JPS63282438A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPS63282438A JPS63282438A JP62116114A JP11611487A JPS63282438A JP S63282438 A JPS63282438 A JP S63282438A JP 62116114 A JP62116114 A JP 62116114A JP 11611487 A JP11611487 A JP 11611487A JP S63282438 A JPS63282438 A JP S63282438A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- capacity
- cooling capacity
- temperature
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 71
- 238000001816 cooling Methods 0.000 claims abstract description 59
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 238000004378 air conditioning Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、空気調和機、特に、居住者にとって常に快
適な環境を提供する空気調和機に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air conditioner, and particularly to an air conditioner that provides a comfortable environment for residents at all times.
(従来の技術)
第4図は、例えば、三に電機株式会社製インバータルー
ムエアコン(商品名君ケ峰)のカタログ(昭和62年2
月作成)に示されたような従来の空気調和機のイ8号系
統ブロック図である。1は冷暖房能力発生装置で、回転
速度を可変し得る圧縮機5などから構成されている。2
は、吸込み空気温度(室温)検知器、6は、設定温度等
を設定するト動人力部で、共に、冷暖房能力可変装置3
の入力回路7に接続されている。この演算手段3は中央
演算処理装置8、記憶装置9、入力回路7、出力回路1
0より構成されており、温度検知器2、手動人力部6か
らの入力データによって能力を算出し、出力回路lOか
ら冷暖房能力可変装置4へ発生すべき能力値を指示する
。(Prior art) Figure 4 shows, for example, a catalog of inverter room air conditioners (product name Kimigamine) manufactured by Sanni Denki Co., Ltd.
FIG. 8 is a block diagram of the A8 system of a conventional air conditioner as shown in Reference numeral 1 denotes a heating and cooling capacity generating device, which includes a compressor 5 whose rotation speed can be varied. 2
is a suction air temperature (room temperature) detector, 6 is a human power unit for setting the set temperature, etc., and both are a heating and cooling capacity variable device 3.
is connected to the input circuit 7 of. This calculation means 3 includes a central processing unit 8, a storage device 9, an input circuit 7, and an output circuit 1.
0, the capacity is calculated based on the input data from the temperature detector 2 and the manual human power unit 6, and the capacity value to be generated is instructed from the output circuit IO to the heating and cooling capacity variable device 4.
次に、上記空気調和機の動作につい′C1第5図の動作
シーケンスフローチャートを用いて、暖房運転の場合に
ついて説明する。Next, the operation of the air conditioner will be described in the case of heating operation using the operation sequence flowchart shown in FIG.
不図示の電源スィッチがオンすると、第5図に示すフロ
ーチャートがスタートする。ステップS1で所定の設定
温度Tsが設定される。ステップS2で温度検知器2か
ら人力された室温(=吸込み空気温度)Trが人力され
る。次にステップS3で設定温度Tsと吸込み空気温度
Trから温度差(dT)か算出され、ステップS4で吸
込み空気温度T「が設定温度Tsを越えていなければ、
ステップS5で温度差(dT)より、室温が設定温度に
近付きつつある時、徐々に暖房能力を低下させ、室温T
rが設定温度Tsを中心とする一定範囲より低くなった
とき、暖房能力を1−昇させるように、暖房能力を算出
する。When a power switch (not shown) is turned on, the flowchart shown in FIG. 5 starts. In step S1, a predetermined set temperature Ts is set. In step S2, the room temperature (=intake air temperature) Tr manually input from the temperature sensor 2 is input. Next, in step S3, the temperature difference (dT) is calculated from the set temperature Ts and the suction air temperature Tr, and in step S4, if the suction air temperature T' does not exceed the set temperature Ts,
In step S5, when the room temperature is approaching the set temperature based on the temperature difference (dT), the heating capacity is gradually reduced, and the room temperature T
The heating capacity is calculated so that the heating capacity is increased by 1 when r becomes lower than a certain range centered on the set temperature Ts.
