JPS63282109A - Production of silica fine powder particle - Google Patents

Production of silica fine powder particle

Info

Publication number
JPS63282109A
JPS63282109A JP11761287A JP11761287A JPS63282109A JP S63282109 A JPS63282109 A JP S63282109A JP 11761287 A JP11761287 A JP 11761287A JP 11761287 A JP11761287 A JP 11761287A JP S63282109 A JPS63282109 A JP S63282109A
Authority
JP
Japan
Prior art keywords
silica
fine powder
powder particle
silica fine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11761287A
Other languages
Japanese (ja)
Other versions
JPH0460053B2 (en
Inventor
Teijiro Matsumoto
松本 悌二郎
Takasuke Araki
荒木 隆祐
Masamichi Hayashi
正道 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP11761287A priority Critical patent/JPS63282109A/en
Publication of JPS63282109A publication Critical patent/JPS63282109A/en
Publication of JPH0460053B2 publication Critical patent/JPH0460053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid

Abstract

PURPOSE:To inexpensively produce edgeless silica fine powder especially suitable for making a sealing synthetic resin composition for semiconductor element by scouring silica fine powder particle with strongly pushing one to another and by making edgy powder particle round. CONSTITUTION:Crystalline silica or amorphous silica fine powder particle is scoured without breaking its body while strongly pushing one to another from the outside e.g. with rotary roller in the presence of aq. medium to make edgy powder particle round. Liquid substance such as water, alcohols, mineral oil, etc., can be advantageously used as the aq. medium, but water alone or medium dissolving alcohols such as ethanol, methanol, etc., in water can be advantageously and industrially used, because of the cost and easiness of handling in the procedure and separation after the procedure. Roller mill is given as an equipment suitable for the titled production.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は角のまるまったシリカ微粉末粒子の製造方法、
特に半導体素子封止用合成樹脂組成物の充填剤に適した
シリカ微粉末粒子の製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for producing fine silica powder particles with rounded corners;
In particular, the present invention relates to a method for producing fine silica powder particles suitable as a filler for synthetic resin compositions for encapsulating semiconductor devices.

(従来の技術)(発明が解決しようとする問題点)半導
体素子はそれを外部環境から保護するためにセラミック
パッケージまたは樹脂などで封止されているが、この封
止材料についてはコスト、生産性等の面から無機充填剤
を含有させた合成樹脂組成物によるものが普及している
(Prior Art) (Problem to be Solved by the Invention) Semiconductor elements are sealed with ceramic packages or resin to protect them from the external environment. For these reasons, synthetic resin compositions containing inorganic fillers have become popular.

この合成樹脂組成物は、エポキシ樹脂などの合成樹脂と
シリカなどの無機充填剤とから構成されているが、これ
らの組成物は熱膨張係数が小さく、良熱伝導性、低透湿
性で機械的特性等にすぐれ、しかも低コストのものとす
るということから、この無機充填剤をその成形性の許す
限り、できるだけ多量に配合する必要がある。
This synthetic resin composition is composed of a synthetic resin such as an epoxy resin and an inorganic filler such as silica, but these compositions have a small coefficient of thermal expansion, good thermal conductivity, low moisture permeability, and mechanical properties. In order to have excellent properties and low cost, it is necessary to incorporate this inorganic filler in as much amount as possible, as long as its moldability allows.

特に無機充填剤としては、シリカ系充填剤が最適とされ
、はとんどの合成樹脂封止充填剤にこれが利用されてい
る。シリカ系充填剤には結晶タイプ、非結晶タイプの2
種類のものがある。結晶タイプのシリカは高純度の天然
の白硅石や水晶を粉砕精製して製造する。このタイプは
熱伝導性に優れている。
In particular, silica-based fillers are considered to be most suitable as inorganic fillers, and are used in most synthetic resin sealing fillers. There are two types of silica fillers: crystalline and amorphous.
There are different types. Crystal type silica is manufactured by crushing and refining highly pure natural white silica or crystal. This type has excellent thermal conductivity.

非結晶タイプのシリカには結晶シリカを高温で溶融して
製造する溶融シリカ、乾式や湿式の合成シリカがある。
Amorphous silica includes fused silica, which is produced by melting crystalline silica at high temperatures, and dry and wet synthetic silica.

