual inductance L: Self Inductance Here, the symbol on the upper right of each numerical value (for example, ωS indicates a command value, and the symbol directly above (for example, KA) indicates an estimated value, respectively.

そして、上式で求められたすべり周波数推定値介と速度
指令ω「・より速度の推定値のを求め、スピードコント
ローラ34により速度制御がなされる。また、スピード
コントローラ34の出力は一次電流の振幅指令iqs′
◆/ id s ’ ”として励磁電流指令値ids”
 と共に電流ベクトル演算回路41に午えられる。この
ベクトル演算回路41は、第3図及び第4図に示す様に
積分器40から与えられた一次周波数同転角位相θOと
一次電流の振幅指令iqs′・/ i d s ′・及
び励磁電流指令より次式の様に ius” = Eds”  Co!+00” −iqs
” srnθOims皐 =i4.・  cos  (
Og $−−π)  −ims” =  lus”  
 +vs’交流の一次電流指令値(fuq”+Ivs“
 。
Then, the estimated value of the speed is determined from the estimated slip frequency value obtained by the above equation and the speed command ω', and the speed is controlled by the speed controller 34.The output of the speed controller 34 is the amplitude of the primary current. command iqs'
◆ / id s '” is the excitation current command value ids”
The current vector is also applied to the current vector calculation circuit 41. As shown in FIGS. 3 and 4, this vector calculation circuit 41 calculates the primary frequency rotation angle phase θO given from the integrator 40, the primary current amplitude command iqs'/i d s', and the exciting current. From the command, as shown in the following formula, ius” = Eds” Co! +00”-iqs
” srnθOims 琐 =i4.・cos (
Og $−−π) −ims” = lus”
+vs' AC primary current command value (fuq"+Ivs"
.

ins”)を演算する。ins”).

そしてこれらの−次電流指令値に従って電流コントロー
ラ42によりPWM変換回路45、及び可変周波数電力
変換器5を使用して誘導電動機2の所定の電流を流す、
t53図は電流ベクトル演算回路41の一例を示す回路
構成図で、回転角位相に指令値を演算する演算器47a
〜47d、加算器48a、48b、その他の演算器49
a〜49dから構成されている。また、第4図は電流指
令発生回路44の一例を示す回路構成図で、この回路は
り「段の加算器50に各相の加算器43a〜43cが接
続され、その後段にスピードコントローラ42a〜42
cが接続されている。
Then, according to these current command values, a predetermined current of the induction motor 2 is caused to flow by the current controller 42 using the PWM conversion circuit 45 and the variable frequency power converter 5.
Figure t53 is a circuit configuration diagram showing an example of the current vector calculation circuit 41, in which a calculation unit 47a calculates a command value for the rotation angle phase.
~47d, adders 48a, 48b, other arithmetic units 49
It is composed of a to 49d. FIG. 4 is a circuit configuration diagram showing an example of the current command generation circuit 44, in which adders 43a to 43c for each phase are connected to an adder 50 in the stage, and speed controllers 42a to 42 are connected to the adder 50 in the subsequent stage.
c is connected.

一方、−次′It流振幅指令iqs”/ids”からす
べり周波数を求める際、誘導電動機2の回転r−の温瓜
上”昇により二次抵抗R2が変化すると、1−へり周波
数指令値が正しく演算されない。
On the other hand, when calculating the slip frequency from the −th order 'It flow amplitude command iqs''/ids'', if the secondary resistance R2 changes due to an increase in the rotation r of the induction motor 2, the 1-edge frequency command value becomes It is not calculated correctly.