算出された暖房能力に従い、ステップS6で冷暖ル1能
力可変装置4により能力の変更を行い、ステップS7で
圧縮機5の回転速度を制御し、冷房能力発生装置1の能
力を変更するよう作動する。According to the calculated heating capacity, the cooling/heating unit 1 capacity variable device 4 changes the capacity in step S6, controls the rotational speed of the compressor 5 in step S7, and operates to change the capacity of the cooling capacity generating device 1. .
しかし、ステップS4において室温Trが設定温度Ts
より高けわば、圧縮機5をオフし、暖房運転を停止する
。そして再び室温Trが設定温度Tsを下回ったときに
、暖房運転を再開する。このように室温Trがほぼ設定
温度Tsの近くに維持されるようにコントロールが行わ
れる。However, in step S4, the room temperature Tr changes to the set temperature Ts.
If the temperature is higher, the compressor 5 is turned off and the heating operation is stopped. Then, when the room temperature Tr falls below the set temperature Ts again, the heating operation is restarted. In this way, control is performed so that the room temperature Tr is maintained approximately near the set temperature Ts.
第6図に前述従来例で暖房運転を行った場合の暖房能力
の制御特性図を示す。FIG. 6 shows a control characteristic diagram of heating capacity when heating operation is performed in the conventional example.
従来空気調和機は、常に室温Trを検知しながらその室
温Trと設定温度Tsとの差により、差が大きければ冷
暖房能力を大きくし、差が小さければ冷房暖房俺力を小
さくするというように、冷暖房能力を算出し、冷暖房能
力可変装置4により能力を変更することにより、圧縮機
5の回転速度を変化させながら、室温Trが常に設定温
度Tsの近辺に保たれるように冷暖房運転を行っている
ため、一般的に立上り遅くなる。Conventional air conditioners constantly detect the room temperature Tr and use the difference between the room temperature Tr and the set temperature Ts to increase the heating and cooling capacity if the difference is large, and to reduce the heating and cooling capacity if the difference is small. By calculating the heating and cooling capacity and changing the capacity using the heating and cooling capacity variable device 4, heating and cooling operation is performed so that the room temperature Tr is always maintained near the set temperature Ts while changing the rotational speed of the compressor 5. Because of this, the start-up is generally slower.
また、例えば暖房運転の場合、室温Trが設定温度Ts
より高くなると、その時の暖房能力にかかわらず圧縮機
5をオフして暖房運転を停止する。しかしながら、一度
冷暖房運転を停止すると、再び冷暖房運転を開始するま
でに時間がかかるという機械的な制約があるため、上記
のような制御の場合、第6図に示すように、圧縮機5の
オンオフによる室内の温度変化が大きくなり、図中の斜
線部分では居住者は寒さを感じる。同様に、冷房運転に
関しても、上記に準するような現象を生ずる。In addition, for example, in the case of heating operation, the room temperature Tr is the set temperature Ts
When the temperature becomes higher, the compressor 5 is turned off and the heating operation is stopped regardless of the heating capacity at that time. However, there is a mechanical constraint that once the cooling/heating operation is stopped, it takes time to start the cooling/heating operation again, so in the case of the above control, as shown in FIG. As a result, the temperature inside the room changes greatly, and residents feel cold in the shaded area in the diagram. Similarly, a phenomenon similar to the above occurs also in cooling operation.
また、再起動時に比較的太きな冷暖房能力が必要であり
、省エネルギー的にも機器の寿命上からも圧縮4i15
のオンオフは好ましくないという問題点があった。In addition, a relatively large heating and cooling capacity is required when restarting, and compression 4i15 is required from the standpoint of energy saving and equipment life.
There was a problem in that turning on and off is not desirable.