この溶融非結晶シリカは熱膨張特性が優れているため、
工業的に使用される量も多い。しかしながら、半導体素
子の集積化が進むにつれ熱伝導性を重視する傾向にあり
、結晶シリカへのニーズも増加している。
This fused amorphous silica has excellent thermal expansion properties, so
It is also used in large quantities industrially. However, as the integration of semiconductor devices progresses, there is a tendency to emphasize thermal conductivity, and the need for crystalline silica is also increasing.

一般に充填剤として使用されている微粉末シリカ粒子は
、通常の破砕工程で得られたものであり、粒子は第2図
または第4図の写真に示すように角をもっている。粒子
が角をもっていると、樹脂と混ぜ合わせて半導体素子を
封止する際に粘度が上、昇し、金型の摩耗が大きく、作
業性を低下させるばかりでなく、金型の摩耗による不純
物の混入、などの悪影響があり、従って充填剤の混合量
を大きくできないので性能の向上に限界があった。
The finely divided silica particles commonly used as fillers are obtained through a conventional crushing process, and the particles have corners as shown in the photographs in FIG. 2 or 4. If the particles have corners, the viscosity will increase when mixed with resin and encapsulated semiconductor elements, causing a lot of wear on the mold, not only reducing workability but also causing impurities due to wear on the mold. There are adverse effects such as contamination, and therefore, the amount of filler mixed cannot be increased, which limits the ability to improve performance.

非結晶タイプの溶融シリカについては、球状のシリカの
製造が試みられている。例えば、特開昭58−1456
13号公報または、特開昭61−1)8131号公報に
よれば結晶微粉末シリカをガス流と共にノズルから噴出
させ、粒子の分散、溶融、冷却等を適当な条件に制御し
て球状の非結晶微粉末シリカ粒子をつくる。しかしなが
ら、この方法はコストが高く一部の特殊な場合の使用用
途に限られている。
Regarding amorphous type fused silica, attempts have been made to produce spherical silica. For example, JP-A-58-1456
According to Publication No. 13 or Japanese Unexamined Patent Publication No. 1981-8131, finely crystalline powdered silica is jetted out from a nozzle along with a gas flow, and particle dispersion, melting, cooling, etc. are controlled under appropriate conditions to form spherical non-silica particles. Create crystalline fine powder silica particles. However, this method is expensive and is limited to use in some special cases.

一方、結晶タイプの球状シリカの製造例は、現在まで提
案されていない。
On the other hand, no example of producing crystalline type spherical silica has been proposed to date.

(問題点を解決するための手段) 本発明者等は、角のないシリカ微粉末粒子の低コスト製
造法について鋭意検討を続けた結果、結晶シリカまたは
非結晶シリカ微粉末粒子に外部から廻転ローラー等で押
圧力を加えながら水系媒体存在下で微粉末の微粒子同志
を互いにこすり合わせれば工業的に有利に、角のあるシ
リカ微粒子に丸味を帯びさせることができることを見出
し、本発明に至ったものである。
(Means for Solving the Problems) As a result of intensive study on a low-cost manufacturing method for silica fine powder particles having no corners, the present inventors have discovered that crystalline silica or amorphous silica fine powder particles are heated by a rotating roller from the outside. It has been discovered that angular silica fine particles can be rounded industrially advantageously by rubbing the fine particles of fine powder against each other in the presence of an aqueous medium while applying a pressing force, etc., and this has led to the present invention. It is.

本発明者らは、ある水圧下で波の力により砂の粒子同志
がこすり合わされて角の部分が磨砕し、真球状に近い形
状となる鳴き砂の生成過程に着目し、シリカ微粉末粒子
同志をこすり合わせれば角のとれた丸まった微粒子がで
きると考え鋭意検討を続けた結果、シリカ微粉末に外部
から適当な押圧力を加えることと、この押圧力を効果的
にシリカ微粒子に到達させるため水系媒体を加えれば非
常に効果的であることを知った。
The present inventors focused on the process of generating singing sand, in which the sand particles are rubbed together by the force of waves under a certain water pressure, and the corners are ground, resulting in a shape close to a perfect sphere. We thought that we could create fine particles with rounded edges by rubbing them together, and as a result of our extensive research, we decided to apply an appropriate pressing force to the silica fine powder from the outside, and to make sure that this pressing force effectively reaches the silica fine particles. Therefore, I learned that adding an aqueous medium is very effective.

