JPH01276526A - Temperature sensitive switch - Google Patents
Temperature sensitive switchInfo
- Publication number
- JPH01276526A JPH01276526A JP10453788A JP10453788A JPH01276526A JP H01276526 A JPH01276526 A JP H01276526A JP 10453788 A JP10453788 A JP 10453788A JP 10453788 A JP10453788 A JP 10453788A JP H01276526 A JPH01276526 A JP H01276526A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- magnetic flux
- superconductor
- sensitive switch
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 81
- 239000002887 superconductor Substances 0.000 claims abstract description 70
- 230000004907 flux Effects 0.000 claims abstract description 58
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000463 material Substances 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 9
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 9
- 230000005389 magnetism Effects 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 5
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- -1 aluminum-manganese-iron Chemical compound 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000927 Ge alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical group [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910001281 superconducting alloy Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/02—Details
- H01H37/32—Thermally-sensitive members
- H01H37/58—Thermally-sensitive members actuated due to thermally controlled change of magnetic permeability
- H01H37/585—Thermally-sensitive members actuated due to thermally controlled change of magnetic permeability the switch being of the reed switch type
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、所定の温度を境にして開閉動作をず感温スイ
ッチに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a temperature-sensitive switch that does not open or close at a predetermined temperature.
従来の技術
従来の所定の温度を境にして開閉する感温スイッチは、
第4図のような構造になっていた。Conventional technology Conventional temperature-sensitive switches that open and close at a predetermined temperature are
The structure was as shown in Figure 4.
すなわち第4図において1は電気接点、2は電気接点l
を支持するN152%残鉄の材料よりなる板片、3は板
片2を固定するガラス製の密閉容器、4はトロイダルの
永久磁石A、5はもう一方の永久磁石B、6は永久磁石
A4と永久磁石B5との間に設けられた感温フェライト
である。なお、第4図(a)は感温スイッチが閉した状
態、第4図(1))は開いた状態を示すものである。In other words, in Fig. 4, 1 is an electrical contact, and 2 is an electrical contact l.
A plate piece made of N152% residual iron material that supports the plate piece 2, 3 is a glass airtight container that fixes the plate piece 2, 4 is a toroidal permanent magnet A, 5 is the other permanent magnet B, 6 is a permanent magnet A4 This is a temperature-sensitive ferrite provided between the permanent magnet B5 and the permanent magnet B5. Note that FIG. 4(a) shows a state in which the temperature-sensitive switch is closed, and FIG. 4(1)) shows a state in which it is open.
以上のように構成された従来の感温スイッチについて、
以下その動作について説明する。従来の感温スイッチは
感温フェライト6のキュリー温度以下では、感温フェラ
イト6が強磁性体であるので磁束が第4図(a)の矢印
のように流れ、板片2が互いに引き寄せられて電気接点
1が接触し閉路状態となるが、キュリー温度以上になる
と、感温フェライト6は常磁性体となって磁束が流れに
くくなり、第4図(a)の矢印のように磁束が流れて、
板片2の弾性によって電気接点lが離れ、開路状態とな
る。Regarding the conventional temperature-sensitive switch configured as described above,
The operation will be explained below. In the conventional temperature-sensitive switch, when the temperature-sensitive ferrite 6 is below the Curie temperature, since the temperature-sensitive ferrite 6 is a ferromagnetic material, magnetic flux flows as shown by the arrow in Fig. 4(a), and the plate pieces 2 are attracted to each other. The electrical contacts 1 come into contact and the circuit is closed, but when the temperature exceeds the Curie temperature, the temperature-sensitive ferrite 6 becomes paramagnetic, making it difficult for magnetic flux to flow, and the magnetic flux flows as shown by the arrow in Figure 4(a). ,
The elasticity of the plate piece 2 separates the electrical contacts 1, resulting in an open circuit state.
