JPS63282063A - Detector for temperature of oil for hydraulic elevator - Google Patents

Detector for temperature of oil for hydraulic elevator

Info

Publication number
JPS63282063A
JPS63282063A JP62117457A JP11745787A JPS63282063A JP S63282063 A JPS63282063 A JP S63282063A JP 62117457 A JP62117457 A JP 62117457A JP 11745787 A JP11745787 A JP 11745787A JP S63282063 A JPS63282063 A JP S63282063A
Authority
JP
Japan
Prior art keywords
oil temperature
oil
output
voltage
hydraulic elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62117457A
Other languages
Japanese (ja)
Inventor
山本 友一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62117457A priority Critical patent/JPS63282063A/en
Publication of JPS63282063A publication Critical patent/JPS63282063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は油圧エレベータの油温検出装置の改良に関す
るものである。
This invention relates to an improvement in an oil temperature detection device for a hydraulic elevator.

【従来の技術】[Conventional technology]

第9図は例えば特開昭57−170372号公報に示さ
れた従来の油圧エレベータの油温検出装置を示す構成図
である。 図中、1は油2が充填されたシリンダ、3はシリンダ1
内に挿入されたプランジャ、4はプランジャ30頭部に
結合されたかご、5はシリンダ1に接続された管路、6
は管路5に接続され、動作すると管路5へ圧油を送出す
る上昇用電磁弁、7は同じく管路5からの油を排出する
下降用電磁弁、8は上昇用電磁弁6に接続された油圧ポ
ンプ、9は油圧ポンプ8を駆動する油圧ポンプ用電動機
、10は下降用電磁弁7及び油圧ポンプ8に接続された
油タンク、90.91は油タンク10内に設置された油
温検出器である。 すなわち、上昇指令が出ると、電動機9は回転し、油圧
ポンプ8を駆動すると共に、上昇用電磁弁6は制御され
る。これで、タンク100油2は上昇用電磁弁6から管
路5を通じてシリンダ1に送出されるので、かご4は上
昇する。また、下降指令が出ると、下降用電磁弁7は制
御され、シリンダ1内の油2が管路5及び電磁弁7を通
って油タンク10へ排出されるので、かご4は下降する
。 油圧エレベータでは、油2の温度が低下すると油2の粘
度等が変化し、かご4の乗心地が悪くなったり、着床誤
差が大きくなったりする。そこで法規においても油温を
一定値以上に保つことが規定されている。これを検出器
するのが油温検出器90.91で、油温か下限値を外れ
ると油温検出器90が動作し、電動機9を空回転し、油
圧をシリンダ1内に送らない状態で油2を油タンク10
及び適当な管路(図示せず)を循環させることによって
油2を加熱し、油温を上昇させる。この動作は一定時間
継続した後中止される。次に、油温が上昇して上限値を
外れると油温検出器91が動作し、呼びの回路は切り放
されてかご4の運転を休止することによって油2を冷却
し、油温を下降させる。このようにして、油温は上限値
と下限値の間の温度に保たれる。
FIG. 9 is a block diagram showing a conventional oil temperature detection device for a hydraulic elevator, as disclosed in, for example, Japanese Patent Laid-Open No. 57-170372. In the figure, 1 is the cylinder filled with oil 2, 3 is the cylinder 1
4 is a cage coupled to the head of the plunger 30; 5 is a conduit connected to the cylinder 1; 6 is a plunger inserted therein;
is connected to the pipe line 5, and when activated sends pressure oil to the pipe line 5, a rising solenoid valve; 7 is a descending solenoid valve that also discharges oil from the pipe line 5; 8 is connected to a rising solenoid valve 6. 9 is a hydraulic pump electric motor that drives the hydraulic pump 8, 10 is an oil tank connected to the lowering solenoid valve 7 and the hydraulic pump 8, and 90.91 is an oil temperature installed in the oil tank 10. It is a detector. That is, when a lift command is issued, the electric motor 9 rotates, drives the hydraulic pump 8, and controls the lift solenoid valve 6. Now, the tank 100 oil 2 is sent from the lifting solenoid valve 6 to the cylinder 1 through the pipe line 5, so the car 4 moves up. Further, when a descending command is issued, the descending electromagnetic valve 7 is controlled, and the oil 2 in the cylinder 1 is discharged to the oil tank 10 through the pipe 5 and the electromagnetic valve 7, so that the car 4 descends. In a hydraulic elevator, when the temperature of the oil 2 decreases, the viscosity of the oil 2 changes, and the ride comfort of the car 4 deteriorates, and the landing error increases. Therefore, regulations also stipulate that the oil temperature must be kept above a certain value. The oil temperature detectors 90 and 91 detect this, and when the oil temperature falls outside the lower limit, the oil temperature detector 90 is activated, causing the motor 9 to idle and not sending oil pressure into the cylinder 1. 2 to oil tank 10
The oil 2 is heated and the oil temperature is raised by circulating the oil 2 through a suitable pipe line (not shown). This operation continues for a certain period of time and then is stopped. Next, when the oil temperature rises and exceeds the upper limit, the oil temperature detector 91 is activated, the calling circuit is disconnected, and the operation of the car 4 is stopped, thereby cooling the oil 2 and lowering the oil temperature. let In this way, the oil temperature is maintained between the upper and lower limits.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来の油温検出方法においては、油温検出器が油温上昇
変動又は低下変動の一方しか検出できないので、上昇及
び低下変動の双方を常時検出するには2個の油温検出器
を備え、夫々の油温検出器で上昇変動と低下変動を個別
に検出する必要があり、その為2個の油温検出装置を設
けねばならず、装置全体を大型化すると共に高価なもの
になった。 この発明は上記問題点を解消するもので、1個の油温検
出器を用いて油圧エレベータの使用油温範囲におけるあ
らゆる油温検出が可能となるが、一方において、油温検
出装置の故障に対して検出及びかごの制御が必要となる
為に、これに対応する回路を負荷することを目的とする
。 に問題点を解決するための手段】 この発明に係る油圧エレベータの油温検出装置は、油温
検出用センサの検出油温に対して各センサ出力電圧上方
を予め算出し、各アドレス毎に記憶した記憶部をもち、
出力電圧情報を予め設定した所定電圧レベル順位で、温
度センサ出力の入力されている比較器へ入力し、そして
比較器より出力される出力論理レベルの変化の有無を検
出すると共に論理レベルの変化有無検出時に油温の異常
変動又は油温センサネ良を判定し、この異常判定された
ときは、このときの油温データ値を保持するものである
In conventional oil temperature detection methods, the oil temperature detector can only detect either rising or falling oil temperature fluctuations, so two oil temperature detectors are provided to constantly detect both rising and falling fluctuations. It is necessary to separately detect rising fluctuations and falling fluctuations with each oil temperature detector, and therefore two oil temperature detecting devices must be provided, making the entire device larger and more expensive. This invention solves the above problems and makes it possible to detect all oil temperatures within the oil temperature range used in hydraulic elevators using a single oil temperature detector. However, since detection and car control are required, the purpose is to load the corresponding circuit. Means for Solving the Problems] The oil temperature detection device for a hydraulic elevator according to the present invention calculates in advance the upper part of each sensor output voltage with respect to the oil temperature detected by the oil temperature detection sensor, and stores it for each address. It has a memory section that
The output voltage information is inputted in a predetermined voltage level order to the comparator to which the temperature sensor output is input, and the presence or absence of a change in the output logic level output from the comparator is detected, and the presence or absence of a change in the logic level is detected. At the time of detection, it is determined whether there is an abnormal fluctuation in the oil temperature or whether the oil temperature sensor is defective, and when the abnormality is determined, the oil temperature data value at that time is held.

