JPS62294923A - Oil temperature detector for hydraulic elevator - Google Patents

Oil temperature detector for hydraulic elevator

Info

Publication number
JPS62294923A
JPS62294923A JP61137445A JP13744586A JPS62294923A JP S62294923 A JPS62294923 A JP S62294923A JP 61137445 A JP61137445 A JP 61137445A JP 13744586 A JP13744586 A JP 13744586A JP S62294923 A JPS62294923 A JP S62294923A
Authority
JP
Japan
Prior art keywords
oil temperature
output
oil
detected
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61137445A
Other languages
Japanese (ja)
Inventor
Tomoichiro Yamamoto
山本 友一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61137445A priority Critical patent/JPS62294923A/en
Publication of JPS62294923A publication Critical patent/JPS62294923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable every temperature in a working range to be detected by one detector by comparatively processing a stored reference temperature and a detection output, judging an oil temperature from the addresses of stored contents and judging an abnormality when a comparison output is not inverted. CONSTITUTION:A level output sequentially read out of built-in memory means by the output address of scanning means 1a is supplied to a comparator 15 via a D/A converter 16 as a reference value. A detection output from an oil temperature sensor 11 is also supplied to the comparator 15 and level detecting means 1b judges an oil temperature level from an address when a comparison output is inverted. On the other hand, when the comparison output is not inverted even though a scanning is terminated, an abnormality in the sensor 11 is judged by abnormality judging means 1c. This construction enables every temperature in a working range to be detected by a simple and small size instrument using one detector.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は油圧エレベータの油温検出装置の改良に関す
るものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to an improvement of an oil temperature detection device for a hydraulic elevator.

〔従来の技術〕[Conventional technology]

第9図は例えば特開昭57−170372号公報に示さ
れた従来の油圧エレベータの油温制御装置を示す構成図
である。
FIG. 9 is a block diagram showing a conventional oil temperature control device for a hydraulic elevator disclosed in, for example, Japanese Patent Application Laid-Open No. 57-170372.

図中、(1)は油(2)が充てんされたシリンダ、(3
)はシリンダ(1)内に挿入されたプランジャ、(4)
はプランジャ(3)の頭部に結合されたかご、(5)は
シリンダ(1)に接続された管路、(B)は管路(5)
に接続され動作すると管路(5)へ圧油を送出する上昇
用電磁弁、(7)は同じく管路(5)からの油を排出す
る下降用電磁弁、(8)は上昇用電磁弁(8)に接続さ
れた油圧ポンプ、(9)は油圧ポンプ(8)を駆動する
油圧ポンプ用電動機、(10)は下降用電磁弁(7)及
び油圧ポンプ(8)に接続された油タンク、(90)、
(91)は油タンク(1G)内に設置された油温検出器
である。
In the figure, (1) is a cylinder filled with oil (2), (3
) is the plunger inserted into the cylinder (1), (4)
is a cage connected to the head of the plunger (3), (5) is a conduit connected to the cylinder (1), and (B) is a conduit (5).
(7) is the descending solenoid valve that also discharges oil from the pipe (5), and (8) is the ascending solenoid valve. Hydraulic pump connected to (8), (9) a hydraulic pump electric motor that drives the hydraulic pump (8), (10) an oil tank connected to the lowering solenoid valve (7) and the hydraulic pump (8) ,(90),
(91) is an oil temperature detector installed in the oil tank (1G).

すなわち、上昇指令が出ると、電動機(9)は回転し、
油圧ポンプ(8)を駆動すると共に、上昇用電磁弁(6
)は制御される。これで、油タンク(lO)の油(′2
)は上昇用電磁弁(6)から管路(5)を通じてシリン
ダ(1)に送出されるので、かご(4)は上昇する。ま
た、下降指令が出ると、下降用電磁弁(7)は制御され
、シリンダ(1)内の油(2)が管路(5)及び電磁弁
(7)を通って油タンク(10)へ排出されるので、か
ご(4)は下降する。
In other words, when an ascending command is issued, the electric motor (9) rotates,
In addition to driving the hydraulic pump (8), the lifting solenoid valve (6
) is controlled. Now the oil ('2) in the oil tank (lO) is
) is sent from the lifting solenoid valve (6) to the cylinder (1) through the conduit (5), so the car (4) rises. Also, when a descending command is issued, the descending solenoid valve (7) is controlled, and the oil (2) in the cylinder (1) passes through the pipe (5) and the solenoid valve (7) to the oil tank (10). Since it is discharged, the basket (4) descends.

油圧エレベータでは、油(2)の温度が低下すると、油
(2)の粘度等が変化し、かご(4)の乗心地が悪くな
ってり1着床誤差が大きくなったりする。そこで、法規
においても油温を一定値以上に保つことが規定されてい
る。これを検出するのが油温検出器(90)、(91)
で、油温が下限値を外れると油温検出器(90)が動作
し、電動a(9)を空回転し、′油圧をシリンダ(1)
内に送らない状態で、油(2)を油タンク(10)及び
適当な管路(図示せず)を循環させることによって油(
2)を加熱し、油温を上昇させる。この動作は一定時間
継続した後中止される1次に、油温が上昇して上限値を
外れると油温検出器(81)が動作し、呼びの回路は切
り放されてかご(4)の運転を休止することによって油
(2)を冷却し、油温を下降させる。このようにして、
油温は上限値と下限値の間の温度に保たれる。
In a hydraulic elevator, when the temperature of the oil (2) decreases, the viscosity of the oil (2) changes, and the ride comfort of the car (4) worsens and the landing error increases. Therefore, regulations also stipulate that the oil temperature be maintained at a certain value or higher. The oil temperature detectors (90) and (91) detect this.
When the oil temperature is out of the lower limit, the oil temperature detector (90) is activated, the electric motor a (9) is rotated idly, and the oil pressure is transferred to the cylinder (1).
The oil (2) is circulated through the oil tank (10) and appropriate pipes (not shown) without being sent into the oil tank (10).
2) Heat to raise the oil temperature. This operation continues for a certain period of time and then is stopped. 1. Next, when the oil temperature rises and exceeds the upper limit, the oil temperature detector (81) is activated, and the calling circuit is disconnected from the car (4). By stopping the operation, the oil (2) is cooled and the oil temperature is lowered. In this way,
The oil temperature is maintained between the upper and lower limits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の油温検出方法においては、油温検出器が油温上昇
変動又は低下変動の一方しか検出できないので、上昇及
び低下変動の双方を常時検出するには2個の油温検出器
を備え、夫々の油温検出器で上昇変動と低下変動を個別
に検出する必要があり、その為2個の油温検出装置を設
けねばならず、装置全体を大型化すると共に高価なもの
になった。
In conventional oil temperature detection methods, the oil temperature detector can only detect either rising or falling oil temperature fluctuations, so two oil temperature detectors are provided to constantly detect both rising and falling fluctuations. It is necessary to separately detect rising fluctuations and falling fluctuations with each oil temperature detector, and therefore two oil temperature detecting devices must be provided, making the entire device larger and more expensive.