発明が解決しようとする課題
しかしながら、このような構成においては、(灰汁2の
動作が永久磁石A4と永久磁石B5と感温フェライト6
との間の微妙な磁気的バランスに基づいて行われるので
、永久磁石A4及び永久磁石B5の磁力のばらつき、感
温フェライト6のキュリー温度のばらつき、永久磁石A
4及び永久磁石B5と感温フェライト6の寸法のばらつ
き、永久磁石A4、永久磁石B5及び感温フェライト6
と電気接点1との相対的な接着位置のばらつき等によっ
て動作温度が変化するという問題点を有していた。また
、複数個の永久磁石で構成しているので、部品点数が多
くなり、小型化できずコスト上も組み立て工数上も不利
であるという問題点も有していた。Problem to be Solved by the Invention However, in such a configuration, (the operation of the lye 2 is caused by the permanent magnet A4, the permanent magnet B5, and the temperature-sensitive ferrite 6)
This is done based on the delicate magnetic balance between permanent magnet A4 and permanent magnet B5, variations in the magnetic force of permanent magnet A4 and permanent magnet B5, variation in the Curie temperature of temperature-sensitive ferrite 6, and permanent magnet A.
4 and variation in dimensions of permanent magnet B5 and temperature-sensitive ferrite 6, permanent magnet A4, permanent magnet B5, and temperature-sensitive ferrite 6
There was a problem in that the operating temperature varied due to variations in the relative adhesion position between the electrical contact 1 and the electrical contact 1. Furthermore, since it is composed of a plurality of permanent magnets, the number of parts increases, making it impossible to downsize and disadvantageous in terms of cost and assembly man-hours.
そこで、本発明は簡単な構成で、部品点数が少なく小型
で底コストの信鎖性の高い感温スイッチを提供するもの
である。SUMMARY OF THE INVENTION Therefore, the present invention provides a temperature-sensitive switch having a simple configuration, a small number of parts, a small size, low cost, and high reliability.
課題を解決するための手段
上記問題点を解決するために本発明の感温スイッチは、
磁束発生手段と板片とを含んで構成する磁路の横断面を
覆う超伝導体を備えたものである。Means for Solving the Problems In order to solve the above problems, the temperature-sensitive switch of the present invention has the following features:
It is equipped with a superconductor that covers the cross section of a magnetic path that includes a magnetic flux generating means and a plate piece.
作用
本発明による作用は次のようになる。すなわち、磁束発
生手段と、電気接点を支持する磁性と導電性を持つ板片
とを含む、前記電気接点を接触状態にするために構成す
る磁路の横断面を覆う超伝導体の超伝導ロー界温度以上
では、超伝導体は超伝導状態ではないので、超伝導体を
横切って磁束が流れることができ、前記磁路に磁束発生
手段より発生した磁束が流れ電気接点は接触するが、超
伝導臨界温度以下の超伝導状態ではマイスナー効果によ
り超伝導体を横切って磁束が流れず、超伝導体は磁束発
生手段より発生した磁束が前記磁路に流れるのを妨げ、
電気接点は非接触状態となる。このように本発明では、
超伝導体の超伝導状態での磁気シールド効果を利用して
磁束発生手段より発生した磁束の流れを変化させて感温
スイッチを開閉させているのだが、超伝導体の超伝導臨
界温度はばらつきがなく、また超伝導臨界温度を境にし
て超伝導状態から非超伝導状態に、あるいは非超伝導状
態から超伝導状態に急激に変化するので、超伝導臨界温
度を境にして、磁束発生手段より発生した磁束の流れを
急激に変化させることができ、使用する磁束発生手段の
微妙な寸法のばらつきや、その磁束発生手段の電気接点
に対する接着位置の微妙なばらつき等による微妙な磁気
的バランスによる影響をうけにくい一定の動作温度を持
つ信顧性の高い感温スイッチとなる。また、1つの磁束
発生手段によっても、所定の開閉動作を実現できるので
、部品点数の少ない小型の感温スイッチを提供すること
ができる。Effects The effects of the present invention are as follows. That is, a superconducting roller made of a superconductor that covers a cross section of a magnetic path configured to bring the electrical contacts into contact, which includes a magnetic flux generating means and a magnetic and electrically conductive plate piece that supports the electrical contacts. Above the field temperature, the superconductor is not in a superconducting state, so magnetic flux can flow across the superconductor, and the magnetic flux generated by the magnetic flux generating means flows through the magnetic path and the electrical contacts come into contact, but the superconductor is not in a superconducting state. In a superconducting state below the conduction critical temperature, magnetic flux does not flow across the superconductor due to the Meissner effect, and the superconductor prevents the magnetic flux generated by the magnetic flux generating means from flowing in the magnetic path,
The electrical contacts are in a non-contact state. In this way, in the present invention,
The magnetic shielding effect of a superconductor in its superconducting state is used to change the flow of magnetic flux generated by a magnetic flux generating means to open and close a temperature-sensitive switch, but the superconducting critical temperature of a superconductor varies. Moreover, since the superconducting state suddenly changes from a superconducting state to a non-superconducting state, or from a non-superconducting state to a superconducting state at the superconducting critical temperature, the magnetic flux generating means It is possible to rapidly change the flow of the magnetic flux generated by the magnetic flux, and due to the delicate magnetic balance caused by slight variations in the dimensions of the magnetic flux generating means used, subtle variations in the bonding position of the magnetic flux generating means to the electrical contacts, etc. This is a highly reliable temperature-sensitive switch with a constant operating temperature that is not easily affected. Further, since the predetermined opening/closing operation can be achieved even with one magnetic flux generating means, it is possible to provide a small temperature-sensitive switch with a small number of parts.
