JPS63281330A - Electromagnetically driven switch - Google Patents

Electromagnetically driven switch

Info

Publication number
JPS63281330A
JPS63281330A JP11464187A JP11464187A JPS63281330A JP S63281330 A JPS63281330 A JP S63281330A JP 11464187 A JP11464187 A JP 11464187A JP 11464187 A JP11464187 A JP 11464187A JP S63281330 A JPS63281330 A JP S63281330A
Authority
JP
Japan
Prior art keywords
coil
switch
power consumption
superconductor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11464187A
Other languages
Japanese (ja)
Inventor
Osamu Kagaya
修 加賀谷
Junji Shigeta
淳二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11464187A priority Critical patent/JPS63281330A/en
Publication of JPS63281330A publication Critical patent/JPS63281330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/28Relays having both armature and contacts within a sealed casing outside which the operating coil is located, e.g. contact carried by a magnetic leaf spring or reed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/005Mechanisms for operating contacts making use of superconductivity, e.g. levitation switch

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

PURPOSE:To operate with the low power consumption and the low drive voltage by using a superconductor for a coil wire. CONSTITUTION:This electromagnetically driven switch has a coil, a magnetic circuit, and a switch, and a nonmetallic superconductor is used for a coil. Ferromagnetic and flexible reed pieces 3 are arranged face to face and sealed with a sealing glass 2, for example. The contact point 5 of this reed switch is opened or closed via the magnetic field generated by a superconductive coil 1 to cut off or connect the current. The superconductive coil 1 is immersed in the liquid nitrogen 4 and cooled to the critical temperature or lower. The internal resistance of the superconductive coil 1 thereby becomes zero, thus allowing the low-voltage drive and low power consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁石により動作するスイッチに係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a switch operated by an electromagnet.

特に、低電圧、低消費電力で制御するのに適した電磁駆
動式スイッチに関する。
In particular, the present invention relates to an electromagnetic drive switch suitable for control with low voltage and low power consumption.

〔従来の技術〕[Conventional technology]

従来の電磁駆動式スイッチ、例えばリレーは。 Traditional electromagnetically driven switches, e.g. relays.

総合電子部品ハンドブック、(社)日本電子機械工業金
偏(1980年)電波新聞所、第1088頁から第10
90mにおいて論じられている。
Comprehensive Electronic Components Handbook, Japan Electronics Machine Industry Co., Ltd. (1980) Dempa Shimbun, pp. 1088-10
Discussed in 90m.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、コイルに電流を流し、磁場を発生させ
ることによって接極子を動作し、これによってスイッチ
を駆動していた。しかし、コイルには銅などの金属を用
いるため、コイルは内部抵抗をもつ。コイルに電流を流
そうとすると、この内部抵抗によりジュール熱による電
力消費と電圧降下が必ず発生するという問題があった。
In the above-mentioned prior art, the armature is operated by passing a current through the coil to generate a magnetic field, thereby driving the switch. However, since the coil uses metal such as copper, the coil has internal resistance. When trying to pass current through the coil, this internal resistance inevitably causes power consumption and voltage drop due to Joule heat.

本発明の目的は、この消費電力と電圧降下を減少させ、
低消費電力、低部電圧で動作できる電磁駆動゛式スイッ
チを提供することにある。
The purpose of the present invention is to reduce this power consumption and voltage drop,
An object of the present invention is to provide an electromagnetic drive type switch that can operate with low power consumption and low voltage.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、コイルの線材として超伝導体を用いること
により達成できる。
The above object can be achieved by using a superconductor as the wire of the coil.

〔作用〕[Effect]

通常の金属は内部抵抗を持つため、電流を流した時にジ
ーール熱を発生し、電力を消費する。また、オームの法
則にしたがい、電圧を降下させる。
Ordinary metals have internal resistance, so when electric current is passed through them, they generate heat and consume electricity. Also, the voltage is dropped according to Ohm's law.

一方、超伝導体は臨界温度以下では内部抵抗が零になる
ため、ジュール熱や電圧降下を発生しない。よって、コ
イルに超伝導体を用いると、低い電圧でも大電流を流す
ことができ、低電圧駆動と低消費電力化が達成できる。
On the other hand, superconductors have zero internal resistance below their critical temperature, so they do not generate Joule heat or voltage drop. Therefore, if a superconductor is used for the coil, a large current can flow even at a low voltage, and low voltage driving and low power consumption can be achieved.