この発明は、以上のような従来例の問題点を解決するた
めになされたもので、圧縮機がオフする機会を最小限と
し、かつ室内の温度変化を少くして、居住者に快適な環
境を提供すると共に、省エネルギー的にも優れた空気調
整機の提供を目的としている。This invention was made in order to solve the above-mentioned problems of the conventional method.It minimizes the chances of the compressor turning off, reduces indoor temperature changes, and creates a comfortable environment for the occupants. The purpose of the present invention is to provide an air conditioner that is both energy efficient and energy efficient.
このため、この発明においては、冷暖房能力を可変し得
る冷暖房能力発生装置と、吸込み空気温度を検知するた
めの温度検出手段と、該検出手段の出力により冷暖房能
力を決定するタイマ機構を備えた冷暖房能力演算手段と
を備え、該演算手段の出力により、冷暖房能力可変手段
を用いて、前記冷暖房能力発生装置の能力を変化させる
よう構成することにより、前記目的を達成しようとする
ものである。For this reason, the present invention provides a heating and cooling system equipped with a heating and cooling capacity generating device that can vary the heating and cooling capacity, a temperature detecting means for detecting the intake air temperature, and a timer mechanism that determines the heating and cooling capacity based on the output of the detecting means. The above object is achieved by configuring the heating and cooling capacity generator to change the capacity of the heating and cooling capacity generating device using a heating and cooling capacity variable means based on the output of the calculating unit.
(作用〕
以上のような構成により、この空気調和機は、冷房/暖
房中に空気調和機がオフした後の再起動の際圧縮機が最
低回転速度でオフし、ある一定時間後の吸込み温度を検
知し、この室温変化状態によりできるだけ低い回転速度
で運転を行うので、室内温度の変動が少く、かつ経済的
な運転が可能となる。(Function) With the above configuration, this air conditioner turns off the compressor at the lowest rotational speed when restarting after the air conditioner is turned off during cooling/heating, and the suction temperature after a certain period of time is is detected and the engine is operated at the lowest possible rotational speed depending on the state of the room temperature change, so that fluctuations in indoor temperature are small and economical operation is possible.
(実施例〕 以上に、この発明を実施例に基づいて説明する。(Example〕 The present invention will be described above based on examples.
(構成)
第1図は、この発明による冷暖房機の一実施例を示す(
Z号系統ブロック図である。(Structure) FIG. 1 shows an embodiment of the air conditioner according to the present invention (
It is a block diagram of Z system.
図において、1は冷暖房能力を発生し、その能力をり変
し得る冷暖房能力発生装置、2は吸込み空気温度(室温
)検知器、3は冷暖房能力演算手段、4は冷暖房能力q
変手段、5は、回転速度を変化できる圧縮機、6は手動
人力部である。冷暖房能力演算手段3の内部には、入力
回路7、中央処理装置8、記憶装置9、出力回路10よ
りなり、所定経過時間を設定し得るタイマ11を備えて
いる。入力回路7には、設定温度等を設定する手段人力
部6と温度検出器2により検知された吸込み空気温度が
人力される。出力回路10からの゛出力により、冷暖房
能力可変装置4は冷暖房能力発生装置1内の圧縮機5の
回転速度を変化させて、冷暖房能力発生装置1の能力を
変化させる。In the figure, 1 is a heating and cooling capacity generating device that generates heating and cooling capacity and can change the capacity, 2 is a suction air temperature (room temperature) detector, 3 is a heating and cooling capacity calculation means, and 4 is a heating and cooling capacity q.
The variable means 5 is a compressor that can change the rotation speed, and 6 is a manual power section. Inside the heating and cooling capacity calculation means 3, a timer 11 is provided, which is composed of an input circuit 7, a central processing unit 8, a storage device 9, and an output circuit 10, and is capable of setting a predetermined elapsed time. The input circuit 7 receives the intake air temperature detected by the human input unit 6 and the temperature detector 2 for setting the set temperature and the like. Based on the output from the output circuit 10, the heating and cooling capacity variable device 4 changes the rotational speed of the compressor 5 in the heating and cooling capacity generating apparatus 1, thereby changing the capacity of the heating and cooling capacity generating apparatus 1.