そこで本実施例では、吐出ガス温度(吐出管温度)tc
が誘導電動機2の回転子温度trに相関関係があること
を利用し、第5図に示す様な二次抵抗補正i51を設け
て一9二次抵抗R,,R2の推定値R,、R2を求める
。ここでR,、R2は次式から求められる。
Therefore, in this embodiment, the discharge gas temperature (discharge pipe temperature) tc
Utilizing the fact that there is a correlation with the rotor temperature tr of the induction motor 2, a secondary resistance correction i51 as shown in FIG. seek. Here, R,, R2 are obtained from the following equation.

ta:R,、R21i1定時の温度 tc′:吐出ガス温度 (吐出管温度) tPl・ j P2 :補止温度 第5図の一次おくオl要素52は、吐出ガス(冷媒)と
誘導電動機2の回転子との熱容量に差がある場合、吐出
ガス温度tcに一次遅れを設定するもので、熱容量の差
により時定aTは自由に設定される。また、修正回路4
6は同時にすべり周波数演算器32にも与えられ、−水
抵抗R5、二次抵抗R2の温度変化による誤差を受けな
い様な演算を行なう。従って、求められたすべり周波数
桁令値ω2と、ずベリ周波数推定値ω、は、すべり周波
数コントローラ37によりω2とω、が常に一致する様
に−・次層波数ω。が制御される。
ta: R,, R21i1 Regular temperature tc': Discharge gas temperature (discharge pipe temperature) tPl・j P2: Supplementary temperature The primary element 52 in FIG. If there is a difference in heat capacity with the rotor, a first-order lag is set in the discharge gas temperature tc, and the time constant aT can be freely set depending on the difference in heat capacity. In addition, correction circuit 4
6 is also applied to the slip frequency calculator 32 at the same time, and performs calculations that are free from errors due to temperature changes in the -water resistance R5 and secondary resistance R2. Therefore, the obtained slip frequency order value ω2 and the estimated slip frequency value ω are controlled by the slip frequency controller 37 so that ω2 and ω always match - the next layer wave number ω. is controlled.

尚、修正回路46に入力する温度センサ23の検出信号
は、上記実施例の様に直接入力しても良いが、高周波除
去フィルタを通して入力することが望ましい。また、温
度センサ23の検出温度に温度バイアスをかけ、その信
号を入力しても良い。
Although the detection signal of the temperature sensor 23 input to the correction circuit 46 may be directly input as in the above embodiment, it is preferable to input it through a high frequency removal filter. Alternatively, a temperature bias may be applied to the temperature detected by the temperature sensor 23, and the resulting signal may be input.