ところが、Nb3Snのような金属系超伝導体を用いた
場合には、超伝導体を液体ヘリウム容器などの外部に出
すことができず、上記のような構造は実現できない。し
かし、超伝導体にイッl−IJウム、バリウム、ランタ
ン、ストロンチウム、酸化銅などを主成分とする非金属
系超伝導体を用いれば、簡単な冷却装置で超伝導状態に
することができ、上記構造を実現できる。
However, when a metallic superconductor such as Nb3Sn is used, the superconductor cannot be taken out of a liquid helium container or the like, and the above structure cannot be realized. However, if a nonmetallic superconductor whose main components are il-IJium, barium, lanthanum, strontium, copper oxide, etc. is used as a superconductor, it can be brought into a superconducting state with a simple cooling device. The above structure can be realized.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例1) 第1図は本発明の実施例1の超伝導コイルを用いたリー
ドリレーの断面図である。
(Example 1) FIG. 1 is a sectional view of a reed relay using a superconducting coil according to Example 1 of the present invention.

強磁性から成り1弾性をもつリード片3を対向して1置
し、封入ガラス2で封入する。このIJ−ドスイッチの
接点5を超伝導コイル】で発生した磁場によって開閉し
、電流の断続を行なう。超伝導コイル】は液体窒素4中
に浸し、臨界温度以下に冷却する。
Lead pieces 3 made of ferromagnetic material and having high elasticity are placed facing each other and sealed with a sealing glass 2. The contact 5 of this IJ-type switch is opened and closed by the magnetic field generated by the superconducting coil, and the current is interrupted. The superconducting coil] is immersed in liquid nitrogen 4 and cooled below the critical temperature.

上記構造のリードリレーでは、超伝導コイル1の内部抵
抗が零となるため、低電圧駆動と低消費電力化が可能と
なる。
In the reed relay having the above structure, since the internal resistance of the superconducting coil 1 becomes zero, low voltage driving and low power consumption are possible.

(実施例2) 第2図は本発明の実施例2の超伝導コイルを用いたヒン
ジ型リレーの断面図である。
(Example 2) FIG. 2 is a sectional view of a hinge type relay using a superconducting coil according to Example 2 of the present invention.

超伝導コイル1に電流を流すと、固定鉄心9の内部に強
力な磁場が発生し、可動鉄心8を引き付け、接点5が切
りわかる。超伝導コイル1に流たる電流を断つと、ばね
7により接点5は元に戻る0このようにして端子6の信
号を切り換える。さらに、このリレーの周囲を超伝導シ
ールド10で覆い、全体を液体窒素4中に浸して超伝導
状態を保つ0 上記構造のリレーでは、超伝導コイル1の内部抵抗が零
となるため、低電圧駆動と低消費電力化が可能である。
When a current is passed through the superconducting coil 1, a strong magnetic field is generated inside the fixed core 9, which attracts the movable core 8 and makes the contact 5 clear. When the current flowing through the superconducting coil 1 is cut off, the contact 5 returns to its original state due to the spring 7. In this way, the signal at the terminal 6 is switched. Furthermore, the relay is surrounded by a superconducting shield 10, and the whole is immersed in liquid nitrogen 4 to maintain the superconducting state. In the relay with the above structure, the internal resistance of the superconducting coil 1 is zero, so low voltage It is possible to drive and reduce power consumption.

また、超伝導シールド10の完全反磁性により、内部で
発生した磁気的ノイズを完全にシールドする効果がある
Furthermore, the complete diamagnetic nature of the superconducting shield 10 has the effect of completely shielding internally generated magnetic noise.

(実施例3) 第3図は本発明の実施例3の超伝導コイルを用いた光ス
ィッチの断面図である。
(Example 3) FIG. 3 is a sectional view of an optical switch using a superconducting coil according to Example 3 of the present invention.

超伝導コイル1により磁場を発生すると1強磁性体13
が磁什し、永久磁石14が一方に引きつけられる。そし
て可動ファイバ12と固定ファイバ】1から成る光路が
切換ねる。可動ファイバJ2はばね7によって支訝られ
ている。また、超伝導コイル1は液体窒素4によって臨
界温度以下に冷却されている。
When a magnetic field is generated by superconducting coil 1, 1 ferromagnetic material 13
is magnetized, and the permanent magnet 14 is attracted to one side. Then, the optical path consisting of the movable fiber 12 and the fixed fiber 1 is switched. The movable fiber J2 is supported by a spring 7. Further, the superconducting coil 1 is cooled to below a critical temperature by liquid nitrogen 4.