この発明は上記問題点を解消するもので、1個の油温検
出器を用いて油圧エレベータの使用油温範囲におけるあ
らゆる油温検出が可能となる油温検出装置を得ることを
目的とする。
This invention solves the above-mentioned problems, and aims to provide an oil temperature detection device that can detect all oil temperatures within the range of oil temperatures used in hydraulic elevators using a single oil temperature detector.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る油圧エレベータの油温検出装置は、油温
検出用センサの検出油温に対する各センサ出力電圧情報
を予め算出し各アドレス毎に記憶した記憶部より、出力
電圧情報を所定電圧レベル順位で、温度センサ出力の入
力されている比較器へ入力し、そして比較器より出力さ
れる出力論理レベルの変化の有無を検出し論理レベルの
変化無検出時に油温の異常変動又は油温センサ不良を判
定し、論理レベルの変化検出時は、検出時の上記出力電
圧情報より油温を判定する手段を備えたものである。
The oil temperature detection device for a hydraulic elevator according to the present invention calculates in advance the output voltage information of each sensor for the oil temperature detected by the oil temperature detection sensor and stores the output voltage information for each address in a predetermined voltage level order. Then, input the temperature sensor output to the comparator that is input, and detect the presence or absence of a change in the output logic level output from the comparator. If no change in the logic level is detected, abnormal oil temperature fluctuation or oil temperature sensor failure is detected. The apparatus is equipped with means for determining the oil temperature based on the output voltage information at the time of detection when a change in the logic level is detected.

〔作用〕[Effect]

この発明における油圧エレベータの油温検出装置の比較
器が油温センサより一定レベルの油温検出電圧を入力し
ている状態で、記憶部よりD/A変換器を介して上記油
温センサが出力し得る最大電圧レベルより最小電圧レベ
ルに至るまでの電圧出力信号を走査手段により順次入力
し比較器の論理出力レベルを走査した際に、論理出力レ
ベルの反転検出時点の記憶部読み出し電圧レベルより油
温をレベル検出手段にて判定し、又走査終了に至るまで
論理出力レベルの反転無検出時には、異常判定手段によ
り油温センサ異常又は油温異常変動を判定する。
In a state where the comparator of the oil temperature detection device for a hydraulic elevator in this invention is inputting a constant level of oil temperature detection voltage from the oil temperature sensor, the oil temperature sensor outputs an output from the storage unit via the D/A converter. When the logic output level of the comparator is scanned by sequentially inputting voltage output signals from the maximum possible voltage level to the minimum voltage level by the scanning means, the voltage level read out from the storage section at the time of detection of reversal of the logic output level is The temperature is determined by the level detection means, and when no reversal of the logical output level is detected until the end of the scan, the abnormality determination means determines whether the oil temperature sensor is abnormal or the oil temperature is abnormally fluctuating.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第8図について説
明する。尚、第3図において、(1)〜(10)は第9
図と同一部分を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. In addition, in Fig. 3, (1) to (10) are the 9th
Shows the same parts as the figure.

第1図はこの発明による油圧エレベータの油温検出装置
の一実施例の全体構成図である。第1図から明らかなよ
うに、油タンク(10)の油(2)の温度を検出する油
温センサ(11)を設け、この油温センサ(11)によ
る検出温度を電圧変換して比較器(15)入力とし、該
比較器(15)では、該入力値と予め設定された上記油
温センサの各検出油温に対する電圧値の最大電圧レベル
より最小電圧レベルに至るまで比較し、比較器(15)
の論理出力レベルを走査手段(1a)により走査して走
査時における論理出力レベルの反転の有無をレベル検出
手段(1b)で検出した結果、論理出力レベル反転時の
設定電圧レベルより油温を判定すると共に、レベル反転
無検出時には異常判定手段(Ic)により油温の異常変
動又は油温センサの故障を判定する。そして判定結果に
基づいて油温制御回路(26)を駆動し、油圧エレベー
タを安全運転する。
FIG. 1 is an overall configuration diagram of an embodiment of an oil temperature detection device for a hydraulic elevator according to the present invention. As is clear from Fig. 1, an oil temperature sensor (11) is provided to detect the temperature of the oil (2) in the oil tank (10), and the temperature detected by the oil temperature sensor (11) is converted into voltage and a comparator is connected. (15) as an input, and the comparator (15) compares the input value with the preset voltage value for each detected oil temperature of the oil temperature sensor from the maximum voltage level to the minimum voltage level. (15)
The logic output level of is scanned by the scanning means (1a) and the presence or absence of inversion of the logic output level during scanning is detected by the level detection means (1b).As a result, the oil temperature is determined from the set voltage level at the time of the logic output level inversion. At the same time, when no level reversal is detected, the abnormality determining means (Ic) determines abnormal fluctuations in oil temperature or failure of the oil temperature sensor. Based on the determination result, the oil temperature control circuit (26) is driven to safely operate the hydraulic elevator.

