JPS63281786A - Production of clad material - Google Patents

Production of clad material

Info

Publication number
JPS63281786A
JPS63281786A JP11607487A JP11607487A JPS63281786A JP S63281786 A JPS63281786 A JP S63281786A JP 11607487 A JP11607487 A JP 11607487A JP 11607487 A JP11607487 A JP 11607487A JP S63281786 A JPS63281786 A JP S63281786A
Authority
JP
Japan
Prior art keywords
heating
slab
heating furnace
clad material
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11607487A
Other languages
Japanese (ja)
Inventor
Yukio Konuma
小沼 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11607487A priority Critical patent/JPS63281786A/en
Publication of JPS63281786A publication Critical patent/JPS63281786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To save a fuel cost and to improve a product quality by evacuating the inner part of an assembly slab, coating the surface of a clad material by a protection material and executing hot rolling after heating by a continuous type heating furnace. CONSTITUTION:The surfaces of a base metal 10 and clad material 12 are cleaned and an assembly slab is formed as well with boxing welding. The upper and lower faces of this assembly slab are coated by the protection stock 20 of an iron plate, etc. to heat the slab by charging it into a continuous type heating furnace. A composite clad material is formed by subjecting the assembly slab after heating to hot rolling. In this case, the assembly slab is reduced at its surface heating speed due to the interposition of the protection material 20 to cause relaxation heating effect. The cavity generation between the base metal 10 and clad material 12 is therefore prevented because of its becoming of the heating similar to a batch type heating furnace. Owing to using a continuous type heating furnace the fuel cost is saved and yet the product quality is improved as well.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加熱燃料原単位、圧延能率の優れたクラフト
材、例えば厚板クラッド鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing kraft materials, such as thick clad steel plates, which have excellent heating fuel consumption and rolling efficiency.

特に、本発明は、組み立てスラブを形成後、連続式で加
熱してから熱間圧延することからなるクラッド鋼板の製
造方法に関する。
In particular, the present invention relates to a method for producing clad steel sheets, which comprises forming assembled slabs, continuously heating them, and then hot rolling them.

(従来の技術) 従来にあっては、熱間圧延方式によるクラッド材の製造
方法は、それぞれ清浄にした母材および合せ材の合せ面
を重ね合わせ、これらを全周溶接組み立てスラブとして
から熱間圧延を行っていた。
(Prior art) Conventionally, the method for manufacturing cladding materials using the hot rolling method involves overlapping the mating surfaces of the cleaned base material and cladding material, welding them all around to form a slab, and then hot rolling. It was rolling.

しかし、四周溶接組み立てスラブ、特に線膨張係数の大
きく異なる種類の板材のクラッド化を行う場合には、組
み立てスラブを熱間圧延に先立って連続加熱炉に装入す
ると、母材と合せ材の板厚差に基づく昇温スピードの不
均一から熱膨張による変形量が不均一となり、例えば第
1図に示すように、母材10と合せ材12の合せ面に空
洞14ができてしまい、その後、圧延してもこの空洞1
4の部分は圧着できない。
However, when performing cladding of four-circumference welded assembled slabs, especially plates of plates with significantly different coefficients of linear expansion, if the assembled slabs are charged into a continuous heating furnace prior to hot rolling, the base material and laminate plate The amount of deformation due to thermal expansion becomes non-uniform due to the non-uniform heating speed due to the difference in thickness, and for example, as shown in FIG. Even after rolling, this cavity 1
Part 4 cannot be crimped.

したがって、従来にあっては、昇温スピードの速い、連
続加熱炉により組み立てスラブの加熱は不可能であり、
昇温スピードの遅い、バッチ式加熱炉で加熱せざるを得
なかった。このため、バッチ式では、一度に加熱できる
鋼材量の制約、および加熱燃料の大量の消費が見られ、
生産能率の低下、コストの上昇は免れなかった。
Therefore, conventionally, it is impossible to heat assembled slabs using a continuous heating furnace, which has a fast temperature rise speed.
It had no choice but to heat in a batch-type heating furnace, which has a slow temperature rise speed. For this reason, the batch method is limited in the amount of steel that can be heated at one time, and consumes a large amount of heating fuel.
A decline in production efficiency and an increase in costs were unavoidable.

