JPS63281440A - Manufacture of dielectric isolating substrate - Google Patents

Manufacture of dielectric isolating substrate

Info

Publication number
JPS63281440A
JPS63281440A JP11465987A JP11465987A JPS63281440A JP S63281440 A JPS63281440 A JP S63281440A JP 11465987 A JP11465987 A JP 11465987A JP 11465987 A JP11465987 A JP 11465987A JP S63281440 A JPS63281440 A JP S63281440A
Authority
JP
Japan
Prior art keywords
layer
substrate
polycrystalline
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11465987A
Other languages
Japanese (ja)
Inventor
Tetsuro Mizoguchi
哲朗 溝口
Tsutomu Yao
勉 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11465987A priority Critical patent/JPS63281440A/en
Publication of JPS63281440A publication Critical patent/JPS63281440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the quantity of a semiconductor substrate curved by forming an insulating film onto the substrate, to which a groove is shaped, annealing a polycrystalline semiconductor thin-film formed onto the insulating film under an unmelted state and shaping a polycrystalline semiconductor onto a species layer. CONSTITUTION:Isolating grooves 3 are formed through etching, using an SiO2 film 2 by a specified pattern shaped onto a single crystal Si substrate 1 as a mask. The SiO2 film 2 is removed, and an SiO2 film as an insulating film 5 for element isolation is formed again. A buried layer 4 having low resistance is shaped as required before the formation of the SiO2 film as the insulating film 5. A polycrystalline Si layer (laminated) 8 in film thickness of approximately 0.4mum is vapor-grown at low pressure onto the insulating film 5 for element isolation. The polycrystalline Si layer 8 is annealed under an unmelted state. A polycrystalline Si layer 6 as a substrate supporter layer is deposited on the species layer 8 in film thickness of approximately 400mum through vapor growth. Lastly, the surface of the polycrystalline Si layer 6 is polished flatly, and the single crystal Si substrate 1 is isolated by the isolating grooves 3 and the insulating film 5 for element isolation, and single crystal Si regions 7 are shaped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路を作製するための半導体基板の製造
方法に係り、特に、高耐圧の素子を集積するに好適な誘
電体分離基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor substrate for producing an integrated circuit, and in particular to a method of manufacturing a dielectric isolation substrate suitable for integrating high-voltage elements. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

モノリシックICにおいて、構成素子間を電気的に絶縁
分離する方式、すなわち素子分離方式には大別してpn
接合分離方式と、誘電体分離方式がある。pn接合分離
方式は、逆バイアスされたpn接合の空乏層によって、
素子間を分離する方式であり、誘電体分離方式は、5i
02膜等の絶縁膜によって分離する方式である。
In monolithic ICs, methods for electrically insulating and isolating constituent elements, that is, element isolation methods, can be roughly divided into pn
There are a junction isolation method and a dielectric isolation method. The pn junction isolation method uses a reverse biased pn junction depletion layer to
This is a method of isolating between elements, and the dielectric isolation method is 5i
This is a method of separating using an insulating film such as a 02 film.

誘電体分離方式は、pn接合分離方式に対して分離耐圧
が高い、リーク電流が小さい、ラッチアップが生じない
、分離のためにバイアス電圧を印加する必要がない、と
の利点より、高耐圧の集積回路の用途に適している。
The dielectric isolation method has the advantages of high isolation voltage, low leakage current, no latch-up, and no need to apply bias voltage for isolation, compared to the pn junction isolation method. Suitable for integrated circuit applications.