tJIJz図において(11)は油温センサで例えばN
TCサーミスタ等を用いる。(+)は直流電源、(12
)〜(14)、(17)は抵抗、(18)は可変抵抗、
(15)は比較器、(1G)はD/A変換器で、Vsは
この基準電圧入力、DIはoo−o7より成る8ビツト
構成のディジタル信号入力、VDはDI及びVsによっ
て決まるアナログ出力電圧である。 (20)は走査手
段、レベル検出手段、異常判定手段を右するマイクロコ
ンピュータ、(21)、(25)はアナログ信号とディ
ジタル信号の変換を行うインターフェース入力及び出力
回路であり、CPU(22)と信号を受信する。 (2
3)はROM 、 (24)はRAMである。 (26
)は油温制御回路で回路中(27)は油温低下時の油温
上昇回路で例えば電動機を廻し油の還流を行なったり、
ヒーターを接続したりする。又上記油温制御回路(28
)中(28)は油温上昇時の運転休止回路で、例えば乗
場呼を無効としかごを起動不能として休止させる。
In the tJIJz diagram, (11) is the oil temperature sensor, for example N
Use a TC thermistor etc. (+) is a DC power supply, (12
) to (14), (17) are resistors, (18) are variable resistors,
(15) is a comparator, (1G) is a D/A converter, Vs is this reference voltage input, DI is an 8-bit digital signal input consisting of oo-o7, and VD is an analog output voltage determined by DI and Vs. It is. (20) is a microcomputer that functions as scanning means, level detection means, and abnormality determination means; (21) and (25) are interface input and output circuits that convert analog signals and digital signals; Receive a signal. (2
3) is a ROM, and (24) is a RAM. (26
) is an oil temperature control circuit, and (27) in the circuit is an oil temperature increase circuit when the oil temperature drops, for example, to rotate the electric motor and recirculate the oil.
Connect a heater. In addition, the oil temperature control circuit (28
) (28) is an operation stop circuit when the oil temperature rises, and for example, stops the car by disabling hall calls and making it impossible to start the car.

第4図はサーミスタ(11)の検出温度と出力電圧の関
係を示した温度−電圧特性図である。一般に油圧エレベ
ータは5℃〜60℃程度の範囲で正規の運転を行うので
温度は一般的にこの範囲で管理すればよいが、サーミス
タ等検出回路の誤差及び低温側は冬場据付時油温の低い
場合を考えて、油温検出範囲は一り℃〜70℃程度で管
理すればよい。
FIG. 4 is a temperature-voltage characteristic diagram showing the relationship between the temperature detected by the thermistor (11) and the output voltage. Hydraulic elevators generally operate normally within the range of 5℃ to 60℃, so the temperature can generally be controlled within this range, but errors in detection circuits such as thermistors and low temperatures may occur due to low oil temperature during winter installation. Considering the case, the oil temperature detection range may be controlled within a range of about 1°C to 70°C.

上記のように油温検出範囲を設定したので抵抗R1とサ
ーミスタ抵抗Rrsとで分圧されサーミスタ(11)の
両端に表れる電圧VIHは検出油1m−5℃〜70℃の
時のサーミスタ分圧電圧(V TH(−5))が検出油
温70℃の時のサーミスタ分圧電圧(VlH(7o))
より大きいのはNTCサーミスタを用いた為である。
Since the oil temperature detection range is set as above, the voltage VIH that is divided by the resistor R1 and the thermistor resistor Rrs and appears across the thermistor (11) is the thermistor divided voltage when the detected oil is 1 m - 5°C to 70°C. (VTH(-5)) is the thermistor partial voltage (VlH(7o)) when the detected oil temperature is 70℃
The reason why it is larger is because an NTC thermistor is used.

次にD/A変換器(16)のアナログ出力の設定を説明
する。油温が上記−5℃より低い場合、又はサーミスタ
(11)が断線した場合には、油温検出時にこれを異常
と判断する必要があり、この異常判断により油温管理外
での運転を起動不能等にしないようにする必要がある。
Next, the setting of the analog output of the D/A converter (16) will be explained. If the oil temperature is lower than the above -5℃ or if the thermistor (11) is disconnected, it is necessary to determine this as an abnormality when detecting the oil temperature, and this abnormality judgment starts operation outside of oil temperature control. It is necessary to make sure that it does not become impossible.

従ってこれを達成する為DI大入力DO”07ビツトを
全てrlJとしたときのアナログ出力v[lは上記VI
H(−5)より低目(例えばV r+u−s)−0,3
V ) ニする様に抵抗(18)ノ値を変えVsを設定
する。
Therefore, in order to achieve this, the analog output v [l is the above VI
Lower than H(-5) (e.g. V r+u-s) -0,3
V) Change the value of the resistor (18) to set Vs.

次に第5図〜第8図により油温検出動作を説明する。第
5図中(23)はROMで例えばEPROM又はEEP
ROM等で構成される。ここには予め計算により求めた
サーミスタの油温に応じた抵抗変化値を電圧変換したV
l)lと同電圧となる様なり/A変検出力VDを出力す
る為のディジタル入力電圧情報DIが[)O−07ビツ
トの8ビツト構成の2進数値で記憶されており、アドレ
ス1000番地以降には例えばTM(−5)〜TM(7
0)までの値(76個)が1℃きざみで記憶されている
Next, the oil temperature detection operation will be explained with reference to FIGS. 5 to 8. (23) in Fig. 5 is a ROM, such as an EPROM or EEP.
It consists of ROM etc. Here, V
l) The digital input voltage information DI for outputting the /A change detection force VD is stored as an 8-bit binary value of [)O-07 bits, and is stored at address 1000. After that, for example, TM(-5) to TM(7
0) (76 values) are stored in 1°C increments.