【作 用】[For use]

この発明における油圧エレベータの油温検出装置の比較
器が油温センサより一定レベルの油温検出電圧を入力し
ている状態で、記憶部よりD/A変換器を介して上記油
温センサが出力し得る最大電圧レベルから最小電圧レベ
ルに至るまでの電圧出力信号を走査手段により所定の手
順で順次入力し、比較器の論理出力レベルを走査した際
に、油温を異常認識したときには、この油温データを記
憶、保持すると共にかごを所定の制御を行わせる様にし
たものである。
In a state where the comparator of the oil temperature detection device for a hydraulic elevator in this invention is inputting a constant level of oil temperature detection voltage from the oil temperature sensor, the oil temperature sensor outputs an output from the storage unit via the D/A converter. Voltage output signals from the maximum possible voltage level to the minimum voltage level are sequentially inputted by the scanning means in a predetermined procedure, and when the logic output level of the comparator is scanned, if an abnormal oil temperature is detected, the oil temperature is The temperature data is stored and retained, and the car is controlled in a predetermined manner.

【実施例】【Example】

以下、この発明の一実施例を第1図乃至第8図について
説明する。なお、第3図において、1〜10は第9図と
同一部分を示す。 第1図はこの発明による油圧エレベータの油温検出装置
の一実施例の全体構成図である。第1図から明らかなよ
うに、油タンク100油2の温度を検出する油温センサ
11を設け、この油温センサ11による検出温度を電圧
変換して比較器15人力とし、該比較器15では、該入
力値と予め設定された上記油温センサの各検出油温に対
する電圧値の最大電圧レベルより支障電圧レベルに至る
まで比較し、比較器15の論理出力レベルを走査手段1
aにより走査して走査時における論理出力レベルの反転
の有無をレベル検出手段1bで検出した結果、論理出力
レベル反転時の設定電圧レベルより油温を判定すると共
に、レベル反転無検出時には異常判定手段ICにより油
温の異常変動又は油温センサの故障を判定する。そして
判定結果に基づいて油温制御回路26を駆動し、油圧エ
レベータを安全運転する。 第2図において、11は油温センサで、例えばNTCサ
ーミスタ等を用いる。(+)は直流電源、12〜14.
17は抵抗、18は可変抵抗、15は比較器、16はD
/A変換器で、Vsはこの基準電圧入力、DIはD0〜
D7より成る8ビツト構成のディジタル信号入力、VD
はDl及び■3によって決まるアナログ出力電圧である
。20は走査手段、レベル検出手段、異常判定手段を有
するマイクロコンピュータ、21.25はアナログ信号
とディジタル信号の変換を行うインターフェイス入力及
び出力回路であり、CPU22と信号を受信する。23
はROM、24はRAMである。 26は油温制御回路で回路中、27は油温低下時の油温
上昇回路で□、例えば電動機を廻して油の還流を行った
り、ヒータを接続したりする。又、上記油温制御回路2
6中、28は油温上昇時の運転休止回路で、例えば乗場
呼びを無効とし、かごを起動不能として休止させる。3
0は異常時油温制御回路で、例えば休止動作とか、間引
き運転(戸開時間延長)等を状況により行わせるもので
ある。 第4図はサーミスタ11の検出温度と出力電圧の関係を
示した温度−電圧特性図である。−最に油圧エレベータ
は5℃〜60 ”C程度の範囲で正規の運転を行うので
、温度は一般的にこの範囲で管理すればよいが、サーミ
スタ等検出回路の誤差及び低温側は冬場据付時油温の低
い場合を考えて、油温検出範囲は一5°C〜70°C程
度で管理すればよい。上記のように油温検出範囲を設定
したので抵抗R1とサーミスタ抵抗RTHとで分圧され
、サーミスタ11の両端に表われる電圧VT)lは、検
出油温−5’C〜70℃の時のサーミスタ分圧電圧(V
TH(−5))が検出油温70℃の時のサーミスタ分圧
電圧(Vテ、(70))より大きいのはNTCサーミス
タを用いた為である。 次にD/A変換器16のアナログ出力の設定を説明する
。油温が上記−5’Cより低い場合、又はサーミスタ1
1が断線した場合には、油温検出時にこれを異常と判断
する必要があり、この異常判断により油温管理外での運
転を起動不能等にする必要がある。従ってこれを達成す
る為、D、入力のD0〜D、ビットを全て「1」とした
ときのアナログ出力VDは上記VTM(−5)より低温
(例えばVTH(−5) + 0.3V )にする様に
抵抗18の値を変え、VSを設定する。 次に第5図〜第8図により油温検出動作を説明する。第
5図中、23はROMで、例えばEPROM又はEEP
ROMで構成される。ここには予め計算により求めたサ
ーミスタの油温に応じた抵抗変化値を電圧変換したVT
H(!−同電電圧なる様なり/A変換出力VDを出力す
る為のディジタル入力電圧情報D1がD0〜D、ビット
の8ビツト構成2進数値で記憶されており、アドレス1
000番地以降には例えばT M (−5) 〜T M
 (70)まテノ値(76個)が1°Cきざみで記憶さ
れている。 従って前述の如く、TM(−5)=FF)1  (−5
°Cの時の値)が入っていることににある。第6図〜第
8図は油温検出プログラムで、第6図の初期設定ルーチ
ンは例えば電源投入時又はCPUリセット時にのみ通る
プログラムである。 今電源を投入すると、CPU22は、リセット後、この
初期設定ルーチンを通過する。これによりフロー5oで
はCPU22より出力回路25を通り、0UT1.すな
わちD0〜D、08ビット信号が全て「1」であるFF
、Iを出力し、これがり、に入力され、D/A変換器1
6の出力■。はVtM(−5) + 0.3Vの電圧を
発生する。同時にこの出力値はRAM24上にTHMO
として記憶される。この後フロー51の割込周期設定に
より(例えばインテル8085AによればRST7.5
等の周期割込設定を行う為)一定時間後、第7図及び第
8図の油温処理ルーチンへ飛ぶことになる。 全油温センサ11が断線等になっていたとすると、油温
センサ11は一■の油温ということになり、比較器15
の(+)個入力の油温センサ電圧YellはVta(−
5)よりも大きな値となっている。 従ってこの値は比較器15の(−)個入力よりも大きい
ので比較器15は(+)電位を出力し、該(+)電圧を
入力回路21により’FFMJ信号トシ、CPU22に
入力される。この為、第7図フロー52によりTHMI
−FF、としてRAM24に記憶される。次に、フロー
53でVTMがVTM(−5)よりも大きいと判定され
た結果、フロー56.57を通ることにより、F L 
A G = F F Hとし、又、THCGにTHMO
の値FF、を入れる。これにより現在の油温はデータ値
としてFF。 になったと認識されたことになる。続いてフロー58に
よりTHMOを(FF、−1)の値’ F E HJと
し、フロー59.60により再びD0〜D、値としてD
+に入力され、D/A変換器を通して出力される。この
出力電圧はD + = F F Mで、出力電圧となる
。 次に再び割込みが入ると、再びフロー52からの処理が
始まり、この場合も油温センサ電圧vTHはVT)I(
−5)より大きいので、THMI=FF、となり、FL
AGI−FF、なので、56から61へ行くことになる
。この結果、油温値はFF、と判定される。以後、TH
MOを1減算させる処理を繰り返し実行し、61で「Y
」となり、64を通ることで通常の油温範囲を外れてい
ると判断されたので、フロー55を通り63で出力及び
フラグをリセットする。油温範囲外が判断されると本例
ではフロー55で油温表示器29を消灯させる出力を発
すると共に、異常信号を発生し、又、異常油温メモリT
HCGに検出油温THCGのデータが入るので、油温制
御回路26は異常時制御動作29を保持し、エレベータ
を例えば休止、運転不能等を行わせる。 以上の如く、エレベータの油温検出部の異常が油温表示
器消灯により判定された後、再び割込みが入ると再度フ
ロー52の処理が行われる。上記油温センサ等で代わる
検出回路はサーミスタ等半導体で構成されているが、サ
ーミスタは大きな電流、電圧使用下ではサーミスタの自
己発熱により抵抗変化が大きくなるので、検出誤差が生
じる。 この為低電圧で駆動しなければならない。しかしながら
、この様な低電圧、低電流のサーミスタ検出信号を例え
ば油タンクより制御盤へ送るとその間でサージ等をひろ
う恐れがあり、この場合油温は正常なのに油温センサ1
1の比較器15への信号がマイクロコンピュータ20へ
入力時には上述の如く異常油温として入力されることも
ある。このプログラムでは、上記のような偶発的な異常
信号の混入により異常油温と判断しない為、CPU動作
時は常に一定周期で同一の油温判定処理が行われる。そ
れにより上記該異常判定をせず油温に応じた電圧入力が
入るとTHMIは第1回目でフロー54へは行かないの
で、フロー53以下の処理に行き、所定の油温か判定さ
れるとフロー54は解除され、正常に表示及び運転が行
われる。 次に、例えば油温が6°Cであった場合を説明する。T
HMOはフロー50又はフロー63を通って最大値に設
定されているとする。■アイはVTM(6)の電圧が発
生し、比較器15の(−)側D/A出力(VyH(−5
)+ 0.3V)の方が大きいので、この場合フロー5
2.53でTHMIは’OOMJであり、又、FLAG
Iはリセットされているので、フロー54より58を通
る。これにより全開出力値THMOを01,1減算し、
電圧情報をD/A変換器16へ出力する。D/A変換器
16より出力が出るので比較器15は油温センサ出力と
アナログ電圧値との比較を行い、論理出力を出す。 この後側込みがかかり、入力回路21を介して再びTH
MIの信号が取り込まれるが、018程度の差ではVD
出力の低下はわずかであり、同一動作を繰り返す。TH
MOが順次減算されて油温6°Cの値(T H(6)又