第2図は、従来の誘電体分離基板の作製プロセスの流れ
図である。単結晶Sj基板1に、S j O2膜2によ
るパターンを形成しくb)、これをマスクとして、Si
を部分的にエツチング除去して深さ数十μmの分離溝3
を形成しくC)、分離溝を形成した側のウェハ面上に、
S」02膜等による素子分離用絶縁膜5を形成する。素
子分離用絶縁膜5の形成前に、必要により、低抵抗の埋
込層4を形成することができる。素子分離用絶縁膜5の
形成後、素子分離用絶縁膜5上に基板支持体として厚さ
数百μmの、多結晶81層6を気相成長させる(e)。
FIG. 2 is a flowchart of a conventional process for manufacturing a dielectric isolation substrate. Form a pattern with an S j O2 film 2 on a single crystal Sj substrate 1b), and use this as a mask to form a pattern on a Si
is partially etched away to form isolation grooves 3 with a depth of several tens of μm.
C), on the wafer surface on the side where the separation groove is formed,
An element isolation insulating film 5 made of a S'02 film or the like is formed. Before forming the element isolation insulating film 5, a low-resistance buried layer 4 can be formed if necessary. After forming the element isolation insulating film 5, a polycrystalline 81 layer 6 having a thickness of several hundred μm is grown in a vapor phase as a substrate support on the element isolation insulating film 5 (e).

更に、多結晶S1層表面が平担になる様、また、単結晶
Siが、分離溝3によって分離される状態になるまで基
板の両面を研磨して、(f)に示す基板が完成する。素
子分離用絶縁膜5で囲まれた単結晶Si領域7に素子が
形成される。
Furthermore, both surfaces of the substrate are polished so that the surface of the polycrystalline S1 layer becomes flat and the single crystal Si is separated by the separation grooves 3, thereby completing the substrate shown in FIG. Elements are formed in single crystal Si region 7 surrounded by element isolation insulating film 5 .

上記した従来の誘電体分離基板の製造方法については、
例えば、ジャーナル オブ エレクトロケミカル ソサ
イエテイ、第124巻、1977年1月号、第5C頁〜
第12C頁(Journal、 ofElectro 
、S o c、Vo Q、124..1 a n、19
77゜PP、5C−PP、12C)等に記載されている
Regarding the manufacturing method of the conventional dielectric isolation substrate mentioned above,
For example, Journal of Electrochemical Society, Volume 124, January 1977, Pages 5C-
Page 12C (Journal, ofElectro
, S o c, Vo Q, 124. .. 1 an, 19
77°PP, 5C-PP, 12C), etc.

上記従来製造方法では、支持体の多結晶S1を、100
0〜1250℃の堆積温度で堆積中、第3図に示す如く
基板が湾曲するという問題があった。
In the above conventional manufacturing method, the polycrystal S1 of the support is
During deposition at deposition temperatures of 0 to 1250 DEG C., there was a problem in that the substrate curved as shown in FIG.

この湾曲は、基板を研磨する工程、及び個々の素子を形
成する際のホトリソグラフィ一工程における加工精度に
悪影響をおよぼす。
This curvature adversely affects processing accuracy in the process of polishing the substrate and in the photolithography process when forming individual elements.

この基板が湾曲するという問題を解決するーっの方法と
して、特開昭60−11.7750号公報、特開昭60
−210848号公報等に示されるように、分離溝を形
成した半導体基板面上に絶縁層を形成し、さらに、との
絶縁層上に薄く形成された多結晶半導体層(以下種層と
呼ぶ)をレーザビームで加熱溶融して、単結晶化し、種
層」二に基板支持体層を形成する技術が知られている。
As a method to solve this problem of the board being curved, Japanese Patent Laid-Open No. 11.7750/1982
As shown in Japanese Patent No. 210848, an insulating layer is formed on the surface of the semiconductor substrate in which an isolation groove is formed, and a polycrystalline semiconductor layer (hereinafter referred to as a seed layer) is thinly formed on the insulating layer. A known technique is to heat and melt the material with a laser beam to form a single crystal, thereby forming a seed layer and a substrate support layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、基板の湾曲を防止するために
、種層をレーザビームによって、加熱溶融することによ
って、種層を単結晶化しているため、溶融および同化に
基づく湾曲が生じ、湾曲低減の障害となる。また種層以
外の下地基板の部分において溶融が生じる等の問題があ
った。また、レーザビームは、基板上に形成された分離
溝によって散乱されてしまうという問題があった。
In the above conventional technology, in order to prevent curvature of the substrate, the seed layer is heated and melted by a laser beam to make the seed layer into a single crystal. Therefore, curvature occurs due to melting and assimilation, and curvature reduction is caused by melting and assimilation. It becomes an obstacle. Further, there was a problem that melting occurred in portions of the underlying substrate other than the seed layer. Further, there is a problem in that the laser beam is scattered by the separation groove formed on the substrate.