本発明に使用する水系媒体としてはシリカ微粒子同志が
相互に作用しあい、外部から粉体への圧力が伝達し易い
液体であればよく、水、アルコール類、鉱油等の液状物
質が有利に使用できるが、媒体のコスト、操作時の取扱
い易さ、操作後の分離し易さなどから水単独または水に
エタノール。
The aqueous medium used in the present invention may be any liquid that allows fine silica particles to interact with each other and easily transmits pressure from the outside to the powder, and liquid substances such as water, alcohols, and mineral oil can be advantageously used. However, due to the cost of the medium, ease of handling during operation, and ease of separation after operation, water alone or water and ethanol are used.

メタノール等のアルコール類を溶かした媒体が工業的に
最も有利に使用できる。
A medium in which an alcohol such as methanol is dissolved can be most advantageously used industrially.

本発明を実施する場合、本発明方法に適した機器として
は、先ずローラーミルがあげられる。ローラーミルはロ
ーグーによって廻転駆動される粉砕ボウルと、この粉砕
ボウル中で廻転軌道上を回転する少なくとも二本の粉砕
ローラーを有しており、ローラーを被粉砕物に押圧する
ために、空気圧、油圧などの圧を加圧できるようになっ
ている。
When carrying out the present invention, equipment suitable for the method of the present invention is firstly a roller mill. A roller mill has a grinding bowl rotated by a roller, and at least two grinding rollers rotating on a rotating track inside the grinding bowl. It is possible to apply pressure such as

ローラーミルを使用して本発明を実施する場合、もし、
水系媒体を加えず、微粉体のみをローラーミルに装入し
て角とりを行えば、微粉体がローラーから逃げてしまい
効率が低い。適量の水などの媒体を加えるとローラーの
押圧力の粉体への伝達が円滑に行き、効率よく角とり操
作が実施できる。
When carrying out the invention using a roller mill, if
If only the fine powder is charged into a roller mill and rounded without adding an aqueous medium, the fine powder will escape from the roller and the efficiency will be low. Adding an appropriate amount of a medium such as water allows the pressing force of the roller to be smoothly transmitted to the powder, allowing efficient cornering operations.

本発明は、結晶シリカ微粉末粒子にも非結晶シリカ微粉
末粒子にも同様に有利に適用できる。
The present invention can be applied equally advantageously to crystalline and amorphous silica fine powder particles.

本発明で原料として用いるシリカ微粉末の大きさハ通常
500ミクロン以下であり、このような大きさの微粉末
をローラーミルで角とり操作を実施する場合、加える水
系媒体の液量としては、0.5〜18%、好ましくは3
〜13%が適当である。
The size of the fine silica powder used as a raw material in the present invention is usually 500 microns or less, and when the fine powder of such a size is rounded with a roller mill, the amount of the aqueous medium to be added is 0. .5-18%, preferably 3
~13% is suitable.

加える量が0.5%より少ない場合、ローラーの押圧力
が充分にシリカ微粉末に到達せず、所謂ローラーから逃
げるような状態となり粒子同志の摩擦力が働かず効果が
劣ってくる。また加える液量が18%より多くなると物
体が団子状になったりあるいはスラリー状になるため角
とり操作がうまく行かなくなる。
If the amount added is less than 0.5%, the pressing force of the roller will not reach the fine silica powder sufficiently, and the powder will escape from the roller, so that the frictional force between the particles will not work and the effect will be degraded. Furthermore, if the amount of liquid added is more than 18%, the object will become lump-like or slurry-like, making the cornering operation difficult.

また、外部からローラーに加える押圧力であるが、ad
により押圧の仕方が異なるので数値的に限定できないが
、押圧力が余り強い場合、角とりのみならず粒子の体積
破砕がおき、粉砕が進行し角とりが阻害される。また、
余り弱い場合、角とりの効率が低下してくるので、機器
、原料、品種(結晶質、非結晶)等に応じて、適切に決
めればよい。また、数n以下の粗砕品を直接この角とり
工程に送って、所望粒度への粉砕と同時に角とり操作を
おこなうこともできる。
Also, the pressing force applied to the roller from the outside is ad
Although it cannot be numerically limited because the method of pressing differs depending on the type of pressure, if the pressing force is too strong, not only the corners are removed but also the volume of the particles is crushed, the crushing progresses and the cornering is inhibited. Also,
If it is too weak, the efficiency of cornering will decrease, so it should be determined appropriately depending on the equipment, raw materials, type (crystalline, amorphous), etc. Moreover, it is also possible to directly send a coarsely crushed product of several nanometers or less to this squaring process, and perform the squaring operation at the same time as the crushing to a desired particle size.