はTH(6)−01,’)になると、比較器15の入力
(−)側の電圧が大となり、従って割込みでフロー52
にくるとTHM 1は「00H」から’FFMJと変化
しフロー53゜56を通ってフロー57へ来る。 フロー57により全出力した油温値に対する油温データ
THMOがTHCGに記憶され、この油温検出装置は油
タンクの油温をTHMIの変化をとらえて検出したこと
になる。 同時にFLAGIに’FFMJを入れて再びTHMOを
4回減算後、割込みがフロ53−53−56−61で「
Y」となると、即ち、THMIの’0OIIJからrF
FNJへの変化をとらえた点の油温データを記憶し、そ
の後油温データを低い方に下げて出力するので本来正常
ならばTHMIは常にrFF、Jであり、4回正常が続
いたことを判定し、次のサブルーチン62へ行かせる。 これはサーミスタ油温センサの出力電圧とD/A出力電
圧の差がほとんどO■の様な場合、比較器15はどちら
かがわずかでも高いと出力が正逆電圧となるのでこの様
な微妙な領域の除去と、油温は時々刻々と変化するもの
であり、場合によっては比較器15が発振し、正逆電圧
を繰り返すことがあり、この様な状態での入力とり込み
は取り込みタイミングによってはTHMIが「00」、
rFFJどちらでも生じる可能性があり、信頼できない
データとしてTHMIが一度「FFHJになったのに、
次に’0ONJで入力するとフロー53−54−63と
通らせ、再び始めから(THMOが’FFIIJから)
演算させる様にして信頼性を上げている。 一方変化した時点より4回THMIが「FFHJ値が続
いた場合にはフロー62へ行かせ、油温検出が信頼でき
ると判断し、油温判定サブルーチン処理を行う様にして
いる。第8図に油温判定ルーチンを示す。 全検出した油温データがTHCGとしてメモリに記憶さ
れている。これに対してアドレス1000M以降に第2
図ROM23には前述した如く油温値に対応する設定油
温データ値が入って・おり、フロー71では7ロー77
を通って再び71に返るループを繰り返し、設定油温デ
ータ値を高温側へ移してゆき、設定油温データ値T M
 (7)が即ち7°Cとなったとき、フロー71での探
偵で73へゆき、76であらかじめFLAG2がrFF
、Jとなっているので74のサブルーチンへ行き、油温
、例えば「6」を出力回路25より表示器29に出力す
る。これにより油温検出は終了し、フロー75−63を
通って再び同様に油温検出を常時繰り返す。この場合、
油温は低目であり、例えばあらかじめ設定された下限油
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. In addition, in FIG. 3, 1 to 10 indicate the same parts as in FIG. 9. FIG. 1 is an overall configuration diagram of an embodiment of an oil temperature detection device for a hydraulic elevator according to the present invention. As is clear from FIG. 1, an oil temperature sensor 11 is provided to detect the temperature of the oil 2 in the oil tank 100, and the temperature detected by the oil temperature sensor 11 is converted into a voltage to make the comparator 15 manually operated. , the input value is compared with the preset voltage value for each oil temperature detected by the oil temperature sensor, from the maximum voltage level to the trouble voltage level, and the logic output level of the comparator 15 is determined by the scanning means 1.
As a result of scanning by a and detecting whether or not there is a reversal of the logical output level during scanning, the level detecting means 1b determines the oil temperature based on the set voltage level at the time of the logical output level reversing, and when no level reversal is detected, the abnormality determining means The IC determines abnormal fluctuations in oil temperature or failure of the oil temperature sensor. Then, based on the determination result, the oil temperature control circuit 26 is driven to safely operate the hydraulic elevator. In FIG. 2, 11 is an oil temperature sensor, for example, an NTC thermistor or the like is used. (+) is a DC power supply, 12 to 14.
17 is a resistor, 18 is a variable resistor, 15 is a comparator, 16 is D
/A converter, Vs is this reference voltage input, DI is D0 ~
8-bit digital signal input consisting of D7, VD
is the analog output voltage determined by Dl and ■3. 20 is a microcomputer having scanning means, level detection means, and abnormality determination means; 21.25 is an interface input and output circuit for converting analog signals and digital signals, and receives signals from the CPU 22; 23
is a ROM, and 24 is a RAM. 26 is an oil temperature control circuit in the circuit, and 27 is an oil temperature raising circuit when the oil temperature drops, □, for example, rotates the electric motor to recirculate the oil, or connects a heater. In addition, the oil temperature control circuit 2
6, 28 is an operation stop circuit when the oil temperature rises, and for example, disables the hall call and stops the car as being unable to start. 3
0 is an abnormal oil temperature control circuit, which performs, for example, a pause operation or a thinned-out operation (extension of door opening time) depending on the situation. FIG. 4 is a temperature-voltage characteristic diagram showing the relationship between the temperature detected by the thermistor 11 and the output voltage. -Finally, hydraulic elevators normally operate within the range of 5℃ to 60''C, so the temperature can generally be controlled within this range, but errors in detection circuits such as thermistors and low temperatures may occur during winter installation. Considering the case where the oil temperature is low, the oil temperature detection range should be controlled within the range of -5°C to 70°C.Since the oil temperature detection range has been set as above, it can be divided by resistance R1 and thermistor resistance RTH. The voltage VT)l appearing across the thermistor 11 is equal to the thermistor partial voltage (V
The reason why TH (-5)) is larger than the thermistor partial voltage (VTE, (70)) when the detected oil temperature is 70°C is because the NTC thermistor is used. Next, the setting of the analog output of the D/A converter 16 will be explained. If the oil temperature is lower than -5'C above, or thermistor 1