本発明の目的は、上記問題点を解決し、湾曲の小さい誘
電体分離基板の製造方法を提供することにある。
An object of the present invention is to solve the above problems and provide a method for manufacturing a dielectric isolation substrate with small curvature.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、堆積温度において、十分安定な大きい粒径
を有する状態で支持体層となる多結晶Si層を成長させ
ることにより達成される。
The above object is achieved by growing the polycrystalline Si layer serving as the support layer with a sufficiently stable large grain size at the deposition temperature.

より具体的には、溝を形成した半導体基板上に絶縁膜を
形成し、この絶縁膜上に形成した多結晶半導体薄膜(種
層とも称す)を非溶融状態でアニールした後に、多結晶
半導体を種層上に形成することによって、達成される。
More specifically, an insulating film is formed on a semiconductor substrate in which a groove is formed, and a polycrystalline semiconductor thin film (also called a seed layer) formed on this insulating film is annealed in an unmolten state, and then the polycrystalline semiconductor is This is accomplished by forming it on a seed layer.

〔作用〕[Effect]

半導体基板上に、各素子領域を絶縁のための絶縁膜を形
成した後、この表面に、多結晶半導体薄膜層(種層)を
堆積し、この種層に対して溶融しない温度でアニールを
施す。こうして種層の粒径を複数の結晶粒力縛容融点以
下で加熱により合体する現象(焼結現象)を用いて増大
させる。
After forming an insulating film to insulate each element region on a semiconductor substrate, a polycrystalline semiconductor thin film layer (seed layer) is deposited on this surface, and this seed layer is annealed at a temperature that does not melt it. . In this way, the grain size of the seed layer is increased using a phenomenon (sintering phenomenon) in which a plurality of crystal grains are coalesced by heating below their melting points.

一般にSiO2層の様な非晶質状態の!l!ms上に、
多結晶半導体(例えばPo1ysj )を堆積させると
、堆積初期には、成長の″種層となるSiなどの半導体
物質の粒がないため多結晶半導体層の粒径も小さい。更
にPo1ysi等の多結晶半導体物質を堆積していくと
、各々の多結晶粒は逐次、堆積途中での多結晶粒を種と
して気相エピタキシャル成長していく。このため結果と
して支持層は、第4図に示す様に、後に堆積した部分の
粒径が大きい樹状組織となる。
In general, it is in an amorphous state like a SiO2 layer! l! on ms,
When a polycrystalline semiconductor (for example, Polysj) is deposited, the grain size of the polycrystalline semiconductor layer is small because there are no grains of a semiconductor material such as Si that will serve as a seed layer for growth in the initial stage of deposition. As the semiconductor material is deposited, each polycrystalline grain is successively grown by vapor phase epitaxial growth using the polycrystalline grains in the middle of deposition as seeds.As a result, the supporting layer is formed as shown in FIG. The later deposited portion becomes a dendritic structure with larger grain sizes.

一方、本発明のように非溶融状態でアニールして粒径を
増大した種層を成長の″種′″として用いると、堆積初
期に、より粒径の大きい多結晶層が形成でき、これを成
長の″種層とすることで、堆積中の支持体層全体の粒径
を、より増大し、安定化できる。これにより、レーザビ
ームによる加熱溶融を用いた従来技術の問題点を解決し
、湾曲の少ない誘電体分離基板を製造できる。
On the other hand, if a seed layer whose grain size has been increased by annealing in a non-molten state is used as a "seed" for growth as in the present invention, a polycrystalline layer with a larger grain size can be formed at the initial stage of deposition, and this By using this as a growth seed layer, the grain size of the entire support layer during deposition can be further increased and stabilized.This solves the problems of the conventional technology using heat melting with a laser beam. A dielectric isolation substrate with less curvature can be manufactured.