実施例
以下本発明の第1の一実施例の感温スイッチについて図
面を参照しながら説明する。第1図は、本発明の第1の
実施例の断面図である。第1図において、lは電気接点
、2は電気接点lを支持するNi52%残鉄の材料より
なる板片、3は板片2を固定するガラス製密閉容器、7
はガラス製密閉容器3の外周に取り付けられたトロイダ
ルの永久6■石、8は板片2の表面に接着されたニオブ
・チタン系合金よりなる超伝導体である。なお、第1図
(a)は感温スイッチが閉した状態、第1図(t))は
開いた状態を示すものである。EXAMPLE A temperature-sensitive switch according to a first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a first embodiment of the invention. In FIG. 1, 1 is an electrical contact, 2 is a plate made of 52% Ni material that supports the electrical contact 1, 3 is a glass sealed container for fixing the plate 2, and 7
A toroidal permanent stone 6 is attached to the outer periphery of the glass sealed container 3, and 8 is a superconductor made of a niobium-titanium alloy bonded to the surface of the plate piece 2. Note that FIG. 1(a) shows a state in which the temperature-sensitive switch is closed, and FIG. 1(t)) shows a state in which it is open.
以上のように構成された感温スイッチについて、以下そ
の動作を説明する。まず、超伝導体8の超伝導臨界温度
以上の場合は、超伝導体8は超伝導状態ではないので超
伝導体8を横切る磁束が流れることができ、永久も11
石7より発生ずる磁束は、第1図(a)の矢印で示す磁
路を流れ、これによって板片2は互いに引き寄せられ電
気接点lが閉じる。The operation of the temperature-sensitive switch configured as described above will be described below. First, when the temperature is higher than the superconducting critical temperature of the superconductor 8, the superconductor 8 is not in a superconducting state, so a magnetic flux can flow across the superconductor 8, and the permanent
The magnetic flux generated by the stone 7 flows through the magnetic path indicated by the arrow in FIG. 1(a), thereby drawing the plate pieces 2 together and closing the electrical contact l.
次に超伝導体8の超伝導臨界温度以下の場合は、超伝導
体8は超伝導状態となり、マイスナー効果により超伝導
体8を横切って磁束が流れることができず、永久磁石7
より発生する磁束は、第1図(b)の矢印のように流れ
てしまい板片2を互いに引きつける引力は発生せず、板
片2は自らの弾性復元力によって元の形状に戻り、電気
接点lが開く。Next, when the temperature is below the superconducting critical temperature of the superconductor 8, the superconductor 8 becomes a superconducting state, and magnetic flux cannot flow across the superconductor 8 due to the Meissner effect, and the permanent magnet 7
The generated magnetic flux flows as shown by the arrow in Fig. 1(b), and the attractive force that attracts the plate pieces 2 to each other is not generated, and the plate pieces 2 return to their original shape by their own elastic restoring force, forming an electrical contact. l opens.
ここで、超伝導体は、超伝導臨界温度を境にして超伝導
状態から非超伝導状態に、あるいは非超伝導状態から超
伝導状態に急激に変化するという特徴がある。したがっ
て、本実施例の感温スイッチは、永久磁石7より発生す
る磁束の流れが超伝導臨界温度を境にして急激に変化す
るので、永久磁石7の寸法や磁力の微妙なばらつきに左
右されない動作温度を持つことになる。Here, superconductors are characterized in that they rapidly change from a superconducting state to a non-superconducting state, or from a non-superconducting state to a superconducting state, at a superconducting critical temperature. Therefore, in the temperature-sensitive switch of this embodiment, since the flow of magnetic flux generated by the permanent magnet 7 changes rapidly after reaching the superconducting critical temperature, the operation is not affected by subtle variations in the dimensions or magnetic force of the permanent magnet 7. It will have a temperature.