1 is disconnected, it is necessary to determine that this is abnormal when detecting the oil temperature, and it is necessary to make it impossible to start the operation outside the oil temperature control based on this abnormality determination. Therefore, in order to achieve this, when D, input D0 to D, and all bits are set to "1", the analog output VD is set to a temperature lower than the above VTM (-5) (for example, VTH (-5) + 0.3V). Change the value of resistor 18 so that VS is set. Next, the oil temperature detection operation will be explained with reference to FIGS. 5 to 8. In FIG. 5, 23 is a ROM, for example an EPROM or an EEP.
Consists of ROM. Here, the VT is the voltage converted from the resistance change value according to the thermistor oil temperature calculated in advance.
The digital input voltage information D1 for outputting the H(!-same voltage/A conversion output VD) is stored as an 8-bit binary value consisting of bits D0 to D, and is stored at address 1.
After address 000, for example, T M (-5) to T M
(70) Mateno values (76 values) are stored in 1°C increments. Therefore, as mentioned above, TM(-5)=FF)1 (-5
The reason is that it contains the value at °C. 6 to 8 are oil temperature detection programs, and the initial setting routine in FIG. 6 is a program that is executed only when the power is turned on or when the CPU is reset, for example. When the power is turned on now, the CPU 22 will go through this initialization routine after being reset. As a result, in flow 5o, 0UT1. In other words, D0 to D, FF whose 08 bit signals are all “1”
, I, which is input to D/A converter 1
6 output■. generates a voltage of VtM(-5) + 0.3V. At the same time, this output value is stored in THMO on RAM24.
is stored as. After this, depending on the interrupt cycle setting in flow 51 (for example, according to Intel 8085A, RST7.5
After a certain period of time (in order to set periodic interrupts such as If all the oil temperature sensors 11 are disconnected, the oil temperature sensor 11 will be at the oil temperature of 1, and the comparator 15
The (+) input oil temperature sensor voltage Yell is Vta(-
5). Therefore, since this value is larger than the (-) inputs of the comparator 15, the comparator 15 outputs a (+) potential, and the input circuit 21 inputs the 'FFMJ signal to the CPU 22 with the (+) voltage. For this reason, according to flow 52 in FIG.
-FF is stored in the RAM 24. Next, as a result of determining that VTM is larger than VTM (-5) in flow 53, by passing through flow 56.57, F L
A G = F F H, and THCG and THMO
Input the value FF. As a result, the current oil temperature is set to FF as a data value. This means that it has been recognized that it has become. Next, in flow 58, THMO is set to the value of (FF, -1) 'FE HJ, and in flow 59.60, it is again set to D0 to D, and the value is D.
+ and output through a D/A converter. This output voltage is D + = FF M, which is the output voltage. Next, when another interrupt occurs, the process starts again from flow 52, and in this case too, the oil temperature sensor voltage vTH is VT)I(
-5), so THMI=FF, and FL
AGI-FF, so it will go from 56 to 61. As a result, the oil temperature value is determined to be FF. From now on, T.H.
Repeatedly execute the process of subtracting 1 from MO, and at 61, “Y
”, and as it passes through 64, it is determined that the oil temperature is out of the normal oil temperature range, so it passes through flow 55, and at 63, the output and flag are reset. When it is determined that the oil temperature is outside the range, in this example, in flow 55, an output is issued to turn off the oil temperature indicator 29, an abnormal signal is generated, and the abnormal oil temperature memory T is
Since the data of the detected oil temperature THCG is input to the HCG, the oil temperature control circuit 26 maintains the abnormality control operation 29, and causes the elevator to be stopped, rendered inoperable, etc., for example. As described above, after an abnormality in the oil temperature detection section of the elevator is determined by turning off the oil temperature indicator, when an interruption occurs again, the process of flow 52 is performed again. The detection circuit that replaces the oil temperature sensor and the like is composed of a semiconductor such as a thermistor, but when the thermistor is used with a large current or voltage, the resistance change increases due to self-heating of the thermistor, resulting in a detection error. For this reason, it must be driven at low voltage. However, if such a low-voltage, low-current thermistor detection signal is sent from the oil tank to the control panel, there is a risk of a surge occurring between the two, and in this case, even though the oil temperature is normal, the oil temperature sensor 1