従って前述の如く、TM(−5)= FFH(−!5℃
の時の値)が入っていることになる。第6図〜第8図は
油温検出プログラムで第6図の初期設定ルーチンは例え
ば電源投入時又はCPUリセット時にのみ通るプログラ
ムである。
Therefore, as mentioned above, TM (-5) = FFH (-!5℃
) will be included. 6 to 8 are oil temperature detection programs, and the initial setting routine shown in FIG. 6 is a program that is executed only when the power is turned on or when the CPU is reset, for example.

今市源を投入すると、 CPU(22)はリセット後こ
の初期設定ルーチンを通過する。これによりフロー(5
0)ではCPU(22)より出力回路(25)を通り0
UTI、すなわち[1G−07の8ビット信号が全て「
1」であるFF、を出力し、これがDlに入力され、D
/A変換器(1B)(7)出力VoはV yH(−s)
−0,3Vの電圧を発生する。同時にこの出力値はRA
に(24)上にT)IMOとして記憶される。この後フ
ロー(51)の割込周期設定により (例えばインテル
8085AによればRST7.5等の周期割込設定を行
う為)一定時間後、第7.8図の油温処理ルーチンへ飛
ぶことになる。
When the power is turned on now, the CPU (22) goes through this initialization routine after being reset. This results in flow (5
0), the output from the CPU (22) passes through the output circuit (25) to 0.
UTI, that is, all 8-bit signals of [1G-07 are
FF, which is 1", is input to Dl, and D
/A converter (1B) (7) Output Vo is V yH (-s)
Generates a voltage of -0.3V. At the same time, this output value is RA
(24) on T) is stored as IMO. After this, depending on the interrupt cycle setting in flow (51) (for example, according to the Intel 8085A, to set a cycle interrupt such as RST7.5), after a certain period of time, the flow jumps to the oil temperature processing routine in Figure 7.8. Become.

今油温センサ(11)が断線等になっていたとすると、
油温センサ(11)は−■の油温ということになり、比
較器(15)の(+)個入力の油温センサ電圧VIHは
V TH(−5)よりも大きな値となっている。
Assuming that the oil temperature sensor (11) is disconnected, etc.
The oil temperature sensor (11) has an oil temperature of -■, and the (+) input oil temperature sensor voltage VIH of the comparator (15) has a value larger than VTH (-5).

従ってこの値は比較器(15)の(−)個入力よりも大
きいので比較器(15)は(◆)電位を出力し、該(+
)電圧を入力回路(21)によりrFFuJ信号としC
PU(22)に入力される。この為第7図フロー(52
)により THMI=FFn としてRAM(24)に
記憶される。
Therefore, since this value is larger than the (-) inputs of the comparator (15), the comparator (15) outputs the (◆) potential and the (+)
) voltage as rFFuJ signal by input circuit (21).
It is input to the PU (22). For this reason, the flow in Figure 7 (52
) is stored in the RAM (24) as THMI=FFn.

次にフロー(53)でVTHがV T)+(−5)より
大きいと判定された結果フロー(5B)、(57)を通
ることにより、FLACllIFFHとし、又、THC
GにTHMOの値FFHを入れる。これにより現在の油
温はデータ値としてFFHになっと認識されたことにな
る。続いてフロー(5B)によりTHMOを (FFH
−1)の値、即ちROM(23)の10018アドレス
に記憶されたサーミスタ電圧情報rFE+ Jとし、フ
ロー(59)、(80)により、再びno−01値とし
てDIに入力されD/A変換器を通して出力される。こ
の出力電圧はDI= FFHで出力Vo−V+h(−5
)−0,3Vニ対し−c−−H=した電圧となる8次に
再び割込みが入ると、再びフロー(52)からの処理が
始まり、この場合も油温センサ電圧Vl)lはVlll
(−5>であるのでTHM I =IFF+ となり、
FLAG1=Fh なので(54)から(55)へ行く
ことになる。この結果油温値はFFHと判定される。
Next, by passing through flow (5B) and (57) as a result of flow (53) where VTH is determined to be larger than V T
Enter the THMO value FFH into G. This means that the current oil temperature is recognized as FFH as a data value. Next, THMO (FFH
-1) value, that is, the thermistor voltage information rFE+J stored at address 10018 in the ROM (23), is again input to the DI as the no-01 value through flows (59) and (80), and is input to the D/A converter. is output through. This output voltage is DI=FFH and output Vo-V+h(-5
) -0.3V vs. -c--H = 8 Next, when an interrupt occurs again, processing starts again from flow (52), and in this case too, the oil temperature sensor voltage Vl)l becomes Vllll.
(-5>, so THM I = IFF+,
Since FLAG1=Fh, we will go from (54) to (55). As a result, the oil temperature value is determined to be FFH.