また、従来の感温スイッチと異なり1個の永久磁石で所
定の開閉動作を行うことが可能であり、さらに永久磁石
7は2枚の板片との間に接点近傍で閉磁路を構成するの
に十分な大きさであればよいので、小型で、部品点数が
少なく、したがって組立て工数が少ない底コストの感温
スイッチを構成することができる。In addition, unlike conventional temperature-sensitive switches, it is possible to perform predetermined opening and closing operations with a single permanent magnet, and furthermore, the permanent magnet 7 forms a closed magnetic path between the two plate pieces near the contact point. Since it is sufficient to have a size sufficient for , it is possible to construct a temperature-sensitive switch that is small in size, has a small number of parts, and therefore requires a small number of assembly steps and is low in cost.
さらに、本実施例の感温スイッチは板片2の表面に超伝
導体8を接着しているので、閉路状態で永久磁石7によ
って板片2が磁化されて残留磁気が残っても、超伝導体
8が超伝導状態ならば、残留磁気を帯びた板片2からは
磁束がもれず、2枚の板片2の間に引力が(妨かないの
で、互いにくっついて離れないということがない。つま
り、従来の感温スイッチでは、所定の開閉動作を行うに
は残留磁気を帯びない材料で作られた板片2を用いなけ
ればならないが、本実施例の感温スイッチでは板片2は
残¥1磁気を帯びない材料で作らなくともよいので、よ
り低価格の+414で作ることができる。Furthermore, since the temperature-sensitive switch of this embodiment has the superconductor 8 bonded to the surface of the plate piece 2, even if the plate piece 2 is magnetized by the permanent magnet 7 in a closed circuit state and residual magnetism remains, the superconductor If the body 8 is in a superconducting state, magnetic flux will not leak from the plate pieces 2 with residual magnetism, and there will be no attraction between the two plate pieces 2, so they will not stick to each other and not separate. In other words, in a conventional temperature-sensitive switch, the plate piece 2 made of a material that does not have residual magnetism must be used to perform the prescribed opening/closing operation, but in the temperature-sensitive switch of this embodiment, the plate piece 2 is ¥1 Since it does not have to be made from a non-magnetic material, it can be made at a lower price of +414.
以上のような本実施例によれば、所定の超伝導臨界温度
を持つ超伝導体を電気接点を支持する磁性と導電性を持
つ2本の板片の表面に接着して設けることにより、安価
な材料で構成でき、信頼性が高く、小型で、iJI立て
工数が少ない底コストの感温スイッチを作ることができ
る。According to this embodiment as described above, a superconductor having a predetermined superconducting critical temperature is bonded to the surface of two magnetic and conductive plate pieces supporting electrical contacts, thereby reducing the cost. It is possible to make a temperature-sensitive switch that can be constructed from suitable materials, is highly reliable, is small, and requires less man-hours for iJI installation and is low in cost.
以下本発明の第2の一実施例について図面を参照しなが
ら説明する。A second embodiment of the present invention will be described below with reference to the drawings.
第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.
第2図において、lは電気接点、2は電気接点1を支持
するNi52%残鉄よりなる板片、8は板片2の表面に
接着されたニオブ・チタン系合金よりなる超伝導体、9
は電気接点lを支持する永久磁化されたアルミニウムと
マンガンと鉄の合金よりなる板片である。なお、第2図
は感温スイッチが開いた状態を示すものである。In FIG. 2, l is an electrical contact, 2 is a plate made of 52% Ni remaining iron that supports the electrical contact 1, 8 is a superconductor made of a niobium-titanium alloy bonded to the surface of the plate 2, and 9
is a plate made of a permanently magnetized aluminum-manganese-iron alloy that supports the electrical contact l. Note that FIG. 2 shows the temperature-sensitive switch in an open state.