When the signal to the comparator 15 of No. 1 is input to the microcomputer 20, it may be input as an abnormal oil temperature as described above. In this program, since the oil temperature is not determined to be abnormal due to the accidental mixing of abnormal signals as described above, the same oil temperature determination process is always performed at a constant cycle when the CPU is operating. As a result, if the voltage input according to the oil temperature is input without making the above abnormality determination, THMI will not go to flow 54 for the first time, so it will go to the processing from flow 53 onwards, and when the predetermined oil temperature is determined, the flow will flow. 54 is released and normal display and operation are performed. Next, a case where the oil temperature is 6°C, for example, will be explained. T
It is assumed that the HMO is set to the maximum value through flow 50 or flow 63. ■The voltage of VTM (6) is generated in the eye, and the (-) side D/A output of the comparator 15 (VyH (-5
) + 0.3V) is larger, so in this case flow 5
In 2.53 THMI is 'OOMJ and also FLAG
Since I has been reset, flow 58 is passed from flow 54. As a result, the full open output value THMO is subtracted by 01.1,
Voltage information is output to the D/A converter 16. Since the output is output from the D/A converter 16, the comparator 15 compares the oil temperature sensor output with the analog voltage value and outputs a logical output. After this, side interference is applied and the TH
The MI signal is captured, but with a difference of about 018, VD
The output decreases only slightly, and the same operation is repeated. T.H.
When MO is sequentially subtracted and reaches the value of oil temperature 6°C (TH(6) or TH(6)-01,'), the voltage on the input (-) side of comparator 15 becomes large, so an interrupt occurs. flow 52
When THM 1 comes to , it changes from "00H" to 'FFMJ, passes through flows 53 and 56, and reaches flow 57. The oil temperature data THMO corresponding to the fully output oil temperature value is stored in THCG by flow 57, and this oil temperature detection device detects the oil temperature in the oil tank by capturing the change in THMI. At the same time, after putting 'FFMJ in FLAGI and subtracting THMO four times again, the interrupt is set to ``FROM 53-53-56-61''.
Y”, that is, from THMI'0OIIJ to rF
The oil temperature data at the point where the change to FNJ was captured is memorized, and then the oil temperature data is lowered and output, so if it is normal, THMI will always be rFF, J, indicating that it has been normal four times. After making a determination, the process proceeds to the next subroutine 62. This is because when the difference between the output voltage of the thermistor oil temperature sensor and the D/A output voltage is almost O■, the comparator 15 outputs a forward and reverse voltage if either is even slightly high. Area removal and oil temperature change from moment to moment, and in some cases, the comparator 15 may oscillate and repeat positive and reverse voltages. THMI is “00”,
Either rFFJ can occur, and THMI has unreliable data that says "Even though it has become FFHJ,
Next, input '0ONJ' to go through the flow 53-54-63 and start again from the beginning (THMO is from 'FFIIJ)
Reliability is increased by performing calculations. On the other hand, if the THMI value continues to be ``FFHJ'' four times from the time of the change, the process goes to flow 62, determines that the oil temperature detection is reliable, and executes the oil temperature determination subroutine process. The oil temperature determination routine is shown. All detected oil temperature data is stored in the memory as THCG. On the other hand, the second
The figure ROM 23 contains the set oil temperature data value corresponding to the oil temperature value as described above, and in the flow 71, the 7 row 77
The loop of returning to 71 is repeated, and the set oil temperature data value is moved to the high temperature side, and the set oil temperature data value T M
When (7) becomes 7°C, proceed to 73 using the detective in flow 71, and in 76 FLAG2 is set to rFF in advance.
, J, the program goes to the subroutine 74 and outputs the oil temperature, for example "6", from the output circuit 25 to the display 29. As a result, the oil temperature detection is completed, and the oil temperature detection is repeated again in the same manner through the flow 75-63. in this case,
The oil temperature is low, for example, the lower oil temperature set in advance.