〔発明の効果) 以ト説明した様に、この発明によれば、電動圧縮機の一
次、二次a線抵抗の温度補正を、誘導電動機の回転を温
度と一定の相関関係を保つ圧縮機の吐出管温度或は吐出
ガス温度に基づいて誘導電動機の定数を修+E−するこ
とにより行う構成としたので、圧縮機の停止状態も含め
た全運転領域で、常に高い補正効果が得られるという効
果があり、電流ル制御回路の特性に基く電流制御偏差や
可変周波数電力変換装置の電流耐量、電圧耐晴などの制
限によって生じる制御系の飽和などの影響を受けず、温
度変化による二次巻線の抵抗変化の影響を常に正確に補
正することができるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, the temperature correction of the primary and secondary A-line resistances of the electric compressor is performed by adjusting the rotation of the induction motor to maintain a constant correlation with the temperature. The configuration is such that the constant of the induction motor is corrected based on the discharge pipe temperature or discharge gas temperature, so a high correction effect can always be obtained in the entire operating range, including when the compressor is stopped. The secondary winding is not affected by saturation of the control system caused by the current control deviation based on the characteristics of the current control circuit, the current withstand capacity of the variable frequency power converter, the voltage withstand limit, etc. This has the advantage that the influence of resistance changes can always be accurately corrected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による電動圧縮機を使用し
た空気調和機の冷媒回路図、第2図は第1図の可変周波
数電力変換装置及び制御回路の詳細を示すブロック図、
第3図は第2図の電流ベクトル演算回路の一例を示す回
路構成図、第4図は第2図の電流指令発生回路の一例を
示す回路構成図、第5図は第2図の修正回路の一例を示
す構成図、第6図は従来の圧縮機用誘導電動機の制御装
置を示すブロック図、第7図は誘導電動機の二次巻線抵
抗値の温度変化に対する従来の補正回路のブロック図で
ある。 l・・・圧縮機 2・・・誘導電動機 5・・・可変周波数電力変換装置 23・・・温度センサ 24・・・吐出管 32・・・すべり周波数演算器(検出手段)41・・・
電流ベクトル演算回路 44・・・電流指令発生回路 46・・・修正回路 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of an air conditioner using an electric compressor according to an embodiment of the present invention, and FIG. 2 is a block diagram showing details of the variable frequency power converter and control circuit of FIG. 1.
3 is a circuit configuration diagram showing an example of the current vector calculation circuit in FIG. 2, FIG. 4 is a circuit configuration diagram showing an example of the current command generation circuit in FIG. 2, and FIG. 5 is a modified circuit in FIG. 2. FIG. 6 is a block diagram showing a conventional control device for an induction motor for a compressor. FIG. 7 is a block diagram of a conventional correction circuit for temperature changes in the secondary winding resistance of an induction motor. It is. l...Compressor 2...Induction motor 5...Variable frequency power converter 23...Temperature sensor 24...Discharge pipe 32...Slip frequency calculator (detection means) 41...
Current vector calculation circuit 44...Current command generation circuit 46...Modification circuit Note that the same reference numerals in the drawings indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機の吐出ガス温度或は吐出管温度を検出する
温度センサと、圧縮機に接続された誘導電動機を可変周
波数で駆動する可変周波数電力変換装置と、前記誘導電
動機に供給する一次電流をトルク指令値及び磁束指令値
に従って該誘導電動機の定数に基いた関数関係を持って
ベクトル量として演算し少なくともすべり周波数或はす
べり角の何れかを出力する電流ベクトル演算回路と、誘
導電動機の回転速度或はすべり周波数を検出する検出手
段と、前記電流ベクトル演算回路及び検出手段の出力か
ら誘導電動機に供給すべき一次電流の指令値を演算する
電流指令発生回路とを備え、前記吐出ガス温度或は吐出
管温度に基づいて前記電流ベクトル演算回路、検出手段
などで演算に使用される誘導電動機の定数を修正する修
正回路を設けたことを特徴とする圧縮機用電動機の制御
装置。
(1) A temperature sensor that detects the discharge gas temperature or discharge pipe temperature of the compressor, a variable frequency power converter that drives an induction motor connected to the compressor at a variable frequency, and a primary current that supplies the induction motor. a current vector calculation circuit that calculates as a vector quantity with a functional relationship based on a constant of the induction motor according to a torque command value and a magnetic flux command value, and outputs at least either a slip frequency or a slip angle, and a rotation of the induction motor. The present invention includes a detection means for detecting a speed or a slip frequency, and a current command generation circuit for calculating a command value of a primary current to be supplied to an induction motor from the output of the current vector calculation circuit and the detection means. A control device for a compressor motor, comprising a correction circuit for correcting a constant of the induction motor used for calculation by the current vector calculation circuit, detection means, etc. based on the discharge pipe temperature.
(2)修正回路は、温度センサの検出信号を高周波除去
フィルタを通して入力することを特徴とする特許請求の
範囲第1項記載の圧縮機用電動機の制御装置。
(2) The control device for a compressor motor according to claim 1, wherein the correction circuit inputs the detection signal of the temperature sensor through a high frequency removal filter.
(3)修正回路は、温度センサの検出温度に温度バイア
スをかけた信号を入力することを特徴とする特許請求の
範囲第1項又は第2項記載の圧縮機用電動機の制御装置
(3) The control device for a compressor motor according to claim 1 or 2, wherein the correction circuit inputs a signal obtained by applying a temperature bias to the temperature detected by the temperature sensor.
JP62118208A 1987-05-15 1987-05-15 Motor controller for compressor Pending JPS63283492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62118208A JPS63283492A (en) 1987-05-15 1987-05-15 Motor controller for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118208A JPS63283492A (en) 1987-05-15 1987-05-15 Motor controller for compressor

Publications (1)