(動作)
次に、上記実施例の動作を、暖房運転の場合について、
第2.3図に基づいて説明する。第2図は、冷暖房能力
演算子段3に記憶された制御アルゴリズムの動作シーケ
ンスフローチャート、第3図は、その制御特性図である
。(Operation) Next, regarding the operation of the above embodiment in heating operation,
This will be explained based on FIG. 2.3. FIG. 2 is an operation sequence flowchart of the control algorithm stored in the heating and cooling capacity operator stage 3, and FIG. 3 is a control characteristic diagram thereof.
まず電源をオンすると、第2図に示すフローチャートが
スタートする。ステップS1で設定温度Aが設定される
。ステップS2で暖房運転中に空気調和機がオンした場
合、ステップS3吸込み空気温度Ttlと設定下限温度
Bとを比較し、吸込み空気温度Triが設定下限温度B
より高ければ、ステップS2に戻って、その状態を継続
し、室温すなわち吸込み空気温度Triが設定下限温度
B以下になれば、ステップS4でこの温度Triを記憶
し、ステップ5で冷暖房能力可変装M1で最低回転速度
を設定し、ステップS6で最低回転速度で圧縮機5を運
転し、ステップS7において、予めタイマ11で設定さ
れた所定時間To経過後、ステップS8で室温すなわち
吸込み温度Tr2を新たに検知し、Tr2がTriより
低ければ、冷暖房能力可変装!t4で回転速度を上昇す
るよう設定し、ステップ311でこの設定しなおした回
転速度で圧縮機5を運転する。またステップS9で、T
r2がTriより高いか変化がなければ、最低回転速度
のままで空気調和機をオンし続ける。First, when the power is turned on, the flowchart shown in FIG. 2 starts. A set temperature A is set in step S1. When the air conditioner is turned on during heating operation in step S2, the suction air temperature Ttl and the set lower limit temperature B are compared in step S3, and the suction air temperature Tri is the set lower limit temperature B.
If the temperature is higher, the process returns to step S2 and continues in that state. If the room temperature, that is, the intake air temperature Tri, falls below the set lower limit temperature B, this temperature Tri is stored in step S4, and the heating and cooling capacity variable device M1 is changed in step S5. The minimum rotational speed is set in step S6, the compressor 5 is operated at the minimum rotational speed in step S6, and after the predetermined time To set in advance by the timer 11 has elapsed in step S7, the room temperature, that is, the suction temperature Tr2 is newly set in step S8. If it is detected and Tr2 is lower than Tri, the heating and cooling capacity variable system is installed! At t4, the rotation speed is set to increase, and at step 311, the compressor 5 is operated at the newly set rotation speed. Also, in step S9, T
If r2 is higher than Tri or there is no change, the air conditioner continues to be turned on at the lowest rotational speed.
第3図は、本実施例に基づき暖房運転をさせた場合の制
御特性図であり、暖房運転中、設定の上下限の設定温度
A/Bの範囲内で空気調和機がオンして吸込み空気温度
Triが徐々に低下し、設定下限温度Bに到達する。Fig. 3 is a control characteristic diagram when heating operation is performed based on this embodiment. The temperature Tri gradually decreases and reaches the set lower limit temperature B.
このとき冷暖房能力可変装置4により最低回転速度に設
定し、空気調和機をオンする。これより、タイマ11は
設定された所定時間経過後、温度検知器2により検知し
た吸込み空気温度Tr2が不変ないし上昇に転じていれ
ば、この最低回転速度で運転する。一方、吸込み空気温
度Tr2が設定下限温度Bより、さらに低下していれば
、回転速度を高く設定し直し、この回転速度で運転する
。このようにして、できるだけ低い回転速度で経済的に
運転する。At this time, the heating and cooling capacity variable device 4 is set to the lowest rotational speed, and the air conditioner is turned on. From this, the timer 11 operates at the minimum rotational speed if the intake air temperature Tr2 detected by the temperature detector 2 remains unchanged or increases after a predetermined time has elapsed. On the other hand, if the suction air temperature Tr2 is further lower than the set lower limit temperature B, the rotational speed is reset to a higher value and the engine is operated at this rotational speed. In this way, it operates economically at as low a rotational speed as possible.