【例えば10°C)より低いので出力回路25を通し
て油温上昇回路27に信号が出力され、油温上昇運転が
行われる。 地温は正常範囲内で全高温側にある時も同様の油温検出
が行われ油温表示すると共に、運転休止回路28に信号
が入力され、休止等により油温上昇阻止が行われる。こ
の場合、この運転の復帰も同様の油温検出と運転処理サ
ブルーチンでの設定により行われる。 次に例えば油温センサが短絡状態になった場合を説明す
る。この場合VTHは0■になっており、比較器15の
(+)側は0■になっている。前記と同様にTHMOが
rFF、Jから減算してゆくが比較器15の(−)側が
高電圧なのでTHM 1は’0011Jであり、第7図
の52−53−54−58−59−61の各ループを順
次繰り返してゆ(。 ここで、THMOO値が、本例では’2F>IJ(例え
ば70℃とかの値)となったとき、フロー59により5
4−5と通り、断線時と同様油温表示を消灯し異常信号
発生により、例えばエレベータを休止さえる。 ここでTHMO出力の最終値を2F、とじたのは001
1まで減算させ比較した場合D/A変換器16の出力が
素子のバラツキ、経年変化等によりO■以下となること
も考えられること、又、運転休止回路28の故障等によ
っては油温は正常範囲を越えて上昇することも考えられ
るので、油温検出誤差を含めこれを最小限に抑えられる
様に構成するものである。 ここで上記断線、短絡が一過性(例えば接触不良での断
線状態とか導体の接触による短絡状態とか)で発生し異
常状態が復帰した場合、前述の如(油温検出回路は油温
検出スキャンを繰り返す為、この油温検出動作時は正規
の油温を検出し、正常表示となり、異常は見過ごされて
しまう恐れがある。この為前述した如く、異常油温を認
識した時はこの油温データをTHCGMとして記憶、保
持するのでかごの異常動作に対して何が原因かを明らか
にすることができ、一過性の不良に対しても発見できや
す(なる。 又、上記異常状態が起こった時、客先が電源を遮断し、
再投入すると直ると考えて行った様な場合にも、公知の
メモリバックアップ回路(例えば電池等により保持する
回路−図示せず)を付加することにより保つことができ
る。 又、A/D変換器を用いず、D/A変換器を用いて割込
み周期毎に1カウントの油温検出が行われる様にしたが
、これは油圧エレベータの油温の変化が急激には行われ
ないこと、又、サーミスタ油温センサの応答性が油に直
接浸されないので遅いこと等により実使用上問題なく使
用できる為である。 又、設定油温データを1 ’C単位としたが特に制約さ
れるものではない。 又、異常時の表示を消灯としたが、断線又は油温低下異
常と短絡又は油温上昇異常を数字以外の表示を持ち、点
灯させて区分する様にしてもよい。 【発明の効果】 以上のように、この発明によれば、油温検出用センサの
電圧出力値と、上記センサが油温検出を行う正規油温範
囲より広い油温本位の各油温に対するセンサ出力電圧設
定値を全油温範囲に亘って比較器で比較し、比較時にお
ける比較器の論理出力レベル反転検出に基づいて油温を
検出し、油温の異常を検出した時はこれを記憶すると共
に、異常時油温制御回路動作を行わせる様にしたので、
油温検出回路の異常を早期に発見できると共に、このと
きの油温データを記憶、保持する様にしたので、異常の
原因を早期発見できる。
(for example, 10° C.), a signal is output to the oil temperature raising circuit 27 through the output circuit 25, and an oil temperature raising operation is performed. Even when the soil temperature is within the normal range and on the high temperature side, similar oil temperature detection is performed and the oil temperature is displayed, and a signal is input to the operation stop circuit 28 to prevent the oil temperature from rising by stopping the operation or the like. In this case, the return to operation is also performed by similar oil temperature detection and settings in the operation processing subroutine. Next, a case will be described in which, for example, the oil temperature sensor becomes short-circuited. In this case, VTH is 0■, and the (+) side of the comparator 15 is 0■. As before, THMO is subtracted from rFF and J, but since the (-) side of comparator 15 is high voltage, THM 1 is '0011J, and 52-53-54-58-59-61 in Figure 7 Each loop is sequentially repeated (.Here, when the THMOO value becomes '2F>IJ (for example, a value of 70°C) in this example, the flow 59
4-5, the oil temperature display is turned off as in the case of disconnection, and when an abnormal signal is generated, for example, the elevator is stopped. Here, the final value of THMO output is 2F, and the final value is 001.
When subtracted to 1 and compared, it is possible that the output of the D/A converter 16 may be less than 0 due to variations in elements, aging, etc. Also, depending on a failure of the operation stop circuit 28, the oil temperature may be normal. Since it is conceivable that the oil temperature may rise beyond the range, the structure is designed to minimize this including the oil temperature detection error. If the above-mentioned disconnection or short circuit occurs temporarily (for example, a disconnection due to poor contact or a short circuit due to contact with a conductor) and the abnormal condition is restored, the oil temperature detection circuit Therefore, during this oil temperature detection operation, the normal oil temperature is detected and a normal display is displayed, and there is a risk that the abnormality may be overlooked.For this reason, as mentioned above, when an abnormal oil temperature is recognized, this oil temperature Since the data is stored and retained as THCGM, it is possible to clarify the cause of the abnormal operation of the car, and it is also easy to detect temporary defects. When the customer cut off the power,