このように各フローを繰り返し実行することで通常の油
温範囲を外れていると判断されたのでフロー(54) 
、(55)を通り、(83)で出力及びフラグをリセッ
トする。油温範囲外が判断されると本例ではフロー(6
3)で油温表示器(29)を消灯させる出力を発すると
共に、異常信号を発生し、エレベータを例えば休止、運
転不能等を行なわせる。 以上のごとくエレベータの油
温検出部の異常が油温表示器消灯により判定された後、
再び割込みが入ると再度フロー(52)の処理が行なわ
れる。上記油温センサ等で代る検出回路はサーミスタ等
半導体で構成されているが、サーミスタは大きな電流、
電圧使用下ではサーミスタの自己発熱により抵抗変化が
大きくなるので検出誤差が生じる。この為低電圧で駆動
しなければならない、しかしながら、この様な低電圧、
低電流のサーミスタ検出信号を例えば油タンクより制御
盤へ送るとその間でサージ等をひろう恐れがあり、この
場合油温は正常なのに油温センサ(11)の比較器(1
5)への信号がマイクロコンピュータ(20)へ入力時
には上述の如く異常油温として入力されることもある。
By repeating each flow in this way, it was determined that the oil temperature was outside the normal range, so flow (54)
, (55), and the output and flag are reset at (83). In this example, if it is determined that the oil temperature is outside the range, flow (6)
In step 3), an output is generated to turn off the oil temperature indicator (29), and an abnormality signal is also generated to cause the elevator to be stopped, for example, or rendered inoperable. After the abnormality of the elevator oil temperature detection unit is determined by the oil temperature indicator turning off as described above,
When an interrupt occurs again, the processing in flow (52) is performed again. The detection circuit that replaces the oil temperature sensor etc. mentioned above is composed of a semiconductor such as a thermistor, but thermistor has a large current,
When voltage is used, the resistance change increases due to self-heating of the thermistor, resulting in detection errors. For this reason, it must be driven at a low voltage. However, such a low voltage,
For example, if a low-current thermistor detection signal is sent from the oil tank to the control panel, there is a risk of a surge occurring between the two, and in this case, even though the oil temperature is normal, the comparator (1
When the signal to 5) is input to the microcomputer (20), it may be input as an abnormal oil temperature as described above.

このプログラムでは、上記のような偶発的な異常信号の
混入により異常油温と判断しない為CPu動作時は常に
一定周期で同一の油温判定処理が行なわれる。それによ
り上記該異常判定をせず油温に応じた電圧入力が入ると
THM Iは第1回目でフロー(54)へは行かないの
で、フロー(53)以下の処理に行き、所定の油温が判
定されるとフロー(54)は解除され、正常に表示及び
運転が行なわれる。 次に例えば油温が6℃であった場
合を説明する。 THMOはフロー(50)又はフロー
(63)を通って最大値に設定されているとする*VT
HはVHI(6)の電圧が発生し、比較3 (15)(
7) (−)側D/A出力(Vlll(−5)−0,3
V) ty)方が大きいので、この場合フロー(52)
、(53)でT)IN Iは「00日」であり、又、 
FLAGIはリセットされているので、フロー(54)
より(58)を通る。ここで次の油温検出値における電
圧情報をROM(23)より読み出す為CPUよりの出
力値THMOをOIH減算し、 ROM(23)の電圧
情報なり/に変換器(11()−2出力する。 D/A
変換器(16)より出力が出るので比較器(15)は油
温センサ出力とアナログ電圧値との比較を行い論理出力
を出す。
In this program, the same oil temperature determination process is always performed at a constant cycle when the CPU is operating, so that it is not determined that the oil temperature is abnormal due to the accidental mixing of an abnormal signal as described above. As a result, if the above abnormality judgment is not made and a voltage input according to the oil temperature is input, THM I will not go to flow (54) for the first time, so it will go to the processing from flow (53) onwards, and will set the specified oil temperature. When it is determined, the flow (54) is canceled and normal display and operation are performed. Next, a case where the oil temperature is, for example, 6° C. will be explained. Assume that THMO is set to the maximum value through flow (50) or flow (63) *VT
H generates a voltage of VHI (6), and comparison 3 (15) (
7) (-) side D/A output (Vllll(-5)-0,3
V) ty) is larger, so in this case flow (52)
, in (53), T)IN I is "00 days", and
Since FLAGI has been reset, flow (54)
Pass through (58). Here, in order to read the voltage information at the next oil temperature detection value from the ROM (23), OIH is subtracted from the output value THMO from the CPU, and the voltage information in the ROM (23) is output to the converter (11 () - 2). .D/A
Since the output is output from the converter (16), the comparator (15) compares the oil temperature sensor output with the analog voltage value and outputs a logical output.

この後刻込みがかかり入力回路(21)を介して再び丁
HMIの信号が取り込まれるが01+程度の差ではVD
出力の低下はわずかであり、同一動作をくり返す。TH
MOが順次減算されて油温6℃の値がTM(6)又はT
M(6)−01Hになると、比較器(15)の入力(−
)側の電圧が大となり、従って割込みでフロー(52)
にくるとTHMIはroOuJからrFFuJ と変化
し、フロー(53)、(513)を通ってフロー(57
)へくる。
After this, engraving is performed and the HMI signal is taken in again via the input circuit (21), but with a difference of about 01+, VD
The decrease in output is slight, and the same operation is repeated. T.H.
MO is sequentially subtracted and the value at oil temperature 6℃ is TM (6) or T
When M(6)-01H is reached, the input (-
) side becomes large, so the flow (52) occurs due to an interrupt.
THMI changes from roOuJ to rFFuJ and passes through flows (53) and (513) to flow (57).
) to come.

フロー(57)により今出力した油温値に対応する油温
データTHMOがTHC:Gに記憶され、この油温検出
装置は油タンクの油温をTHMIの変化をとらえて検出
したことになる。
Through flow (57), the oil temperature data THMO corresponding to the oil temperature value just output is stored in THC:G, and this oil temperature detection device detects the oil temperature in the oil tank by capturing the change in THMI.

