JPS63281345A - Infrared ray lamp - Google Patents

Infrared ray lamp

Info

Publication number
JPS63281345A
JPS63281345A JP11447287A JP11447287A JPS63281345A JP S63281345 A JPS63281345 A JP S63281345A JP 11447287 A JP11447287 A JP 11447287A JP 11447287 A JP11447287 A JP 11447287A JP S63281345 A JPS63281345 A JP S63281345A
Authority
JP
Japan
Prior art keywords
infrared
arc tube
discharge
electrodes
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11447287A
Other languages
Japanese (ja)
Inventor
Yoshinori Takai
高井 美則
Yoshinori Anzai
安西 良矩
Takeo Nishikatsu
西勝 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11447287A priority Critical patent/JPS63281345A/en
Publication of JPS63281345A publication Critical patent/JPS63281345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)

Abstract

PURPOSE:To obtain an infrared ray lamp which suppresses the luminance in a visible region and in a far infrared region to the utmost extent, while a strong emission spectrum in the fixed near infrared region and excellency in its durabil ity by sealing mercury, rare gas and bismuth halide together with a pair of electrodes for discharge in a luminous tube. CONSTITUTION:The infrared ray lamp in the caption for radiating the infrared rays having more than a fixed wave length region necessary for a dark visible field or the like has a luminous tube 1 for transmitting infrared rays and seals a pair of electrodes 2 and 3 together with sealing mercury, rare gas and the halide of bismouth in the luminous tube 1. That is, the discharge starting by rare gas and the shifting to mercury discharge are promoted by impressing voltage on the electrodes 2 and 3 and discharge heat in the meantime promotes evaporation of the bismoth halide and the excitation, in an arc, of the rubidium atoms separated from halogen atoms to act for radiating the rays of a strong emission spectrum in the near infrared region. This action enables the rays having the strong emission spectrum in the near infrared region to be generated and besides to be used as a source of light and to lengthen a life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、近赤外域に強い発光スペクトルを有し、暗
視装置用光源等に利用する赤外光ランプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared light lamp that has a strong emission spectrum in the near-infrared region and is used as a light source for night vision devices.

〔従来の技術〕[Conventional technology]

第5図は例えば特公昭44−30313号公報に示され
た従来の赤外光ランプを一部破断して示す正面図であり
、図において、6は投光器本体、5は投光器本体6内に
設けられたハロゲンランプ、7は投光器本体6の内面と
ともに反射面処理された反射板、8は赤外透過・可視反
射フィルタ、9は赤外透過・可視吸収フィルタ、10は
保護ガラス板である。
FIG. 5 is a partially cutaway front view of a conventional infrared lamp disclosed in, for example, Japanese Patent Publication No. 44-30313. 7 is a reflective plate treated with a reflective surface along with the inner surface of the projector body 6, 8 is an infrared transmitting/visible reflective filter, 9 is an infrared transmitting/visible absorbing filter, and 10 is a protective glass plate.

次に動作について説明する。Next, the operation will be explained.

ハロゲンランプ5に電流が流されると、このハロゲンラ
ンプ5は第6図に示すようなスペクトル分布の放射光を
発生し、直接または上記反射板7などに反射して間接に
投光器本体6の前部に設け。
When a current is applied to the halogen lamp 5, the halogen lamp 5 generates radiation having a spectral distribution as shown in FIG. Set in.