Even in cases where the user thinks that the problem will be resolved by turning the power on again, it can be maintained by adding a known memory backup circuit (for example, a circuit that is maintained by a battery or the like - not shown). In addition, instead of using an A/D converter, we used a D/A converter to detect one count of oil temperature every interrupt cycle. This is because the response of the thermistor oil temperature sensor is slow because it is not directly immersed in oil, so it can be used without any problems in actual use. Further, although the set oil temperature data is set in units of 1'C, there is no particular restriction. Further, although the display in the event of an abnormality is turned off, it is also possible to have a display other than numbers and to distinguish between a disconnection or oil temperature drop abnormality and a short circuit or oil temperature rise abnormality by lighting them up. As described above, according to the present invention, the voltage output value of the oil temperature detection sensor and the sensor for each oil temperature, which is wider than the normal oil temperature range in which the sensor detects the oil temperature, can be adjusted. The output voltage setting value is compared with a comparator over the entire oil temperature range, and the oil temperature is detected based on the logic output level reversal detection of the comparator during the comparison, and if an abnormality in oil temperature is detected, this is memorized. At the same time, the oil temperature control circuit is activated in the event of an abnormality, so
Abnormalities in the oil temperature detection circuit can be detected early, and since the oil temperature data at this time is stored and retained, the cause of the abnormality can be discovered early.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による油圧エレベータの油温検出装置
の一実施例の全体構成図、第2図はこの発明の油温検出
回路の電気接続を示す構成図、第3図は油圧エレベータ
の構成図、第4図は油温検出器の特性図、第5図(a)
、 (b)は記憶部のメモリ構成図、第6図〜第8図は
油温検出器のプログラムを示すフローチャート、第9図
は従来の油圧エレベータの構成図である。 1a・・・走査手段、lb・・・レベル検出手段、IC
・・・異常判定手段、2・・・油、10・・・油タンク
、15・・・比較器、16・・・D/A変換器、26・
・・油温制御回路。 なお、図中同一符号は同−又は相当部分を示す。 第3図 −556070γ曲塁(°C) 第5図 第6図 第8図
FIG. 1 is an overall configuration diagram of an embodiment of an oil temperature detection device for a hydraulic elevator according to the present invention, FIG. 2 is a configuration diagram showing the electrical connections of an oil temperature detection circuit according to the invention, and FIG. 3 is a configuration diagram of a hydraulic elevator. Figure 4 is a characteristic diagram of the oil temperature detector, Figure 5 (a)
, (b) is a memory configuration diagram of the storage section, FIGS. 6 to 8 are flowcharts showing the oil temperature detector program, and FIG. 9 is a configuration diagram of a conventional hydraulic elevator. 1a...Scanning means, lb...Level detection means, IC
... Abnormality determination means, 2... Oil, 10... Oil tank, 15... Comparator, 16... D/A converter, 26...
...Oil temperature control circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 3 - 556070γ Curved Base (°C) Figure 5 Figure 6 Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)油圧エレベータの油温を油温センサにて検出し、
該検出出力に基づいてエレベータを制御する油圧エレベ
ータの油温検出装置において、上記油温センサより検出
の油温が異常と判定されたとき、かごの運転を制御する
と共に、異常判定時の油温データを記憶、保持すること
を特徴とする油圧エレベータの油温検出装置。
(1) Detect the oil temperature of the hydraulic elevator with an oil temperature sensor,
In an oil temperature detection device for a hydraulic elevator that controls an elevator based on the detection output, when the oil temperature detected by the oil temperature sensor is determined to be abnormal, it controls the operation of the car and also controls the oil temperature at the time of abnormality determination. An oil temperature detection device for a hydraulic elevator, characterized by storing and retaining data.
(2)異常判定時の油温データの記憶、保持は電源遮断
後もバッテリにて保持することを特徴とする特許請求の
範囲(1)に記載した油圧エレベータの油温検出装置。
(2) The oil temperature detection device for a hydraulic elevator as set forth in claim (1), wherein the oil temperature data at the time of abnormality determination is stored and retained by a battery even after power is cut off.
(3)検出された油温の異常判定後は油温制御回路動作
を保持し、かごの動きを制限することを特徴とする特許
請求の範囲(1)に記載した油圧エレベータの油温検出
装置。
(3) The oil temperature detection device for a hydraulic elevator according to claim (1), which maintains the operation of the oil temperature control circuit and limits the movement of the car after determining that the detected oil temperature is abnormal. .
JP62117457A 1987-05-14 1987-05-14 Detector for temperature of oil for hydraulic elevator Pending JPS63282063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117457A JPS63282063A (en) 1987-05-14 1987-05-14 Detector for temperature of oil for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117457A JPS63282063A (en) 1987-05-14 1987-05-14 Detector for temperature of oil for hydraulic elevator