同時にFLAGIにrFFHJを入れて再びTHMOを
OIH減算して割込み待ちとなる。以後同様に↑Hに0
を4回減算後、割込みがフロー(52)−(53)−(
5B)−(81)で「Y」となると、即ちTHMIのr
ooHJからrFF++Jへの変化をとらえた点の油温
データを記憶し、その後油温データを低い方に下げて出
力するので本来正常ならばTHMIは常にrFFHJで
あり、4回正常が続いたことを判定し、次のサブルーチ
ン(62)へ行かせる。
At the same time, rFFHJ is placed in FLAGI, OIH is subtracted from THMO again, and the process waits for an interrupt. After that, 0 to ↑H in the same way.
After subtracting 4 times, the interrupt flows as (52)-(53)-(
5B) - (81) becomes "Y", that is, r of THMI
The oil temperature data at the point where the change from ooHJ to rFF++J is captured is memorized, and then the oil temperature data is lowered and output, so if it is normal, THMI will always be rFFHJ, indicating that it has been normal four times. It is determined and the process proceeds to the next subroutine (62).

これはサーミスタ油温センサの出力電圧とD/A出力電
圧の差がほとんどOvの様な場合、比較器(15)はど
ちらかがわずかでも高いと出力が正逆電圧となるのでこ
の様な微妙な領域の除去と、油温は時々刻々と変化する
ものであり、場合によっては比較器(15)が発振し、
正逆電圧をくり返すことがありこの様な状態での入力と
り込みはとり込みタイミングによってはTHMIがro
OJ 、  rFFJどちらでも生じる可能性があり、
信頼できないデータとしてTHMIが一度rFFHJに
なったのに次にrooHJで入力するとフロー(53)
−(54)−(133)と通らせ、再び始めから(TH
MOがrFF++Jから)演算させる様にして信頼性を
上げている。
This is because when the difference between the output voltage of the thermistor oil temperature sensor and the D/A output voltage is almost Ov, the output of the comparator (15) will be a forward or reverse voltage if either is even slightly high. The oil temperature changes from moment to moment, and in some cases the comparator (15) may oscillate.
The positive and reverse voltages may be repeated, and when the input is taken in such a state, the THMI may be ro depending on the timing of the input.
It can occur in both OJ and rFFJ,
THMI once became rFFHJ as unreliable data, but if you input it next time with rooHJ, the flow (53)
-(54)-(133), and start again from the beginning (TH
The reliability is increased by having the MO calculate from rFF++J).

−力変化した時点より4回THM IがrFFuJ値が
続いた場合にはフロー(62)へ行かせ、油温検出が信
頼できると判断し、油温判定サブルーチン処理を行う様
にしている。第8図に油温判定ルーチンを示す。
- If the rFFuJ value of THM I continues four times after the force change, the process goes to flow (62), it is determined that the oil temperature detection is reliable, and the oil temperature determination subroutine process is performed. FIG. 8 shows the oil temperature determination routine.

今検出し油温データがTHC:Gとしてメモリに記憶さ
れている。これに対してアドレス1000)1以降に第
9図ROM(23)には前述した如く油温値に対応する
設定油温データ値が入っており、フロー(71)では(
7B)−(77)を通って再び(71)に返るループを
くり返し、設定油温データ値を低温側へ移してゆき、設
定油温データ値が丁)1(7)が即ち7℃となったとき
、フロー(71)での判定で(73)へゆき、(76)
であらかじめFRAG2がrFFHJとなっているので
(74)のサブルーチンへゆき、油温例えば「6」を出
力回路(25)より表示器(29)に出力される。これ
により油温検出は終了し、フロー(75)−(83)を
通って再び同様に油温検出を常時くり返す、この場合油
温は低目であり、例えばあらかじめ設定された下限油温
(例えば10℃)より低いので出力回路(25)を通し
て油温上昇回路(27)に信号が出力され、油温上昇運
転が行われる。
The oil temperature data just detected is stored in the memory as THC:G. On the other hand, after address 1000)1, the ROM (23) in FIG. 9 contains the set oil temperature data value corresponding to the oil temperature value as described above, and in the flow (71),
7B) - (77) and returns to (71) again, the set oil temperature data value is moved to the lower temperature side, and the set oil temperature data value becomes 7)1(7), that is, 7℃. Then, the judgment in flow (71) leads to (73), and (76)
Since FRAG2 is set to rFFHJ in advance, the process goes to the subroutine (74), and the oil temperature, for example "6", is output from the output circuit (25) to the display (29). As a result, the oil temperature detection ends, and the oil temperature detection is repeated again in the same way through the flow (75)-(83).In this case, the oil temperature is low, for example, the lower limit oil temperature ( For example, since the oil temperature is lower than 10° C.), a signal is outputted to the oil temperature raising circuit (27) through the output circuit (25), and an oil temperature raising operation is performed.

油温ば正常範囲内で今高温側にある時も同様の油温検出
が行なわれ油温表示すると共に運転休止回路(2日)に
信号が入力され、休止等により油温上昇阻止が行なわれ
る。この場合この運転の復帰も同様の油温検出と運転処
理サブルーチンでの設定により行なわれる。
Even if the oil temperature is within the normal range and currently on the high side, the same oil temperature detection is performed, the oil temperature is displayed, and a signal is input to the operation suspension circuit (2 days), which prevents the oil temperature from rising by suspending the operation, etc. . In this case, the return to operation is also carried out by similar oil temperature detection and settings in the operation processing subroutine.

次に例えば油温センサが短絡状態になった場合を説明す
る。この場合VIHはOvになっており、比較器(15
)の(+)側はOvになっている。前記と同様にTHM
OがrFF++Jから減算してゆくが比較器(15)の
(−)側が高電圧なのでT)!M IはrohJであり
第7図の(52)−(53)−(54)−(5B)−(
59)−(81)の各ロープを順次くり返してゆく。
Next, a case will be described in which, for example, the oil temperature sensor becomes short-circuited. In this case, VIH is Ov, and the comparator (15
) is Ov. As above, THM
O is subtracted from rFF++J, but since the (-) side of the comparator (15) is at high voltage, T)! M I is rohJ and (52)-(53)-(54)-(5B)-(
Repeat each rope in sequence from 59) to (81).