以上は、暖房運転の場合について述べたが、冷房運転の
場合も同様で、上記に準するため、詳細説明は省略する
。The above description has been made regarding the heating operation, but the same applies to the cooling operation and the same applies to the above, so a detailed explanation will be omitted.
以上、説明したように、この発明によれば、冷房・暖房
中に空気調和機がオフした後の再起動の際、最低回転速
度でオンし、所定時間後の吸込み空気温度を検知し、こ
の室温の変化状態により、できるだけ低き回転速度で運
転するように構成したため、効率のよい経済的な運転を
実現することができるようになった。As explained above, according to the present invention, when the air conditioner is restarted after being turned off during cooling or heating, it is turned on at the lowest rotational speed, and the intake air temperature is detected after a predetermined period of time. Since the system is configured to operate at the lowest possible rotational speed depending on changes in room temperature, efficient and economical operation can now be achieved.
第1図は、この発明による空気調和機の一実施例を示す
信号系統ブロック図、第2図は、第1図の動作を示すシ
ーケンスフローチャート、第3図は、その制御特性図、
第4図は、従来の空気調和機の信号系統ブロー2り図、
第5図は、第、4図の動作を示すシーケンスフローチャ
ート、第6図は、その制御特性図である。各図において
、同一符号は、同一または相当構成要素を示す。
1・・・冷暖房能力発生装置
2・・・温度検知器
3・・・冷暖房使方演算手段
4・・・冷暖房能力可変装置
5・・・圧縮機
11・・・タイマFIG. 1 is a signal system block diagram showing an embodiment of an air conditioner according to the present invention, FIG. 2 is a sequence flowchart showing the operation of FIG. 1, and FIG. 3 is a control characteristic diagram thereof.
Figure 4 is a signal system blow diagram of a conventional air conditioner.
FIG. 5 is a sequence flowchart showing the operations of FIGS. and 4, and FIG. 6 is a control characteristic diagram thereof. In each figure, the same reference numerals indicate the same or equivalent components. 1... Air conditioning capacity generator 2... Temperature detector 3... Cooling/heating usage calculation means 4... Air conditioning capacity variable device 5... Compressor 11... Timer
Claims (1)
房能力発生装置と、吸込み空気温度を検知するための温
度検出手段と、該温度検出手段の出力により、冷暖房能
力を決定するタイマ手段を備えた冷暖房能力演算手段と
、該冷暖房能力演算手段からの出力により、前記冷暖房
能力発生装置の圧縮機の回転速度を変化させて、該冷暖
房能力発生装置の能力を変化させるよう構成した冷暖房
能力可変手段とを備えたことを特徴とする空気調和機。 2) 前記冷暖房能力演算手段は、暖房運転時に、空気
調和機がオフして、吸込み空気温度が設定下限温度に到
達したとき、前記冷暖房能力可変手段により暖房能力発
生装置の能力を最低能力にしてオンし、所定時間後、前
記吸込み空気温度が不変ないし上昇していれば、そのま
まの能力状態で空気調和機をオンを継続し、該温度が下
降していれば該冷暖房能力可変手段により、該暖房能力
発生装置の能力を徐々に上昇させるよう構成したもので
あることを特徴とする特許請求の範囲第1項記載の空気
調和機。 3) 前記冷暖房能力演算手段は、冷房運転時に、空気
調和機がオフして、吸込み空気温度が設定上限温度Aに
到達したとき、前記冷暖房能力可変手段により冷房能力
発生装置の能力を最低能力にしてオンし、所定時間後、
前記吸込み空気温度が不変ないし下降していれば、その
ままの能力状態で空気調和機をオンを継続し、該温度が
上昇していれば前記冷暖房能力可変手段により冷房能力
発生装置の能力を徐々に上昇させるよう構成したもので
あることを特徴とする特許請求の範囲第1項記載の空気
調和機。[Scope of Claims] 1) A heating and cooling capacity generating device that generates heating and cooling capacity and can vary the capacity, a temperature detection means for detecting the temperature of the intake air, and an output of the temperature detection means to increase the heating and cooling capacity. A heating and cooling capacity calculating means including a timer means for determining the heating and cooling capacity, and an output from the heating and cooling capacity calculating means to change the rotational speed of the compressor of the heating and cooling capacity generating device to change the capacity of the heating and cooling capacity generating device. An air conditioner characterized by comprising: a cooling/heating capacity variable means configured as shown in FIG. 2) The heating and