た赤外透過・可視反射フィルタ8に至り、ここでその放
射光中の赤外光のみが透過される。また、赤外透過・可
視吸収フィルタ9は、その赤外透過・可視反射フィルタ
8を通った可視光を吸収して赤外光のみを透過させ、こ
れを保護ガラス10を介して、波長が近赤外域である8
00nmの光として外部の例えば暗視野域に投射する。
The emitted light reaches an infrared transmission/visible reflection filter 8, where only the infrared light in the emitted light is transmitted. The infrared transmission/visible absorption filter 9 absorbs the visible light that has passed through the infrared transmission/visible reflection filter 8 and transmits only the infrared light. 8 in the infrared range
00 nm light is projected outside, for example, into a dark field region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の赤外光ランプは以上のように構成されているので
、上記波長がgQQnm以上の近赤外光を得るのに、反
射板7.赤外透過・可視反射フィルタ8および赤外透過
・可視吸収フィルタ9を用いなければならず、従って構
成が複雑になるほか、ハロゲンランプ5の放射光のうち
可視光は投光器本体6内の各フィルタ8,9において熱
エネルギに変換され、また遠赤外光も各フィルタ8,9
や反射板7に接して熱エネルギに変換されてしまう。
Since the conventional infrared light lamp is configured as described above, in order to obtain near-infrared light having a wavelength of gQQnm or more, the reflector 7. Infrared transmitting/visible reflective filter 8 and infrared transmitting/visible absorbing filter 9 must be used, which makes the configuration complicated, and visible light of the light emitted from halogen lamp 5 is transmitted through each filter in projector body 6. The far infrared light is converted into thermal energy in the filters 8 and 9.
It comes into contact with the reflector plate 7 and is converted into thermal energy.

このため投光器本体6が着るしく温度上昇し、結果的に
ハロゲンランプ5の寿命を2000〜3000時間と大
幅に短かくしてしまい、各フィルタ8.9として耐熱性
があるものが要求されるため、全体としてコストアップ
が避けられないなどの問題点があった。
As a result, the temperature of the projector main body 6 increases, resulting in a significant shortening of the life of the halogen lamp 5 to 2,000 to 3,000 hours.As each filter 8.9 is required to be heat resistant, the overall However, there were problems such as an unavoidable increase in costs.

この発明は上記のような問題点を解消するためになされ
たもので、ハロゲン化ビスマスを用いることによって可
視域と遠赤外域の発光を極力抑え、所定の近赤外域に強
い発光スペクトルを持ち、しかも耐久性にすぐれた赤外
光ランプを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and by using bismuth halides, it suppresses emission in the visible and far-infrared regions as much as possible, and has a strong emission spectrum in the predetermined near-infrared region. Moreover, the object is to obtain an infrared lamp with excellent durability.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる赤外光ランプは、光を透過する発光管
を有し、この発光管内に放電用の一対の電極を封止し、
さらに水銀、希ガスおよびセシウムのハロゲン化物を封
入して構成したものである。
The infrared light lamp according to the present invention has an arc tube that transmits light, and a pair of electrodes for discharge is sealed in the arc tube,
Furthermore, it is constructed by enclosing mercury, a rare gas, and a cesium halide.

〔作 用〕[For production]

この発明における電極は、これに電圧印加することによ
って希ガスによる放電開始と水銀放電への移行が促進さ
れ、この間の放電熱によりハロゲン化ビスマスの蒸発並
びにハロゲン原子から分離したルビジウム原子のアーク
中における励起を促進して、近赤外域に強い発光スペク
トルの光を放射するように作用する。
By applying a voltage to the electrode in this invention, the initiation of discharge by rare gas and the transition to mercury discharge are promoted, and during this time, the discharge heat causes bismuth halide to evaporate and rubidium atoms separated from halogen atoms to evaporate in the arc. It acts to promote excitation and emit light with a strong emission spectrum in the near-infrared region.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、1は石英ガラスから成る発光管で、その両
端には放電用の電極2,3が設けられており、発光管1
内には適量の水銀と希ガス(図示せず)の他にハロゲン
化ビスマスの1つであるヨウ化ビスマス4が封入されて
いる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 1 is an arc tube made of quartz glass, and electrodes 2 and 3 for discharge are provided at both ends of the arc tube 1.
In addition to appropriate amounts of mercury and rare gas (not shown), bismuth iodide 4, which is one of the bismuth halides, is sealed inside.

次に動作について説明する。Next, the operation will be explained.