(発明が解決しようとする問題点) 本発明の一般的な目的は、かかる従来技術の問題を解決
する新規なりラッド材の製造方法を提供することである
(Problems to be Solved by the Invention) The general object of the present invention is to provide a novel method for manufacturing rudd material that solves the problems of the prior art.

本発明の具体的な目的は、連続式加熱炉での加熱を比較
的簡単に実施することができ、圧延能率の大幅な向上を
図ること、および連続加熱方式のため燃料を節約するこ
とのできる、クラッド材、特にクラフト鋼材の製造方法
を提供することである。
A specific object of the present invention is to enable heating in a continuous heating furnace to be carried out relatively easily, to significantly improve rolling efficiency, and to save fuel due to the continuous heating method. It is an object of the present invention to provide a method for producing cladding materials, especially kraft steel materials.

なお、クラフト材はクラッド鋼板を包含する広い概念の
用語であるが、以下にあっては、そのうち最も一般的な
りラフト鋼板を例にとり説明する。
Note that kraft material is a broad term that includes clad steel plates, but in the following, the most common of these, raft steel plates, will be explained as an example.

(問題点を解決するための手段) ここに、本発明者らはかかる問題を解決すべ(種々検討
を重ねたところ、連続式加熱を可能とする方法があるこ
とを知り、本発明を完成した。
(Means for Solving the Problems) The inventors of the present invention have found that there is a method that enables continuous heating, and have completed the present invention. .

よって、本発明の要旨とするところは、母材および合せ
材の各合せ面を清浄面としてそれらを重ね合わせ、該合
せ面の周縁をシール溶接し、内部を真空吸引して全周溶
接組み立てスラブとなし、該組み立てスラブの少なくと
も合せ社外表面を保護材で覆ってから連続式加熱炉に装
入し、所定温度に加熱した後、熱間圧延してクラフト化
を行うことを特徴とする、クラッド材の製造方法である
Therefore, the gist of the present invention is to stack the mating surfaces of the base material and the mating material as clean surfaces, seal-weld the peripheries of the mating surfaces, vacuum the inside, and assemble the entire circumference welding slab. The cladding is characterized in that at least the outer surface of the assembled slab is covered with a protective material, then charged into a continuous heating furnace, heated to a predetermined temperature, and then hot rolled to form a kraft. This is a method of manufacturing the material.

上記シール溶接は、合せ材と母材との合せ面の周縁を外
気と遮断するために行う溶接をいい、その際には一部未
溶接で残し、そこから合せ面に残存する空気を真空吸引
して除去するのである。そして最後に真空吸引口をも溶
接により封止して合せ面のシールを完了するのである。
The above-mentioned seal welding refers to welding that is performed to isolate the periphery of the mating surface between the mating material and the base metal from the outside air. In this case, a part is left unwelded, and the air remaining on the mating surface is vacuum-suctioned from there. and remove it. Finally, the vacuum suction port is also sealed by welding to complete the sealing of the mating surfaces.

このように、本発明にあっては、連続加熱炉装入に際し
、スラブ表面に前述の保護材としての鉄板を乗せ、さら
に所望により裏面にも同じ(保護材としての鉄板を敷い
て装入加熱するのであり、かかる簡便な手段により、予
想外にも、炉内移動中に、それらスラブを構成する金属
材の線膨張係数の違いから、あるいは合せ材のみが急速
に高温加熱されることによる合せ材のみの材料の膨張に
より、母材と合せ材との間に空洞が形成されるのを防止
できるのである。
In this way, in the present invention, when charging the slab into a continuous heating furnace, the above-mentioned iron plate is placed on the surface of the slab as a protective material, and if desired, the same iron plate is placed on the back side (as a protective material), and charging heating is performed. By using such a simple means, unexpected problems arise due to differences in linear expansion coefficients of the metal materials that make up the slabs, or due to rapid heating of only the laminated materials to high temperatures. It is possible to prevent cavities from being formed between the base material and the laminate due to the expansion of the material.