cooling capacity calculation means sets the heating and cooling capacity generation device to the minimum capacity by the heating and cooling capacity variable means when the air conditioner is turned off and the intake air temperature reaches the set lower limit temperature during heating operation. If the intake air temperature remains unchanged or increases after a predetermined period of time, the air conditioner continues to be turned on with the same capacity, and if the temperature decreases, the heating and cooling capacity variable means The air conditioner according to claim 1, wherein the air conditioner is configured to gradually increase the capacity of the heating capacity generating device. 3) The heating and cooling capacity calculating means sets the capacity of the cooling capacity generating device to the minimum capacity by the heating and cooling capacity variable means when the air conditioner is turned off and the intake air temperature reaches the set upper limit temperature A during cooling operation. and then turn it on after the specified time.
If the intake air temperature remains unchanged or is decreasing, the air conditioner is continued to be turned on at the same capacity, and if the temperature is rising, the capacity of the cooling capacity generating device is gradually increased by the cooling/heating capacity variable means. The air conditioner according to claim 1, wherein the air conditioner is configured to be raised.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62116114A JPS63282438A (en) | 1987-05-13 | 1987-05-13 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62116114A JPS63282438A (en) | 1987-05-13 | 1987-05-13 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63282438A true JPS63282438A (en) | 1988-11-18 |
Family
ID=14679040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62116114A Pending JPS63282438A (en) | 1987-05-13 | 1987-05-13 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63282438A (en) |
-
1987
- 1987-05-13 JP JP62116114A patent/JPS63282438A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1074797B1 (en) | Operation control method for air conditioning system and air conditioning system | |
JPS60142140A (en) | Air conditioner | |
JPS63282438A (en) | Air conditioner | |
JPH05322279A (en) | Control device for air conditioner | |
JPS61208459A (en) | Room heating operation of air-conditioning machine | |
JPS59221547A (en) | Air conditioner | |
JPS624618B2 (en) | ||
JPH0599472A (en) | Controlling method of air-conditioning machine | |
JP3086644B2 (en) | Air conditioner | |
JPS63279040A (en) | Air conditioner | |
JPH06159773A (en) | Controller for air conditioner | |
JPS6080046A (en) | Air-conditioning device | |
JPS6141837A (en) | Temperature control device for air conditioner | |
JPS63282443A (en) | Air conditioner | |
JPH062918A (en) | Controller for air conditioner | |
JPS63282437A (en) | Air conditioner | |
JPH04350438A (en) | Controller for air conditioner | |
JPS6338624B2 (en) | ||
JPS63282442A (en) | Air conditioner | |
JPS6338625B2 (en) | ||
JPS63282439A (en) | Air conditioner | |
KR100206757B1 (en) | Heating operating control method of airconditioner | |
JPS6155542A (en) | Control device for air conditioner | |
JPH03233242A (en) | Air conditioner | |
JPH0567855B2 (en) |