本発明を実施する場合の一例について第1図を用いて説
明する。
An example of implementing the present invention will be explained using FIG. 1.

先ず、■の高純度の硅石塊または高純度溶融シリカイン
ゴット塊を■のショークラッシャー等の粉砕器を用いて
粗粉砕する。この場合汚染防止のため粉砕器のライナー
は高純度のアルミナ等で製作するのが好ましい。次いで
■のロールクラッシャー等で更に粗粉砕する。この場合
も同様にロール等は高純度のアルミナ等で製作すればよ
い。
First, the high-purity silica block or high-purity fused silica ingot block (2) is coarsely crushed using a crusher such as a show crusher (2). In this case, to prevent contamination, the crusher liner is preferably made of high-purity alumina or the like. Next, the mixture is further coarsely crushed using a roll crusher (2). In this case as well, the rolls etc. may be made of high purity alumina or the like.

通常■の出口でシリカは数1)以下に粉砕さているが、
更に通常これを■のボールミル等で微粉砕し、500ミ
クロン以下のシリカ微粉末を得る。
Normally, at the exit of ■, the silica is crushed to less than the number 1),
Further, this is usually finely pulverized using a ball mill or the like (3) to obtain a fine silica powder of 500 microns or less.

ここで得られた微粉末シリカを■のローラーミル等の本
発明の方式の角とり工程へ送る。ローラーミルを使用す
る場合、廻転ボウル、ローラー等のシリカ微粉末粒子と
接触する部分は、セラミックスを用いるか、ポリウレタ
ン樹脂等でライニングして摩損による汚染を防止する。
The finely powdered silica thus obtained is sent to a cornering process according to the present invention, such as a roller mill. When using a roller mill, parts such as rotating bowls and rollers that come into contact with fine silica powder particles are made of ceramic or lined with polyurethane resin or the like to prevent contamination due to abrasion.

場合によっては■のロールクラ7シヤー等の粗粉砕品を
直接■の角とりの工程へ送り、操作条件を適当に制御す
ることにより、微粉砕と角とりの操作を同時に実施する
こともできる。角とり操作を終ったシリカ微粉末は、■
の乾燥工程に股くられ乾燥され製品とされる。
In some cases, by sending the coarsely pulverized product such as the roll crusher 7 shear (2) directly to the chamfering step (2) and appropriately controlling the operating conditions, the fine pulverization and chamfering operations can be carried out simultaneously. The fine silica powder after the corner removal operation is
The product is dried through the drying process.

本発明を実施する場合、通常のローラーミル等がそのま
ま、あるいはシリカ微粉末と接触する部分をセラミック
ス材料にするか、またはポリウレタン樹脂ライニングす
るだけのわずかな改造のみで使用できるので有利であり
、またランニングコストも殆んどが廻転等の機械的動力
費であり非常に低い。
When carrying out the present invention, it is advantageous that an ordinary roller mill or the like can be used as is or with only a slight modification such as making the part that comes into contact with the fine silica powder a ceramic material or lining it with a polyurethane resin. Running costs are also very low, as most of them are mechanical power costs such as rotation.

本発明の方法は、バンチ操作、あるいは連続操作の何れ
でも実施することができる。
The method of the invention can be carried out either in a bunch operation or in a continuous operation.

(実施例) 以下実施例により本発明を具体的に説明する。(Example) The present invention will be specifically explained below using Examples.