上記構造の光スィッチでは、超伝導コイル1の内部抵抗
が零となるため、低電圧駆動吉低消費電力化が可能であ
る。
In the optical switch having the above structure, since the internal resistance of the superconducting coil 1 becomes zero, low voltage driving and low power consumption are possible.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、コイルの内部抵抗を零に
することができ、電磁駆動式スイッチの低電圧駆動と低
消費電力化を実現できる。
As described above, according to the present invention, the internal resistance of the coil can be reduced to zero, and the electromagnetically driven switch can be driven at a low voltage and consume less power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例】のリードリレーの断面図。 第2図は本発明の実施例2のヒンジ型リレーの断面図、 第3図は本発明の実施例3の光スィッチの断面図である
。 1・・・超伝導コイル、2・・・封入ガラス、3・・・
リード片、4・・・液体窒素、5・・・接点、6・・・
端子、7・・・ばね、8・・・可動鉄片、9・・・固定
鉄心、10・・・超伝導シールド、11・・・同定ファ
イバ、12・・・可動ファイバ、13・・・強磁性体、
14・・・永久磁石。
FIG. 1 is a sectional view of a reed relay according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a hinge type relay according to a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of an optical switch according to a third embodiment of the present invention. 1...Superconducting coil, 2...Enclosed glass, 3...
Lead piece, 4...Liquid nitrogen, 5...Contact, 6...
Terminal, 7... Spring, 8... Movable iron piece, 9... Fixed iron core, 10... Superconducting shield, 11... Identification fiber, 12... Movable fiber, 13... Ferromagnetism body,
14...Permanent magnet.

Claims (1)

【特許請求の範囲】[Claims] コイルと、磁気回路と、スイッチを有する電磁駆動式ス
イッチにおいて、コイルに非金属系超伝導体を使用する
ことを特徴とする電磁駆動式スイッチ。
An electromagnetically driven switch comprising a coil, a magnetic circuit, and a switch, characterized in that a nonmetallic superconductor is used for the coil.
JP11464187A 1987-05-13 1987-05-13 Electromagnetically driven switch Pending JPS63281330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11464187A JPS63281330A (en) 1987-05-13 1987-05-13 Electromagnetically driven switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11464187A JPS63281330A (en) 1987-05-13 1987-05-13 Electromagnetically driven switch

Publications (1)

Publication Number Publication Date
JPS63281330A true JPS63281330A (en) 1988-11-17

Family

ID=14642888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11464187A Pending JPS63281330A (en) 1987-05-13 1987-05-13 Electromagnetically driven switch

Country Status (1)

Country Link
JP (1) JPS63281330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095295A (en) * 1988-09-08 1992-03-10 Semiconductor Energy Laboratory Co., Ltd. Superconducting switching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095295A (en) * 1988-09-08 1992-03-10 Semiconductor Energy Laboratory Co., Ltd. Superconducting switching device

Similar Documents

Publication Publication Date Title
CA2109700A1 (en) Electromagnetic actuator
US3534307A (en) Electromagnetically or mechanically controlled magnetically-latched relay
US5703550A (en) Magnetic latching relay
US3196232A (en) Reed relay
JPS63281330A (en) Electromagnetically driven switch
GB1198493A (en) Polarised Electromagnetic Relays
US3486138A (en) Electromagnetic switches utilizing remanent magnetic material
US3919676A (en) Permanent-magnet type relay
US3188425A (en) Electromechanical switch for use as a crosspoint for conversation circuits
US3324430A (en) Vacuum relay
US5095295A (en) Superconducting switching device
US3439301A (en) Electromagnetic switch matrix
US2995635A (en) Electric control device
CN105321742B (en) Solenoid Linear actuator and preparation method thereof
US4109219A (en) Electromagnetic switching device
JPH01276526A (en) Temperature sensitive switch
US3264423A (en) Position indicating electric switch
US3018456A (en) Switching devices
KR840005268A (en) Electronic miniature relay
US3400348A (en) Polarized reed relay wherein the permanent magnet is around the reed switch and in contact with the coil
JPH05174691A (en) Seesaw balance type polarized relay
JPH01160065A (en) Switching element
JPH0721893A (en) Auxiliary switch for switching device
CA1052839A (en) Electromagnetic relay comprising two control coils
KR900000519Y1 (en) Electro magnetic relay of no load