ここで、種層は、アニールにおける粒成長時に、基板が
湾曲しない様に充分薄くしておかなければならない。
Here, the seed layer must be made sufficiently thin so that the substrate does not curve during grain growth during annealing.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図を用いて説明する。第1図は、本実施例の誘電体
分離基板の製造工程を示す図であり、第1図(a)〜(
g)は、それぞれの工程における基板の縦断面図である
Example 1 This will be explained using FIG. FIG. 1 is a diagram showing the manufacturing process of the dielectric isolation substrate of this example, and FIG. 1(a) to (
g) is a vertical cross-sectional view of the substrate in each step.

第1図(、)は、単結晶Si基板1の縦断面図を示す。FIG. 1(,) shows a longitudinal cross-sectional view of a single-crystal Si substrate 1. As shown in FIG.

次に、第1図(b)に示すように、この単結晶81基板
1」二に、所定パターンを有するS i 02膜2を形
成する。5iOz膜2のパターン形成には、ホトリソグ
ラフィー等の方法が使用される。
Next, as shown in FIG. 1(b), an S i 02 film 2 having a predetermined pattern is formed on this single crystal 81 substrate 1''. For patterning the 5iOz film 2, a method such as photolithography is used.

第1図(c)に示すように、このS j02膜2をマス
クとして、最深部の深さが50μmの分離溝3をエツチ
ングにより形成する。エツチング液としては、例えば、
K OH等を用いる。この場合、単結晶Sj基板1の(
]−00)面がエツチングされ、7字形状の分離溝3が
形成される。
As shown in FIG. 1(c), using this Sj02 film 2 as a mask, a separation groove 3 having a depth of 50 μm at its deepest part is formed by etching. Examples of etching solutions include:
KOH etc. are used. In this case, (
]-00) surface is etched to form a 7-shaped separation groove 3.

次に、第1図(d)に示すように、この5i02膜2を
除去して、再度素子分離用絶縁膜5となるSiO2膜を
形成する。この素子分離用絶縁膜5の形成前に、必要に
より、イオンインプランテーションを行ない、低抵抗の
埋込み層4を形成する。
Next, as shown in FIG. 1(d), this 5i02 film 2 is removed and a SiO2 film that will become the element isolation insulating film 5 is formed again. Before forming this element isolation insulating film 5, if necessary, ion implantation is performed to form a low-resistance buried layer 4.

さらに、第1図(e)に示すように、素子分離用絶縁膜
5上に、膜厚0.4μmの多結晶Si層(種層)8を減
圧気相成長(LPGVD)法にて堆積した。次に、多結
晶Si層(種層)8中に、P(リン)を不純物濃度約1
021個/cn?でドーピングした。そして、多結晶S
i層(種層)8を非溶融状態でアニールした。すなわち
、多結晶84層(種層)8の融点(141,0°C)未
満の温度、本実施例では、1200℃で、1時間、アニ
ール(熱処理)を行なった。
Furthermore, as shown in FIG. 1(e), a polycrystalline Si layer (seed layer) 8 with a film thickness of 0.4 μm was deposited on the element isolation insulating film 5 by a low pressure vapor deposition (LPGVD) method. . Next, P (phosphorus) is added to the polycrystalline Si layer (seed layer) 8 at an impurity concentration of approximately 1.
021 pieces/cn? I doped with it. And polycrystalline S
The i-layer (seed layer) 8 was annealed in a non-molten state. That is, annealing (heat treatment) was performed for 1 hour at a temperature lower than the melting point (141.0° C.) of the 84 polycrystalline layers (seed layer) 8, 1200° C. in this example.

次に、第1図(f)に示すように、基板支持体層となる
多結晶Si層6を種層8」二に気相成長により膜厚40
0μmとなるように堆積した。
Next, as shown in FIG. 1(f), a polycrystalline Si layer 6, which will become a substrate support layer, is deposited on a seed layer 8'' to a thickness of 40 mm by vapor phase growth.
The film was deposited to a thickness of 0 μm.

最後に、第1図(g)に示すように、多結晶Si層6の
表面が平担になるように研磨し、かつ、単結晶Si基板
1が、分離溝^および素子分離用絶縁膜5により、分離
され、単結晶Si領域7が形成されるように、単結晶S
i表面を研磨する。
Finally, as shown in FIG. 1(g), the surface of the polycrystalline Si layer 6 is polished so that it becomes flat, and the single crystal Si substrate 1 is polished to form the isolation groove ^ and the element isolation insulating film 5. so that the single crystal Si region 7 is formed by separating the single crystal Si region 7.
i Polish the surface.