実施例1 0−ラーミル(MPV−Q、5型 松本鋳造鉄工断裂)
にあらかじめボールミルにより微粉砕した平均粒子径2
3.2ミクロンの結晶シリカ500gを仕込み、同時に
水60I1)7を添加した。ローラーの押圧力40 k
g/cm (線圧)、ローラーと底板とのクリアランス
3fi、底板の回転数を42rp+*に設定して、1時
間処理した結果、えられた処理物の平均粒子径は19.
4ミクロンであった。その電子顕微鏡写真を原料第2図
(100倍)と比較して第3図(200倍)に示したが
原料に比べて処理したシリカ粒子形状はかなり丸味をお
びていた。
Example 1 0-lar mill (MPV-Q, type 5 Matsumoto casting ironwork fracture)
Average particle size 2 finely pulverized using a ball mill in advance
500 g of 3.2 micron crystalline silica was charged and at the same time 60I1)7 of water was added. Roller pressing force 40k
g/cm (linear pressure), the clearance between the roller and the bottom plate is 3fi, and the rotation speed of the bottom plate is set to 42rp+*.As a result of processing for 1 hour, the average particle diameter of the processed material obtained is 19.
It was 4 microns. The electron micrographs are shown in Figure 3 (200x magnification) compared with Figure 2 (100x magnification) of the raw material, and the shape of the treated silica particles was considerably rounder than that of the raw material.

実施例2 0−ラーミル(M P V −0,5型 松本鋳造鉄工
断裂)にあらかじめ、ボールミルにより微粉砕した平均
粒子径24.6ミクロンの破砕状溶融シリカ500gを
仕込み、同時に水60−を添加した。
Example 2 500 g of crushed fused silica with an average particle diameter of 24.6 microns finely pulverized by a ball mill was charged in advance into a 0-lar mill (MPV-0,5 type Matsumoto Cast Iron Works), and 60 g of water was added at the same time. did.

ローラーの押圧力20kg/口(線圧)、ローラーと底
板とのクリアランス3■■、底板の回転数42rpmに
設定して、1時間処理した。得られた処理物の平均粒子
径は18.6ミクロンであり、その電子顕微鏡写真を原
料第4図(100倍)と比較して第5図(250倍)に
示したが原料シリカに比べて処理したシリカの粒子形状
はかなり丸味をおびていた。
The treatment was carried out for 1 hour at a roller pressing force of 20 kg/port (linear pressure), a clearance between the roller and the bottom plate of 3.5 mm, and a rotation speed of the bottom plate of 42 rpm. The average particle diameter of the obtained treated product was 18.6 microns, and its electron micrographs are shown in Figure 5 (250x magnification) compared with Figure 4 (100x magnification) of the raw material, but compared to the raw material silica. The particle shape of the treated silica was considerably rounded.

実施例3− 水60−にかえて50%エタノール水溶液60− を用
いた以外、全〈実施例1と同様の処理を行った結果、得
られた処理物の平均粒子径は19.7ミクロンであり、
その電子顕微鏡写真も全く第2図と同じで、原料に比べ
て処理品はかなり丸味を帯びていた。
Example 3 - The same treatment as in Example 1 was carried out except that 50% ethanol aqueous solution 60 was used instead of water 60. The average particle size of the obtained treated product was 19.7 microns. can be,
The electron micrograph was exactly the same as Figure 2, and the treated product was considerably rounder than the raw material.

(発明の効果) 本発明を実施することにより、結晶シリカ、非結晶シリ
カのいずれにおいても、角のある破砕状のシリカに丸味
を帯びさせることができ、本発明で得られるシリカを半
導体素子の樹脂封止用充填剤として用いれば、…脂封止
トランスファ成形工程における作業性を向上させること
ができる。
(Effects of the Invention) By carrying out the present invention, it is possible to make angular and crushed silica rounded, whether crystalline silica or amorphous silica, and the silica obtained by the present invention can be used for semiconductor devices. When used as a filler for resin sealing, workability in the fat sealing transfer molding process can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す工程図、第2図および
第3図は、実施例1の結晶シリカの処理前、処理後の形
状を示す電子顕微鏡写真、第4図および第5図は、実施
例2における溶融シリカの処理前、処理後の形状を示す
電子顕微鏡写真である。
FIG. 1 is a process diagram showing an embodiment of the present invention, FIGS. 2 and 3 are electron micrographs showing the shape of the crystalline silica of Example 1 before and after treatment, and FIGS. 4 and 5 These are electron micrographs showing the shape of fused silica before and after treatment in Example 2.