Publications (1)

Publication Number Publication Date
JPS63282063A true JPS63282063A (en) 1988-11-18

Family

ID=14712142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117457A Pending JPS63282063A (en) 1987-05-14 1987-05-14 Detector for temperature of oil for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPS63282063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252996A (en) * 1989-03-24 1990-10-11 Shimadzu Corp Magnetic bearing turbo molecular drag pump
WO2013046630A1 (en) * 2011-09-27 2013-04-04 ダイキン工業株式会社 Liquid pressure unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252996A (en) * 1989-03-24 1990-10-11 Shimadzu Corp Magnetic bearing turbo molecular drag pump
WO2013046630A1 (en) * 2011-09-27 2013-04-04 ダイキン工業株式会社 Liquid pressure unit
JP2013072453A (en) * 2011-09-27 2013-04-22 Daikin Industries Ltd Liquid pressure unit
CN103827513A (en) * 2011-09-27 2014-05-28 大金工业株式会社 Liquid pressure unit
TWI465648B (en) * 2011-09-27 2014-12-21 Daikin Ind Ltd Hydraulic unit
US9366267B2 (en) 2011-09-27 2016-06-14 Daikin Industries, Ltd. Hydraulic unit

Similar Documents

Publication Publication Date Title
KR102175852B1 (en) Elevator having a safety chain with a series connection of safety switch arrangements
US20180356466A1 (en) Wetting current diagnostics
GB2041581A (en) Elevator control system
EP1465313B1 (en) Method and device for short circuit or open load detection
KR19990087417A (en) Method and circuit for testing the electrical actuator drive stage
KR102653766B1 (en) Method and apparatus for automatically testing switching members
US10215809B2 (en) Method and system for verification of contact operation
CA2759512C (en) Power supply device and method for a lighting system with light-emitting diodes and lighting assembly comprising one such device
JPS63282063A (en) Detector for temperature of oil for hydraulic elevator
US7671569B2 (en) Arrangement and method for monitoring and controlling a plurality of series-connected capacitors
CN113338743B (en) Anti-pinch control system of electric tail gate
CN110376956A (en) The monitoring of three-level grid
AU1353100A (en) Failsafe monitoring system for potentiometers
EP3629039B1 (en) Solid state power switch device
JPH113626A (en) Circuit device nd method for checking contact of switch or push-button switch
EP1343086A2 (en) Abnormality Detection Apparatus of Comparator
JPS62294923A (en) Oil temperature detector for hydraulic elevator
US7030794B2 (en) System, method, and software for testing electrical devices
JP6632936B2 (en) Elevator control device
EP0068267A1 (en) Device for measuring at least one operating parameter on a household appliance with automatic operating control of the device
JPH0646522A (en) Normal supervisory unit for circuit breaker operation control circuit
US5319371A (en) D/A converter with means to prevent output signal instability
CN215332221U (en) Overload current detects type car window and prevents pressing from both sides device
JP2019015115A (en) Power window device
KR910005305B1 (en) Infrared rays lamp automatic damage detecting apparatus and method of reaction thermal control system