ここで、T)l)10の値が本例ではr2F++J(例
えば70℃とかの値)となったときフロー(59)によ
り(54)−(5)と通り断線時と同様油温表示を消灯
し異常信号発生により例えばエレベータを休止させる。
Here, when the value of T)l)10 becomes r2F++J (for example, a value of 70℃) in this example, the flow (59) passes through (54)-(5) and turns off the oil temperature display in the same way as when the wire is disconnected. When an abnormal signal is generated, for example, the elevator is stopped.

ここでTHMO出力の最終値を2FHとしたのはOOu
まで減算させ比較した場合D/A変換器(18)の出力
が素子のバラツキ、経年変化等によりOv以下となるこ
とも考えられること、又、運転休止回路(28)の故障
等によっては油温ば正常範囲を越えて上昇することも考
えられるので油温検出誤差を含めこれを最小限に抑えら
れる様に構成するものである。
Here, the final value of THMO output is set to 2FH is OOu
When compared by subtracting up to Since it is conceivable that the oil temperature may rise beyond the normal range, the structure is designed to minimize this including the oil temperature detection error.

尚、本実施例では油温データを低温側より減算によりス
キャンするように構成したが、加算する方法でも効果は
同様である。
In this embodiment, the oil temperature data is scanned by subtraction starting from the low temperature side, but the same effect can be obtained by adding the oil temperature data.

又、A/D変換器を用いずD/A変換器を用い1割込み
周期毎に1カウントの油温検出を行われる様にしたが、
これは油圧エレベータの油温の変化が急激には行なわれ
ないこと、又、サーミスタ油温センサの応答性が油に直
接浸されないので遅いこと等により実使用上問題なく使
用できる為である。
Also, one count of oil temperature detection was performed every interrupt cycle using a D/A converter instead of an A/D converter, but
This is because the oil temperature of the hydraulic elevator does not change suddenly, and the response of the thermistor oil temperature sensor is slow because it is not directly immersed in oil, so it can be used without any problems in actual use.

又、設定油温データを1℃単位としたが特に制約される
もではない。
Further, although the set oil temperature data is set in units of 1°C, there is no particular restriction.

又、異常時の表示を消灯としたが、断線又は油温低下異
常と短絡又は油温上昇異常を数字以外の表示を用い、点
灯させて区分する様にしてもよい。
Furthermore, although the display in the event of an abnormality is turned off, a disconnection or oil temperature drop abnormality and a short circuit or oil temperature rise abnormality may be distinguished by lighting using a display other than numbers.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、油温検出用センサの
電圧出力値と、上記センサが油温検出を行なう正規油温
範囲より広い油温範囲の各油温に対するセンサ出力電圧
設定値を全油温範囲に渡って比較器で比較し、比較時に
おける比較器の論理出力レベル反転検出に基づいて油温
を検出すると共に、論理出力レベルの無反転検出に基づ
いて油温の上昇変動又は低下変動を検出するように構成
したので、単一の油温センサで広範囲の温度判定が行な
えると共に油温異常変動検出が可能となり装置全体小型
化並び安価になる効果がある。
As described above, according to the present invention, the voltage output value of the oil temperature detection sensor and the sensor output voltage setting value for each oil temperature in the oil temperature range wider than the normal oil temperature range in which the sensor performs oil temperature detection are determined. A comparator compares the entire oil temperature range, and the oil temperature is detected based on the logic output level reversal detection of the comparator during the comparison, and the oil temperature increase fluctuation or oil temperature detection is performed based on the logic output level non-reversal detection. Since the system is configured to detect fluctuations in decrease, a single oil temperature sensor can perform temperature determination over a wide range, and also detect abnormal oil temperature fluctuations, which has the effect of reducing the overall size and cost of the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による油圧エレベータの油温検出装置
の一実施例の全体構成図、第2図は本発明の油温検出回
路の電気接続を示す構成図、第3図は油圧エレベータの
構成図、第4図は油温検出器の特性図、第5図(a) 
、 (b)は記憶部のメモリ構成図、第6図〜8図は油
温検出器のプログラムを示すフローチャート、第9図は
従来の油圧エレベータの構成図である。 図中、(1a)は走査手段。 (1b)はレベル検出手段、(IC)は異常判定手段。 (2)は油、(10)は油タンク、(15)は比較器、
(18)はD/A変換器、(26)は油温制御回路。 尚1図中同一符号は同−又は相当部分を示す。
FIG. 1 is an overall configuration diagram of an embodiment of an oil temperature detection device for a hydraulic elevator according to the present invention, FIG. 2 is a configuration diagram showing electrical connections of an oil temperature detection circuit of the invention, and FIG. 3 is a configuration diagram of a hydraulic elevator. Figure 4 is a characteristic diagram of the oil temperature detector, Figure 5 (a)
, (b) is a memory configuration diagram of the storage section, FIGS. 6 to 8 are flowcharts showing the oil temperature detector program, and FIG. 9 is a configuration diagram of a conventional hydraulic elevator. In the figure, (1a) is a scanning means. (1b) is a level detection means, and (IC) is an abnormality determination means. (2) is oil, (10) is oil tank, (15) is comparator,
(18) is a D/A converter, and (26) is an oil temperature control circuit. Note that the same reference numerals in Figure 1 indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)油圧エレベータの油温を油温センサにて検出し該
検出出力に基づいてエレベータを制御する油圧エレベー
タの油温検出装置において、上記油温センサが熱電変換
し得る油温範囲における各油温に対応する各出力電圧情
報を一定順位で各アドレスに記憶した記憶部と、該記憶
部より読み出される電圧情報を、上記感温センサより出
力される電圧値に対してレベル差を持ってアナログ変換
するD/A変換器と、上記油温センサ出力を入力する比
較器へ上記記憶部のアドレス内容を上位アドレスより順
次上記D/A変換器を通して送出し比較器出力を走査す
る走査手段と、走査時における比較器出力の論理レベル
変化の有無を検出するレベル検出手段と、論理レベル変
化検出時の読み出しアドレス情報より油温を判定すると
共に、変化無検出時に油温異常または油温センサ不良を
判定する異常判定手段とを備えたことを特徴とする油圧
エレベータの油温検出装置。
(1) In a hydraulic elevator oil temperature detection device that detects the oil temperature of a hydraulic elevator with an oil temperature sensor and controls the elevator based on the detected output, each oil in the oil temperature range that can be thermoelectrically converted by the oil temperature sensor A memory section stores each output voltage information corresponding to the temperature at each address in a fixed order, and the voltage information read from the memory section is analogized with a level difference with respect to the voltage value output from the temperature sensor. a D/A converter for converting the oil temperature sensor; and a scanning means for sending the address contents of the storage unit sequentially from the upper address through the D/A converter and scanning the comparator output to a comparator for inputting the oil temperature sensor output; A level detection means detects the presence or absence of a logic level change in the comparator output during scanning, and the oil temperature is determined based on read address information when a logic level change is detected, and when no change is detected, an oil temperature abnormality or oil temperature sensor failure is detected. An oil temperature detection device for a hydraulic elevator, comprising an abnormality determination means for determining an abnormality.
(2)上記D/A変換器の最大出力電圧レベルを、正規
油温値範囲内で油温センサが検出できる最低油温に対応
する電圧信号レベルに対し高く設定したことを特徴とす
る特許請求の範囲第1項記載の油圧エレベータの油温検
出装置。
(2) A patent claim characterized in that the maximum output voltage level of the D/A converter is set higher than the voltage signal level corresponding to the lowest oil temperature that can be detected by the oil temperature sensor within the normal oil temperature value range. The oil temperature detection device for a hydraulic elevator according to item 1.
(3)上記D/A変換器の最小出力電圧レベルを、正規
油温値範囲内で油温センサが検出できる最高油温に対応
する電圧信号レベルに対し同等又は以下に設定したこと
を特徴とする特許請求の範囲第1項記載の油圧エレベー
タの油温検出装置。
(3) The minimum output voltage level of the D/A converter is set to be equal to or lower than the voltage signal level corresponding to the highest oil temperature that can be detected by the oil temperature sensor within the normal oil temperature value range. An oil temperature detection device for a hydraulic elevator according to claim 1.
JP61137445A 1986-06-13 1986-06-13 Oil temperature detector for hydraulic elevator Pending JPS62294923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61137445A JPS62294923A (en) 1986-06-13 1986-06-13 Oil temperature detector for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61137445A JPS62294923A (en) 1986-06-13 1986-06-13 Oil temperature detector for hydraulic elevator