かくして、本発明によれば、溶接組み立てスラブの熱間
圧延に先立ってその連続圧延を可能とし、したがって、
クラッド材の製造を連続ラインで可能とし、生産能率の
向上、さらには連続加熱処理であることから燃料消費の
低減が可能となるのである。
Thus, the invention allows continuous rolling of welded assembled slabs prior to hot rolling, and thus:
This makes it possible to manufacture the cladding material on a continuous line, improving production efficiency, and furthermore, since continuous heat treatment is performed, it is possible to reduce fuel consumption.

(作用) 次に、本発明を添付図面を参照しながら、さらに詳細に
説明する。
(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は、すでに述べたように、従来の方法における空
洞形成を模式的に示すものであり、図中、線膨張係数の
異なる金属板10.12の間に見られる膨張量の差異に
よって、連続的に急速加熱した場合に空洞14の形成は
避けられない、すなわち、四周が溶接固定された合せ材
の場合、急速加熱されると、溶接固定部(四周部)と非
固定部(はぼスラブ全面)とでは、熱膨張時の変形挙動
が著しく異なる。すなわち、四周部は母材スラブの熱膨
張の影響を受け、板厚が厚い場合、しばらくは膨張しな
いため、すぐには膨張しないが、非固定部は板厚が薄い
ため、急速に膨張し、その結果、第1図に示す如き変形
挙動の差がみられ、空洞14が形成されることになる。
As already mentioned, FIG. 1 schematically shows the formation of cavities in the conventional method, and in the figure, the differences in the amount of expansion seen between metal plates 10 and 12 with different coefficients of linear expansion cause The formation of cavities 14 is unavoidable in the case of continuous rapid heating. In other words, in the case of a laminated material whose four circumferences are welded and fixed, when rapidly heated, the welded fixed part (four circumferential parts) and the unfixed part (the non-fixed parts) The deformation behavior during thermal expansion is markedly different between the entire surface of the slab and the full surface of the slab. In other words, the four peripheral parts are affected by the thermal expansion of the base material slab, and if the board is thick, it will not expand for a while, so it will not expand immediately, but the non-fixed part is thin, so it will expand quickly. As a result, a difference in deformation behavior as shown in FIG. 1 is observed, and a cavity 14 is formed.

連続加熱炉では炉雰囲気温度が1000℃以上とかなり
高いため、炉に装入される組立スラブは著しい急速加熱
を受けることになり、上述のような傾向は一層顕著に見
られる。
In a continuous heating furnace, the furnace atmosphere temperature is quite high at 1000° C. or more, so the assembled slabs charged into the furnace are subjected to extremely rapid heating, and the above-mentioned tendency is even more noticeable.

そこで、従来にあっては、かかる急速加熱を避けるため
に、バンチ式として緩加熱を行うのである。
Therefore, conventionally, in order to avoid such rapid heating, slow heating is performed as a bunch method.

しかしながら、第2図に示すように、本発明にあっては
、少なくとも合せ材表面、つまり組立スラブの上面、下
面を、敷板またはカバーと呼ばれる保護材20で覆って
から、連続式加熱炉に装入するようにしたので、加熱炉
内熱エネルギーはまず、保護材20で受熱され、しかる
後、徐々に合せ材12に伝熱されることになる。つまり
、連続加熱炉を使用しながら、加熱速度をバッチ式と同
様に見掛は上は緩加熱となるようにしているのである。
However, as shown in FIG. 2, in the present invention, at least the surface of the laminate material, that is, the top and bottom surfaces of the assembled slab, is covered with a protective material 20 called a bottom plate or cover, and then the continuous heating furnace is loaded. Since the thermal energy in the heating furnace is first received by the protective material 20, the heat is then gradually transferred to the laminate material 12. In other words, while using a continuous heating furnace, the heating rate is set to give an appearance of slow heating, similar to the batch method.