Claims (4)

【特許請求の範囲】[Claims] (1)結晶シリカまたは非結晶シリカ微粉末粒子に外部
から廻転ローラー等により押圧力を加えながら、水系媒
体存在下で微粉末粒子同志を体積破壊を起こすことなく
互いにこすり合わせて、角のある粒子に丸味を帯びさせ
ることを特徴とするシリカ微粉末粒子の製造方法。
(1) While applying a pressing force to the crystalline silica or amorphous silica fine powder particles from the outside using a rotating roller, etc., the fine powder particles are rubbed against each other in the presence of an aqueous medium without causing volume destruction to produce angular particles. A method for producing fine silica powder particles characterized by giving a rounded appearance.
(2)水系媒体が水または水とアルコール類との混合物
である特許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the aqueous medium is water or a mixture of water and alcohol.
(3)外部から廻転ローラー等により押圧力を加える操
作をローラーミルを用いて行う特許請求の範囲第(1)
項記載の方法。
(3) Claim No. 1 in which the operation of applying pressing force from the outside with a rotating roller or the like is performed using a roller mill.
The method described in section.
(4)得られるシリカ微粉末粒子が300ミクロン以下
である特許請求の範囲第(1)項記載の方法。
(4) The method according to claim (1), wherein the fine silica powder particles obtained are 300 microns or less.
JP11761287A 1987-05-13 1987-05-13 Production of silica fine powder particle Granted JPS63282109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11761287A JPS63282109A (en) 1987-05-13 1987-05-13 Production of silica fine powder particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11761287A JPS63282109A (en) 1987-05-13 1987-05-13 Production of silica fine powder particle

Publications (2)

Publication Number Publication Date
JPS63282109A true JPS63282109A (en) 1988-11-18
JPH0460053B2 JPH0460053B2 (en) 1992-09-25

Family

ID=14716069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11761287A Granted JPS63282109A (en) 1987-05-13 1987-05-13 Production of silica fine powder particle

Country Status (1)

Country Link
JP (1) JPS63282109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166754A (en) * 1988-12-21 1990-06-27 Matsushita Electric Works Ltd Molding material for sealing semiconductor
JPH02187055A (en) * 1989-01-13 1990-07-23 Nitto Denko Corp Semiconductor device
JPH08124956A (en) * 1995-10-06 1996-05-17 Nitto Denko Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166754A (en) * 1988-12-21 1990-06-27 Matsushita Electric Works Ltd Molding material for sealing semiconductor
JPH02187055A (en) * 1989-01-13 1990-07-23 Nitto Denko Corp Semiconductor device
JPH08124956A (en) * 1995-10-06 1996-05-17 Nitto Denko Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0460053B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
JP5186638B2 (en) Abrasive grains based on molten spherical corundum
JPH04214024A (en) Manufacture of crystalline sodium silicate
JPH02275713A (en) Production of spherical silica grain
US3875282A (en) Production of high bulk density spray dried hydrous sodium silicate
CN107256750B (en) Coated magnetic abrasive particle and preparation method thereof
US5643347A (en) Process for manufacture of silica granules
JP2004131378A (en) Process for manufacturing opaque quartz glass material
CN104592936A (en) Nano silicon carbide grinding paste for sealing surface of valve and preparation method of nano silicon dioxide grinding paste
JPS63282109A (en) Production of silica fine powder particle
JP2000247751A (en) Production of alumina powder for sintered compact
JPH03135453A (en) Manufacture of inorganic powder
JPH02144186A (en) Manufacture of aggregate for preventing leaching
JPH0528744B2 (en)
CN108295999B (en) A kind of Khotan jade superfine powder and preparation method thereof
KR100427260B1 (en) A preparation method of micron-size silica
JPH03247635A (en) Silica filler
KR100687778B1 (en) A manufacturing method for minute powder of sericite
JP2999300B2 (en) Fillers for sealing electronic components
JP2007106658A (en) Method of manufacturing fine talc particles
KR100419062B1 (en) A method of preparing silica sleeve for hearth roll by slip casting
JP2860692B2 (en) Method for producing porous product by cristobalite
JPH03186360A (en) Method for grinding diamond or cubic boron nitride
JPH01107855A (en) Method for finely pulverizing particles
JPS58176135A (en) Preparation of quartz glass powder
JP2652105B2 (en) Tile raw material manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070925

Year of fee payment: 15