第1図のごとく構成された赤外光ランプは、発光管1と
して通常の硬質ガラス製の外管バルブを有するもので、
一般照明用のメタルハライドランプと同様のものを使用
する。
The infrared light lamp constructed as shown in FIG. 1 has an ordinary outer bulb made of hard glass as the arc tube 1.
Use a metal halide lamp similar to that used for general lighting.

発光管1内に封入された適量の水銀、希ガス及びヨウ化
ビスマス4は、外部より安定器(図示せず)を介し【電
圧を電極2,3間に印加すると、まず上記希ガスにより
放電が開始され、その後徐々に水銀放電に移行してゆく
。この時発生する放電の熱により、発光管1内に封入し
たヨウ化ビスマス4はしだいに蒸発する。このヨウ化ビ
スマス4はアーク中でビスマスとヨウ素に分解し、ビス
マス原子はアーク中で励起し、第4図に示すような特徴
のある9 34 n m 、 966 n m 、 9
83 nmのスペクトルを近赤外域に放射する。
Appropriate amounts of mercury, rare gas, and bismuth iodide 4 sealed in the arc tube 1 are supplied from the outside via a ballast (not shown). When a voltage is applied between the electrodes 2 and 3, the rare gas first discharges the begins, and then gradually transitions to mercury discharge. Due to the heat of the discharge generated at this time, the bismuth iodide 4 sealed in the arc tube 1 gradually evaporates. This bismuth iodide 4 decomposes into bismuth and iodine in the arc, and the bismuth atoms are excited in the arc, resulting in the characteristic 934 nm, 966 nm, 9 as shown in Figure 4.
It emits a spectrum of 83 nm in the near-infrared region.

次に上記のような赤外域の光を放射する場合において、
ヨウ化ビスマス4の発光管1への封入量および管壁負荷
の大きさに応じて、例えば上記波長966nmの赤外光
の発光強度が最適となるように設定することが望ましく
、このため、この発明では、一定の条件下で最適の上記
封入量および管壁負荷の大きさを、以下の実験データに
よって求めている。
Next, when emitting light in the infrared region as described above,
For example, it is desirable to set the emission intensity of the infrared light with a wavelength of 966 nm to be optimal depending on the amount of bismuth iodide 4 sealed in the arc tube 1 and the magnitude of the load on the tube wall. In the present invention, the optimal amount of filling and the magnitude of the tube wall load under certain conditions are determined based on the following experimental data.

そこで、発光管10入力を400Wに設定し、管壁負荷
(W/m 2)、管内径(mm)、電極2,3の距離(
mm)、内容積(cc )を、下表の仕様A−Eのよう
にそれぞれ設定する。
Therefore, the arc tube 10 input was set to 400 W, the tube wall load (W/m2), the tube inner diameter (mm), the distance between electrodes 2 and 3 (
mm) and internal volume (cc), respectively, as shown in specifications A to E in the table below.

上記仕様の発光管1内には適量の水銀と希ガスの他に、
ハロゲン化ビスマスとしてのヨウ化ビスマス4を発光管
1の内容積に対して0.6■/ CC。
In addition to an appropriate amount of mercury and rare gas, the arc tube 1 with the above specifications contains
The amount of bismuth iodide 4 as a bismuth halide was 0.6 cc/cc with respect to the internal volume of the arc tube 1.

1.3mg/cc、2.6■/ cc 、 3.9 m
g / cc 、 5.41cとして封入し、各3本づ
つの発光管を試作した。
1.3mg/cc, 2.6■/cc, 3.9m
g/cc, 5.41c, and three arc tubes were fabricated as prototypes.