本図では、第1図(a)〜(f)に対して上面下面が逆
になっている。
In this figure, the top and bottom surfaces are reversed from those in FIGS. 1(a) to (f).

本実施例では、種層を非溶融状態でアニールしたことに
より、種層を構成する結晶の粒径が約3μmにまで増大
し、溶融状態でアニールする従来技術に対し、溶融に伴
う問題点なく、湾曲のより小さい誘電体分離基板を製造
できた。
In this example, by annealing the seed layer in a non-molten state, the grain size of the crystals constituting the seed layer increases to approximately 3 μm, and there is no problem associated with melting, compared to the conventional technology in which the seed layer is annealed in a molten state. , we were able to manufacture a dielectric isolation substrate with less curvature.

本実施例では、第1図(e)に示す工程において、P(
リン)を種層8にドープしてアニールしたが、これによ
って、ドープしない場合に比較して、より低温短時間の
アニールによって、種層8を構成する結晶粒の粒径を増
大することができる。
In this example, in the step shown in FIG. 1(e), P(
Phosphorus) was doped into the seed layer 8 and annealed, but as a result, the grain size of the crystal grains constituting the seed layer 8 can be increased by annealing at a lower temperature and for a shorter time than when no doping is done. .

本実施例では、P(リン)をドープしたが、As(ヒ素
)等地の不純物をドープしても同様の効果がある。
In this embodiment, P (phosphorus) is doped, but similar effects can be obtained by doping with other impurities such as As (arsenic).

実施例2 本実施例では、主要な工程は、実施例1の場合と同様で
あるが、第1図(e)の工程において、種層8の膜厚を
50μmにすることによって、非溶融状態のアニール後
に形成される種層8の結晶粒径を約20μmと大きくす
ることが可能となった。
Example 2 In this example, the main steps are the same as those in Example 1, but in the step shown in FIG. It became possible to increase the crystal grain size of the seed layer 8 formed after the annealing to about 20 μm.

なお、本実施例では、種層8には、P(リン)をドープ
しておらず、非溶融状態におけるアニールは、温度12
50 ’C1時間4時間という条件で行った。
In this example, the seed layer 8 is not doped with P (phosphorus), and the annealing in the non-molten state is performed at a temperature of 12
The test was carried out under the conditions of 50'C for 1 hour and 4 hours.

以上の実施例1−および2では、種層8のアニール(熱
処理)方法として、電気炉によるアニールを用いたが、
他に、ランプアニール、ストリップヒータによるアニー
ル等を用いることもできる。
In Examples 1 and 2 above, annealing using an electric furnace was used as the annealing (heat treatment) method for the seed layer 8.
In addition, lamp annealing, annealing using a strip heater, etc. can also be used.

さらに、誘電体分離基板を形成する半導体として、Si
(シリコン)を用いたが、他の半導体材料(GeやGa
As等の化合物半導体等)も使用できる。
Furthermore, as a semiconductor forming the dielectric isolation substrate, Si
(silicon), but other semiconductor materials (Ge, Ga, etc.) were used.
Compound semiconductors such as As) can also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、種層を非溶融状態でアニールすること
により多結晶81層の粒径をより増大できるので、種層
を溶融状態でアニールする従来技術に対し、基板の湾曲
量を低減できるとともに、溶融にともなう問題点を生じ
ない誘電体分離基板の製造方法を提供できる。
According to the present invention, the grain size of the polycrystalline 81 layer can be further increased by annealing the seed layer in a non-molten state, so the amount of curvature of the substrate can be reduced compared to the conventional technology in which the seed layer is annealed in a molten state. At the same time, it is possible to provide a method for manufacturing a dielectric isolation substrate that does not cause problems associated with melting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による誘電体分離基板の作製工程を示す
図、第2図は種層を用いない従来法による誘電体分離基
板の作製工程を示す図、第3図は誘電体分離基板が湾曲
した状態を示す概念図(縦断面図)、第4図は種層を用
いない従来法による、多結晶S1支持体層の組織形態を
示す図(拡大縦断面図)である。 1・・・単結晶Si基板、2・・・5jO2膜、3・・
・分離溝、5・・・素子分離用絶縁膜、6・・多結晶S
i層(支持体層、)8・多結晶Si層(種層)。
1 is a diagram showing the manufacturing process of a dielectric isolation substrate according to the present invention, FIG. 2 is a diagram showing the manufacturing process of a dielectric isolation substrate using a conventional method without using a seed layer, and FIG. FIG. 4 is a conceptual diagram (longitudinal cross-sectional view) showing a curved state, and FIG. 4 is a diagram (enlarged vertical cross-sectional view) showing the structure of the polycrystalline S1 support layer according to a conventional method without using a seed layer. 1... Single crystal Si substrate, 2... 5jO2 film, 3...
- Isolation groove, 5... Insulating film for element isolation, 6... Polycrystalline S
i layer (support layer) 8 polycrystalline Si layer (seed layer).