Publications (1)

Publication Number Publication Date
JPS62294923A true JPS62294923A (en) 1987-12-22

Family

ID=15198783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61137445A Pending JPS62294923A (en) 1986-06-13 1986-06-13 Oil temperature detector for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPS62294923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727164A (en) * 2017-12-29 2020-09-29 通力电梯有限公司 Escalator monitoring system, escalator monitoring method, sound data collection device and clamp used for escalator monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140077A (en) * 1978-04-24 1979-10-30 Mitsubishi Electric Corp Method of detecting and controlling temperature for electronic oven and so on
JPS5999227A (en) * 1982-11-29 1984-06-07 Mitsubishi Electric Corp Oil temperature detector of hydraulic elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140077A (en) * 1978-04-24 1979-10-30 Mitsubishi Electric Corp Method of detecting and controlling temperature for electronic oven and so on
JPS5999227A (en) * 1982-11-29 1984-06-07 Mitsubishi Electric Corp Oil temperature detector of hydraulic elevator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727164A (en) * 2017-12-29 2020-09-29 通力电梯有限公司 Escalator monitoring system, escalator monitoring method, sound data collection device and clamp used for escalator monitoring device
CN111727164B (en) * 2017-12-29 2023-04-14 通力电梯有限公司 Escalator monitoring system, escalator monitoring method, sound data collection device and clamp used for escalator monitoring device

Similar Documents

Publication Publication Date Title
WO2005109650A1 (en) Analog-to-digital converter with range error detection
CN109156073B (en) L ED lighting system short circuit abnormity detection device and method, L ED lighting device
KR19990087417A (en) Method and circuit for testing the electrical actuator drive stage
US4482031A (en) AC elevator control apparatus
KR100220054B1 (en) Error detective device and its method
JPS62294923A (en) Oil temperature detector for hydraulic elevator
US5276292A (en) Operation check device of dynamic brake circuit for elevator
JPS63282063A (en) Detector for temperature of oil for hydraulic elevator
US4841206A (en) Speed control device for an electronic sewing machine
JPH02150735A (en) Leaked solution detecting device
JP2007037311A (en) Power window device
CN211058990U (en) Full-automatic oil removal sewage lifting control system
JPH0921851A (en) Remaining capacity measuring device for battery of elevator emergency power supply device
JPS5999227A (en) Oil temperature detector of hydraulic elevator
JPH0819007A (en) Diagnostic device for fault of camera
US4766279A (en) Heat variation detecting circuit for the microwave oven
KR950002168A (en) Automatic noise discrimination device for motor noise and vibration
KR910005305B1 (en) Infrared rays lamp automatic damage detecting apparatus and method of reaction thermal control system
JPH1153037A (en) Driving output monitoring circuit
KR20020032099A (en) portable diagnosis system for sefety of an elevator
KR100612112B1 (en) Elevator
KR100405286B1 (en) Control apparatus for use in a washing apparatus of an automatic car washing system
JPH0511862A (en) Temperature detecting device
JPH04305172A (en) Judging circuit for life of smoothing capacitor
JPS58209633A (en) Lamp disconnection detection device