そこで、発光管1の管壁負荷と、封入ヨウ化ビスマス4
の量と、966nmの発光強度との関係について実測し
た結果、第2図に示すように、ヨウ化ビスマス4の量が
発光管1の内容積に対し0.6■/ ccの場合、0.
6■/CC以上の封入量に比べ、管壁負荷がいくら増加
しても発光強度は非常に低い発光強度であった。その理
由は、発光管1内に蒸発するビスマスの量の不足により
発光強度の大巾な増加が見られなかったものと考えられ
る。
Therefore, the tube wall load of arc tube 1 and the enclosed bismuth iodide 4
As a result of actually measuring the relationship between the amount of bismuth iodide and the emission intensity at 966 nm, as shown in FIG.
Compared to the enclosed amount of 6 .mu./CC or more, the luminescence intensity was very low no matter how much the tube wall load increased. The reason for this is thought to be that the luminous intensity was not significantly increased due to insufficient amount of bismuth evaporated into the arc tube 1.

又ヨウ化ビスマス量が1.3mg/cCから3.9mg
/ CCへと増加するのにつれて発光強度も上昇し、発
光管1の管壁負荷の増加によって、さらに発光強度は増
加する。そして、管壁負荷が23W/crILを超えて
25 W/cmになると、全ての仕様の発光管1でアー
クの不安定な状態が発生した。この理由は発光管1内で
のビスマスの蒸発速度が速くなりアークを動かしている
ものと考える。
Also, the amount of bismuth iodide is from 1.3mg/cC to 3.9mg
/ CC, the emission intensity also increases, and as the tube wall load of the arc tube 1 increases, the emission intensity further increases. When the tube wall load exceeded 23 W/crIL to 25 W/cm, an unstable arc state occurred in the arc tubes 1 of all specifications. The reason for this is thought to be that the evaporation rate of bismuth in the arc tube 1 becomes faster and moves the arc.

一方、ヨウ化ビスマスの封入量と966nmの発光強度
との関係について実測した結果、第3図に示すように、
ヨウ化ビスマス量が発光管1の内容積に対し、実用の発
光強度を得るには1.3mg/ccから3.9mg/ 
ccが最適であることが判明した。
On the other hand, as a result of actually measuring the relationship between the amount of bismuth iodide enclosed and the emission intensity at 966 nm, as shown in Figure 3,
To obtain a practical luminous intensity, the amount of bismuth iodide should be 1.3 mg/cc to 3.9 mg/cc relative to the internal volume of the arc tube 1.
cc was found to be optimal.

すナワチ、ヨウ化ビスマスが1゜3mg/CC以下の0
.6■/cCでは966nmの発光強度が弱いため実用
的ではなく、3.9mg/ ccを超えて5.2■/C
Cになると、発光管1の最冷部に液状のヨウ化ビスマス
が集積し、液状部分から急激に蒸発が起こり、アークが
不安定になることが確認された。
Sunawachi, 0 with bismuth iodide less than 1゜3mg/CC
.. 6■/cC is not practical because the emission intensity at 966nm is weak, and 5.2■/C exceeds 3.9mg/cc.
It was confirmed that when the temperature reached C, liquid bismuth iodide accumulated in the coldest part of the arc tube 1, and rapid evaporation occurred from the liquid part, making the arc unstable.

上記の結果より、発光管1に封入するヨウ化ビスマスの
量は発光管1の内容積に対し矢印Qで示す領域の1.3
mg/ ccから3.9mg/CCとし、発光管1の管
壁負荷は矢印Pで示す領域の15W/cmから23 W
/cm とすることにより、効率のよい近赤外放射用の
赤外光ランプが得られる。
From the above results, the amount of bismuth iodide sealed in the arc tube 1 is 1.3 in the area indicated by arrow Q relative to the internal volume of the arc tube 1.
mg/cc to 3.9 mg/CC, and the tube wall load of arc tube 1 is 15 W/cm in the area indicated by arrow P to 23 W.
/cm 2 , an efficient infrared lamp for near-infrared radiation can be obtained.

又試作した上記の発光管1を寿命試験にかけた結果、6
500時間で所期の発光強度の78チを示し満足できる
結果が得られた。
In addition, as a result of subjecting the prototype arc tube 1 to a life test, 6
After 500 hours, the desired luminescence intensity of 78 cm was obtained, and a satisfactory result was obtained.