Claims (1)

【特許請求の範囲】 1、下記工程を含むことを、特徴とする誘電体分離基板
の製造方法, (1)所定半導体基板の所定領域に溝を形成する工程, (2)前記溝を形成した前記半導体基板上に絶縁膜を形
成する工程, (3)前記絶縁膜上に多結晶半導体薄膜を形成する工程
, (4)前記多結晶半導体薄膜を非溶融状態でアニールす
る工程, (5)前記多結晶半導体薄膜上に多結晶半導体を形成す
る工程。
[Claims] 1. A method for manufacturing a dielectric isolation substrate characterized by including the following steps: (1) forming a groove in a predetermined region of a predetermined semiconductor substrate; (2) forming the groove; forming an insulating film on the semiconductor substrate; (3) forming a polycrystalline semiconductor thin film on the insulating film; (4) annealing the polycrystalline semiconductor thin film in a non-molten state; A process of forming a polycrystalline semiconductor on a polycrystalline semiconductor thin film.
JP11465987A 1987-05-13 1987-05-13 Manufacture of dielectric isolating substrate Pending JPS63281440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11465987A JPS63281440A (en) 1987-05-13 1987-05-13 Manufacture of dielectric isolating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11465987A JPS63281440A (en) 1987-05-13 1987-05-13 Manufacture of dielectric isolating substrate

Publications (1)

Publication Number Publication Date
JPS63281440A true JPS63281440A (en) 1988-11-17

Family

ID=14643347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11465987A Pending JPS63281440A (en) 1987-05-13 1987-05-13 Manufacture of dielectric isolating substrate

Country Status (1)

Country Link
JP (1) JPS63281440A (en)

Similar Documents

Publication Publication Date Title
US4824795A (en) Method for obtaining regions of dielectrically isolated single crystal silicon
JPH04106932A (en) Manufacture of bipolar transistor
US4983539A (en) Process for producing a semiconductor article
EP0449589A1 (en) Method of producing a SOI structure
US4868140A (en) Semiconductor device and method of manufacturing the same
JP2699359B2 (en) Semiconductor substrate manufacturing method
JPH0563439B2 (en)
JP2900588B2 (en) Crystal article forming method
US4571818A (en) Isolation process for high-voltage semiconductor devices
JPS63281440A (en) Manufacture of dielectric isolating substrate
JPS5856322A (en) Manufacture of semiconductor substrate
JPS61182242A (en) Manufacture of semiconductor device
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS593851B2 (en) Dielectric separation method
JPS5834943A (en) Semiconductor device and manufacture thereof
JPH0722315A (en) Method for manufacturing semiconductor film
JPS59121823A (en) Fabrication of single crystal silicon film
US4597822A (en) Method for making silicon wafers
JPS6159818A (en) Manufacture of semiconductor device
JPH01289124A (en) Manufacture of semiconductor device
JPH0821614B2 (en) Method for obtaining an insulatingly isolated single crystal silicon region
JP2789965B2 (en) Laminated substrate for semiconductor device and method of manufacturing the same
JPH01158749A (en) Manufacture of derivative separating substrate
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JP3327977B2 (en) Semiconductor substrate manufacturing method