ここで、保護材とは、母材または合せ材と同じ材質でも
また異種金属でもまたセラミック等の非金属であっても
よい。要するに、連続加熱炉に装入された場合に、合せ
材表面が急速に周囲雰囲気からの加熱を受け、急速に加
熱されるのを防止する緩衝材として作用するものであれ
ば、特に制限されないのである。しかし、かかる保護材
は後続工程の熱間圧延に先立って容易に除去されなけれ
ばならないため、具体的には上述のような種類のものに
制限されるのである。
Here, the protective material may be the same material as the base material or the laminate material, a different metal, or a non-metal such as ceramic. In short, there are no particular restrictions as long as the surface of the laminate is rapidly heated by the surrounding atmosphere when charged into a continuous heating furnace, and it acts as a buffer to prevent rapid heating. be. However, since such a protective material must be easily removed prior to the subsequent hot rolling process, it is specifically limited to the types described above.

本発明において使用する上述のような保護材は、組み立
てスラブに溶接固定されていないため、急速加熱されて
も、全面が均一に自由に均一膨張できるため、それ自体
には第1図に関連させて説明した前述のような空洞の形
成はない、保護材の設置形態については特に制限はない
が、単にスラブ表面に乗せるだけでもよく、あるいは位
置がずれないように、加熱時の自由膨張を阻害しない程
度に、適宜箇所において溶接止めを行うようにしてもよ
く、さらには全体を包んでからその継目に沿って溶接を
して封止してもよい、なお、これらの保護材は熱間圧延
に先立ってデスケーリングを行って除去される。
Since the above-mentioned protective material used in the present invention is not welded and fixed to the assembled slab, the entire surface can freely and uniformly expand even if it is rapidly heated. There is no cavity formation as described above, and there are no particular restrictions on the installation form of the protective material, but it may be sufficient to simply place it on the slab surface, or it may be necessary to prevent free expansion during heating so that the protective material does not shift. It may be possible to weld at appropriate locations to prevent the damage from occurring, or it may be sealed by welding along the seams after wrapping the whole. Furthermore, these protective materials may be hot rolled Descaling is performed prior to the removal.

このように、保護材で覆っているため、スラブ表面の加
熱速度はかなり緩和され、バッチ式に見られる緩加熱効
果がみられる。しかし、バッチ式のように長期間の加熱
を必要とせず、加熱所要時間は、大約2〜6時間とバッ
チ式加熱炉の場合のほぼ1/3〜115程度となる。
In this way, since the slab is covered with a protective material, the heating rate of the slab surface is considerably moderated, resulting in the slow heating effect seen in batch systems. However, unlike the batch type heating furnace, long-term heating is not required, and the required heating time is about 2 to 6 hours, which is about 1/3 to 115 hours compared to the batch type heating furnace.

本発明におけるかかる効果の原因については、まず、従
来の場合、炉内高温雰囲気が直接スラブ表面に接触する
ため空洞が生じるものと考えられてきたが、本発明の場
合、連続加熱炉内の熱エネルギーが一旦この保護材で受
熱され、しかる後、徐々に合せ材に伝熱される過程を経
るため合せ材に空洞が生じないものと考えられる。保護
材が急速加熱に対する緩衝作用をなすのである。
Regarding the cause of this effect in the present invention, firstly, in the conventional case, it was thought that the high temperature atmosphere inside the furnace came into direct contact with the slab surface, resulting in cavities, but in the case of the present invention, the high temperature atmosphere inside the continuous heating furnace It is thought that no cavities are formed in the laminate because energy is once received by the protective material and then gradually transferred to the laminate. The protective material acts as a buffer against rapid heating.

次に、本発明をその実施例によってさらに具体的に説明
する。
Next, the present invention will be explained in more detail with reference to examples thereof.

実施例 軟鋼板(厚:240a+a)を母材として、その両面に
ステンレス鋼板(厚:3抛m 、5LIS304)を合
せ材として使用し、本発明にしたがって、熱間圧延方式
によってクラフト鋼板とした。
EXAMPLE A mild steel plate (thickness: 240a+a) was used as a base material, and stainless steel plates (thickness: 3 mm, 5LIS304) were used as a laminating material on both sides, and a craft steel plate was produced by hot rolling according to the present invention.