なお、上記実施例ではビスマスのヨウ化物を用いたもの
について説明したが、ヨウ化物以外のフッ化物、塩化物
、臭化物を用いてもよく、上記実施例と同様の効果を奏
する。
In the above embodiments, bismuth iodide was used, but fluorides, chlorides, and bromides other than iodide may also be used, and the same effects as in the above embodiments can be obtained.

又上記実施例では石英ガラスより成る発光管1を用いて
いるが、耐熱性で透光性のある材料、例えば透光性セラ
ミック等を用いてもよく、上記実施例と同様の効果を奏
する。
Further, although the arc tube 1 made of quartz glass is used in the above embodiment, a heat-resistant and translucent material such as translucent ceramic may be used, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕 以上のように、この発明によれば、赤外光を透過する発
光管内に、一対の放電用の電極とともに、水銀、希ガス
およびハロゲン化ビスマスを封入するように構成したの
で、所定の近赤外域における発光スペクトルの光を発生
できるとともに、上記ハロゲン化ビスマスの封入量、管
壁負荷の大きさを最適値に選択することにより、上記近
赤外域において発光スペクトルの強い光の発生を可能に
するほか、暗視装置用の光源としての利用および長寿命
化が図れるものが得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, mercury, rare gas, and bismuth halide are sealed together with a pair of discharge electrodes in an arc tube that transmits infrared light. , it is possible to generate light with an emission spectrum in a predetermined near-infrared region, and by selecting the optimum amount of the bismuth halide and the size of the tube wall load, it is possible to generate light with a strong emission spectrum in the near-infrared region. In addition to making it possible to generate light, it also has the effect of providing a light source that can be used as a light source for night vision devices and has a longer lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による赤外光ランプを示す
概略構成図、第2図は発光管の管壁負荷の大きさと波長
966 nmの発光強度との関係を示すグラフ図、第3
図はヨウ化ビスマスの封入量と波長966 nmの発光
強度との関係を示すグラフ図、第4図はヨウ化ビスマス
を封入した発光管のスペクトル分布図、第5図は従来の
赤外光ランプを一部破断して示した正面図、第6図はハ
ロゲンランプの光のスペクトル分布図である。 1は発光管、2,3は電極、4はハロゲン化ビスマス。
FIG. 1 is a schematic configuration diagram showing an infrared light lamp according to an embodiment of the present invention, FIG. 2 is a graph diagram showing the relationship between the magnitude of the tube wall load of the arc tube and the emission intensity at a wavelength of 966 nm, and FIG.
The figure is a graph showing the relationship between the amount of bismuth iodide filled and the emission intensity at a wavelength of 966 nm. Figure 4 is a spectral distribution diagram of an arc tube filled with bismuth iodide. Figure 5 is a conventional infrared lamp. FIG. 6 is a partially cutaway front view showing the spectral distribution of light from the halogen lamp. 1 is an arc tube, 2 and 3 are electrodes, and 4 is bismuth halide.

Claims (2)

【特許請求の範囲】[Claims] (1)暗視等に必要な所定波長域以上の赤外光を放射す
る赤外光ランプにおいて、上記赤外光を透過する発光管
を有し、この発光管内に一対の電極を封止するとともに
、水銀、希ガスおよびハロゲン化ビスマスを封入したこ
とを特徴とする赤外光ランプ。
(1) An infrared lamp that emits infrared light in a predetermined wavelength range or more necessary for night vision, etc., has an arc tube that transmits the infrared light, and a pair of electrodes is sealed within the arc tube. An infrared light lamp characterized by containing mercury, a rare gas, and bismuth halide.
(2)発光管の管壁負荷を15W/cm^2から23W
/cm^2とし、上記発光管に封入するハロゲン化ビス
マスの量を、その発光管の内容積に対して1.3mg/
ccから3.9mg/ccとしたことを特徴とする特許
請求の範囲第1項記載の赤外光ランプ。
(2) Increase the tube wall load of the arc tube from 15W/cm^2 to 23W
/cm^2, and the amount of bismuth halide sealed in the arc tube is 1.3 mg/cm^2 with respect to the inner volume of the arc tube.
The infrared light lamp according to claim 1, characterized in that the infrared light lamp has a concentration of cc to 3.9 mg/cc.
JP11447287A 1987-05-13 1987-05-13 Infrared ray lamp Pending JPS63281345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447287A JPS63281345A (en) 1987-05-13 1987-05-13 Infrared ray lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447287A JPS63281345A (en) 1987-05-13 1987-05-13 Infrared ray lamp