Publication Number Publication Date
JPS63283492A true JPS63283492A (en) 1988-11-21

Family

ID=14730877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118208A Pending JPS63283492A (en) 1987-05-15 1987-05-15 Motor controller for compressor

Country Status (1)

Country Link
JP (1) JPS63283492A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254591A (en) * 2002-03-04 2003-09-10 Mitsubishi Electric Corp Driving circuit of air conditioner and driving circuit of electrical equipment
JP2006121898A (en) * 2001-11-08 2006-05-11 Daikin Ind Ltd Motor drive method and its arrangement
US20140290239A1 (en) * 2013-04-02 2014-10-02 Aisan Kogyo Kabushiki Kaisha Exhaust gas recirculation apparatus for engine
US9062684B2 (en) 2005-02-02 2015-06-23 Edwards Limited Method of operating a pumping system
CN106322639A (en) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 Exhaust temperature frequency limiting protection and control method for air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713989A (en) * 1980-06-24 1982-01-25 Toyo Electric Mfg Co Ltd Motor controller
JPS60234489A (en) * 1984-05-02 1985-11-21 Mitsubishi Electric Corp Speed controller of elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713989A (en) * 1980-06-24 1982-01-25 Toyo Electric Mfg Co Ltd Motor controller
JPS60234489A (en) * 1984-05-02 1985-11-21 Mitsubishi Electric Corp Speed controller of elevator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121898A (en) * 2001-11-08 2006-05-11 Daikin Ind Ltd Motor drive method and its arrangement
JP2003254591A (en) * 2002-03-04 2003-09-10 Mitsubishi Electric Corp Driving circuit of air conditioner and driving circuit of electrical equipment
US9062684B2 (en) 2005-02-02 2015-06-23 Edwards Limited Method of operating a pumping system
US9903378B2 (en) 2005-02-02 2018-02-27 Edwards Limited Method of operating a pumping system
US20140290239A1 (en) * 2013-04-02 2014-10-02 Aisan Kogyo Kabushiki Kaisha Exhaust gas recirculation apparatus for engine
US9677485B2 (en) * 2013-04-02 2017-06-13 Aisan Kogyo Kabushiki Kaisha Exhaust gas recirculation apparatus for engine
CN106322639A (en) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 Exhaust temperature frequency limiting protection and control method for air conditioner

Similar Documents

Publication Publication Date Title
KR101238957B1 (en) Motor control device and electric equipment
JPS58123394A (en) Controller for ac motor
JPS6042712B2 (en) Asynchronous machine operating device
WO2004095684A1 (en) Motor controlling device, compressor, air conditioner and refrigerator
JP2012005199A (en) Motor controller, compressor and heat pump device
JPH0951700A (en) Controlling device of rotary electric machine
EP2448110A2 (en) Refrigerating apparatus and controller for permanent magnet synchronous motor
CN102983807B (en) Asynchronous motor rotor time constant on-line identification system and method
JPH03178589A (en) Controller of inverter
JPS63283492A (en) Motor controller for compressor
JP6473992B2 (en) Motor control device and generator control device
JPH0928099A (en) Vector controller of induction motor
JP6867931B2 (en) Motor control device and air conditioner
JP5178335B2 (en) AC motor control device
CN104641550B (en) Heat pump assembly, air conditioner and refrigeration machine
JP2008295229A (en) Motor simulation apparatus and motor simulation method
JP3775290B2 (en) Motor control device
CN106487289A (en) Device for detecting rotational position, air conditioner and position of rotation detection method
KR20120079375A (en) Apparatus and method for controlling compression motor, and refrigerating machine having the same
JP2018102120A (en) Induction machine controller and induction machine control method
JP2000342000A (en) Equipment and method for controlling induction motor
JP7237746B2 (en) Open winding motor drive device and refrigeration cycle device
JP3454409B2 (en) Induction motor control device
JP6836497B2 (en) Motor control device and air conditioner
CN105553363A (en) Counter electromotive force space vector-orientedinstantaneous torque control method for brushless direct current motor