まず、母材および合せ材の両方の合せ面を例えば機械研
磨によって清浄面とし、次いで四周溶接によって片面を
組み立てスラブとするとともに、合わせ面内部から空気
を吸引して内部を真空とした。次に、同様にして母材の
反対側の合せ面に別の合せ材を重ねて、四周溶接を繰り
返すことにより組立スラブをした。
First, the mating surfaces of both the base material and the mating material were made clean by, for example, mechanical polishing, and then one side was assembled into a slab by four-circle welding, and the inside was vacuumed by suctioning air from inside the mating surfaces. Next, in the same manner, another mating material was laid on the mating surface on the opposite side of the base material, and four-circumference welding was repeated to form an assembled slab.

次いで、このようにして得られた組み立てスラブの上表
面に厚さ0.5ma+ 0)SS41鋼板からなる鉄板
カバーをかけ、一方、このクラッド鋼板に下表面には厚
さ5+s+++の同じ鋼板を敷板として敷いた。これら
の保護材の大きさは組み立てスラブの大きさよりわずか
に大きくなるようにするのが好ましい。
Next, a steel plate cover made of a SS41 steel plate with a thickness of 0.5 ma + 0) was placed on the upper surface of the assembled slab obtained in this way, and on the other hand, the same steel plate with a thickness of 5 + s +++ was placed as a bottom plate on the lower surface of this clad steel plate. I laid it. Preferably, the size of these protectors is slightly larger than the size of the assembled slab.

このようにして準備した四周溶接による組み立てスラブ
を連続加熱炉内に装入した。このときの加熱速度、加熱
温度、そして加熱時間つまり在炉時間等を計測し、従来
の方法であるバッチ方式と比較するとともに、本発明に
かかる保護材を使用せずに、同じ条件で連続加熱炉にク
ラッド組み立て体を装入した場合を比較例として考察し
た。
The assembled slabs prepared in this manner by four-circle welding were placed in a continuous heating furnace. At this time, the heating rate, heating temperature, and heating time (furnace time) were measured and compared with the conventional batch method, and continuous heating was performed under the same conditions without using the protective material according to the present invention. As a comparative example, we considered a case in which a clad assembly was charged into a furnace.

第3図(a)および(b)には本例における炉内ヒート
パターンを示す、最高加熱温度をいずれも1250℃で
あったが、それに要する時間は第3図(a)に示すバッ
チ式では15〜23時間、第3図(b)に示す連続式で
は3.0〜4.8時間であった。なお、これらの場合に
おける昇温速度は、バッチ式で約0゜44〜0.83℃
/Hr am、連続式で1.23〜2.05℃/I(r
 vsであった。
Figures 3(a) and (b) show the heat pattern in the furnace in this example.The maximum heating temperature was 1250°C in both cases, but the time required for this was different from the batch method shown in Figure 3(a). It was 15 to 23 hours, and 3.0 to 4.8 hours in the continuous system shown in FIG. 3(b). In addition, the temperature increase rate in these cases is approximately 0°44 to 0.83°C in batch mode.
/Hram, 1.23-2.05℃/I(r
It was vs.

このときの結果を第1表にまとめて示すが、それらから
も明らかなように、本発明によってはじめて組み立てス
ラブの連続加熱処理が可能となったのである。
The results are summarized in Table 1, and as is clear from the results, continuous heat treatment of assembled slabs became possible for the first time with the present invention.

第1表 (発明の効果) 以上、本発明について詳述してきたが、これらからも明
らかなように、本発明によれば、次のような作用効果が
得られるのである。
Table 1 (Effects of the Invention) The present invention has been described in detail above, and as is clear from these, the following effects can be obtained according to the present invention.

(11連続式であることから、燃料が節約される。(Since it is 11 continuous type, fuel is saved.

(2)加熱スラブが連続的に装入されて(ることから、
圧延能率が大幅に向上する。
(2) Since the heating slabs are continuously charged (
Rolling efficiency is greatly improved.

(3)組立スラブの上、下表面が直接炉内雰囲気に触れ
ることがないので、表面状況が良好となる。
(3) Since the upper and lower surfaces of the assembled slab do not come into direct contact with the furnace atmosphere, the surface condition is good.