Publications (1)

Publication Number Publication Date
JPS63281345A true JPS63281345A (en) 1988-11-17

Family

ID=14638587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447287A Pending JPS63281345A (en) 1987-05-13 1987-05-13 Infrared ray lamp

Country Status (1)

Country Link
JP (1) JPS63281345A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502678B1 (en) * 2006-03-24 2007-05-15 Alvatec Alkali Vacuum Technolo Vaporizing source for gas phase generation comprising Bi alloy containing alkali and/or alkali earth metal useful in production of organic light emitting diodes doped with Na and in photocathode production
US7388332B2 (en) 2002-10-08 2008-06-17 Harison Toshiba Lighting Corp. Metal vapor discharge lamp, floodlight projector and metal vapor discharge lamp lighting device
JP2009064725A (en) * 2007-09-07 2009-03-26 Harison Toshiba Lighting Corp Metal halide lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388332B2 (en) 2002-10-08 2008-06-17 Harison Toshiba Lighting Corp. Metal vapor discharge lamp, floodlight projector and metal vapor discharge lamp lighting device
AT502678B1 (en) * 2006-03-24 2007-05-15 Alvatec Alkali Vacuum Technolo Vaporizing source for gas phase generation comprising Bi alloy containing alkali and/or alkali earth metal useful in production of organic light emitting diodes doped with Na and in photocathode production
JP2009064725A (en) * 2007-09-07 2009-03-26 Harison Toshiba Lighting Corp Metal halide lamp

Similar Documents

Publication Publication Date Title
US3259777A (en) Metal halide vapor discharge lamp with near molten tip electrodes
US5109181A (en) High-pressure mercury vapor discharge lamp
JP2589043B2 (en) High temperature lamp with UV absorbing quartz envelope
US3931536A (en) Efficiency arc discharge lamp
US4020377A (en) High pressure mercury vapor discharge lamp
JP2002124211A5 (en)
JPH0557695B2 (en)
US4249102A (en) Halogen-metal vapor discharge lamp
US4197480A (en) Reflector-type hid sodium vapor lamp unit with dichroic reflector
GB2035679A (en) High pressure metal vapour discharge lamps
MXPA05003182A (en) Fluorescent lamp for emitting visible radiation.
JP2001222979A (en) Metal halogen electrodeless lamp
JPS63281345A (en) Infrared ray lamp
JP2008507090A (en) Krypton metal halide lamp
JPS63281344A (en) Infrared ray lamp
JPS63281343A (en) Infrared ray lamp
US7105989B2 (en) Plasma lamp and method
JP4488856B2 (en) Mercury-free metal halide lamp
JPH0982276A (en) Metal halide lamp
JPS59167949A (en) High pressure metal vapor discharge lamp
JPS59167948A (en) High pressure metal vapor discharge lamp
JP2001319618A (en) Ultrahigh-pressure mercury lamp and its manufacturing method
JPH1050261A (en) Discharge lamp, lighting system, and display device
JPH06283136A (en) High-pressure discharge lamp and light source device using it
JPH10241632A (en) High-pressure discharge lamp lighting method, high-pressure discharge lamp lighting device, and lighting system