(4)一度に大量の圧延が可能となったので、製造コス
トの低減も可能となった。
(4) Since it has become possible to roll a large amount at once, it has also become possible to reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来法によって連続加熱処理を行った場合に
見られる空洞部の生成を説明する略式説明図; 第2図は、本発明にかかる溶接組み立てスラブの略式断
面図; 第3図(a)および(b)は、それぞれバッチ式加熱炉
および連続式加熱炉のヒートパターンを示すグラフであ
る。
Fig. 1 is a schematic explanatory diagram illustrating the formation of cavities observed when continuous heat treatment is performed by a conventional method; Fig. 2 is a schematic cross-sectional diagram of a welded assembled slab according to the present invention; Fig. 3 ( a) and (b) are graphs showing the heat patterns of a batch heating furnace and a continuous heating furnace, respectively.

Claims (1)

【特許請求の範囲】[Claims] 母材および合せ材の各合せ面を清浄面としてそれらを重
ね合わせ、該合せ面の周縁をシール溶接し、内部を真空
吸引して全周溶接組み立てスラブとなし、該組み立てス
ラブの少なくとも合せ材外表面を保護材で覆ってから連
続式加熱炉に装入し、所定温度に加熱した後、熱間圧延
してクラッド化を行うことを特徴とする、クラッド材の
製造方法。
The mating surfaces of the base material and the cladding material are placed on top of each other as clean surfaces, the peripheries of the mating surfaces are sealed and welded, and the inside is vacuum-sucked to form a full-circumference welded assembled slab, and at least the outside of the cladding material of the assembled slab is A method for manufacturing a cladding material, which comprises covering the surface with a protective material, charging the material into a continuous heating furnace, heating it to a predetermined temperature, and then hot rolling to form a cladding material.
JP11607487A 1987-05-13 1987-05-13 Production of clad material Pending JPS63281786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11607487A JPS63281786A (en) 1987-05-13 1987-05-13 Production of clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11607487A JPS63281786A (en) 1987-05-13 1987-05-13 Production of clad material

Publications (1)

Publication Number Publication Date
JPS63281786A true JPS63281786A (en) 1988-11-18

Family

ID=14678067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11607487A Pending JPS63281786A (en) 1987-05-13 1987-05-13 Production of clad material

Country Status (1)

Country Link
JP (1) JPS63281786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187282A (en) * 1989-01-17 1990-07-23 Nippon Steel Corp Manufacture of cladded plate at both surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187282A (en) * 1989-01-17 1990-07-23 Nippon Steel Corp Manufacture of cladded plate at both surfaces

Similar Documents

Publication Publication Date Title
KR20200105522A (en) Manufacturing method of titanium-steel composite plate
CN1114598A (en) Method for continuously making metal composite sheet or composite coil
US2820286A (en) Method of making composite plates
CN111155059A (en) Target assembly and manufacturing method thereof
US2747269A (en) Insulating structures
JPS63281786A (en) Production of clad material
US2758368A (en) Method of making composite metal bodies of different metals
US3354538A (en) Beryllium foil fabrication
US3019513A (en) Method of manufacture
JPH0234289A (en) Manufacture of metal clad plate by rolling
US2932885A (en) Method and pack for making zirconium-clad steel plate
JPH01166891A (en) Manufacture of intermetallic compound material
JP2020133655A (en) Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel
JPS6372404A (en) Packing method for pack rolling stock
JPS62104625A (en) Camber straightening method for two layer clad metallic plate
JPS6213283A (en) Production for clad steel sheet
CN114523185B (en) Vacuum diffusion composite welding production process for high-alloy thick plate blank
SU1094707A1 (en) Method of manufacturing bimetallic vessels by diffusion welding
JPH0484682A (en) Production of clad material having high base metal toughness
JPH02187282A (en) Manufacture of cladded plate at both surfaces
JPS61286077A (en) Core metal for steel tube rolling mill
JPH0255619A (en) Straightening method for flatness of metallic plate
JPS6155586B2 (en)
JPS63174790A (en) Manufacture of double-cladded plate
JPS60174832A (en) Heating method of clad steel plate