以上のように構成された感温スイッチについて、以下そ
の動作を説明する。まず、超伝導体8の超伝導臨界温度
以上の場合は、超伝導体8は超伝導状態でないので超伝
導体8を横切って磁束が流れ、板片9より発生する磁束
は、板片2と板片9とで閉じたけ路を流れることができ
板片2と板片9は互いに引き寄せられ電気接点1が閉じ
る。次に超伝導体8の超伝導臨界温度以下の場合は、超
伝導体8は超伝導状態となり、マイスナー効果により超
伝導体8を横切る磁束が流れず、板片2と板片9とで構
成する閉磁路を流れず、板片2と板片9との間で引力が
作用せず、板片2と板片9の各々の弾性復元力によって
電気接点1が開く。The operation of the temperature-sensitive switch configured as described above will be described below. First, when the temperature is higher than the superconducting critical temperature of the superconductor 8, the superconductor 8 is not in a superconducting state, so a magnetic flux flows across the superconductor 8, and the magnetic flux generated from the plate piece 9 crosses the plate piece 2. The flow can flow in a closed path with the plate piece 9, and the plate piece 2 and the plate piece 9 are attracted to each other, and the electrical contact 1 is closed. Next, when the temperature is below the superconducting critical temperature of the superconductor 8, the superconductor 8 enters a superconducting state, and magnetic flux does not flow across the superconductor 8 due to the Meissner effect, and the superconductor 8 is composed of the plate pieces 2 and 9. Therefore, no attractive force acts between the plate pieces 2 and 9, and the electric contact 1 opens due to the elastic restoring force of each of the plate pieces 2 and 9.
以上のように本実施例によれば、従来、電気接点を支持
する板片とは別に配置構成されていた永久磁石の機能を
永久磁化された板片にもたせることにより、より小型で
安価な感温スイッチを提供することになる。As described above, according to this embodiment, the function of a permanent magnet, which was conventionally arranged and configured separately from the plate that supports the electrical contacts, is provided to the permanently magnetized plate, which makes it more compact and inexpensive. It will provide a temperature switch.
第3図は本発明の第3の一実施例の断面図である。第3
図において、■は電気接点、2は電気接点lを支持する
Ni52%残鉄よりなる板片、8は板片2の電気接点l
側の表面に接着されたニオブ・チタン系合金よりなる超
伝導体、9は電気接点1を支持する永久磁化されたアル
ミニウムとマンガンと鉄の合金よりなる板片、10は板
片2の電気接点lと反対側の表面に接着されたニオブ・
ゲルマニウム系合金よりなる超伝導体である。なお、第
3図は感温スイッチが開いた状態を示すものである。FIG. 3 is a sectional view of a third embodiment of the present invention. Third
In the figure, ■ is an electrical contact, 2 is a plate made of 52% Ni remaining iron that supports the electrical contact l, and 8 is the electrical contact l of the plate 2.
A superconductor made of a niobium-titanium alloy adhered to the side surface, 9 a plate piece made of a permanently magnetized aluminum-manganese-iron alloy that supports the electrical contact 1, and 10 an electric contact of the plate piece 2. niobium bonded to the surface opposite the l.
A superconductor made of germanium alloy. Note that FIG. 3 shows the temperature-sensitive switch in an open state.
以上のように構成された感温スイッチは第2の実施例と
同様に、板片9より発生する磁束の流れを、ニオブ・チ
タン系合金よりなる超伝導体8の超伝導状態でのマイス
ナー効果を利用して変化させることで開閉動作を行うの
だが、本実施例では、超伝導体10の超伝導状態でのマ
イスナー効果を利用して超伝導体lOを横断する磁束を
遮断して、第3図の矢印で示される電気接点lを閉じる
のに寄与する磁束を増加させるので、板片9より発生す
る磁束をより効率的にスイッチの開閉動作に利用するこ
とができる。Similar to the second embodiment, the temperature-sensitive switch configured as described above directs the flow of magnetic flux generated from the plate piece 9 using the Meissner effect in the superconducting state of the superconductor 8 made of a niobium-titanium alloy. The opening/closing operation is performed by changing the superconductor lO, but in this example, the Meissner effect in the superconducting state of the superconductor 10 is used to block the magnetic flux that crosses the superconductor lO. Since the magnetic flux contributing to closing the electrical contact l shown by the arrow in FIG. 3 is increased, the magnetic flux generated from the plate piece 9 can be used more efficiently for opening and closing the switch.
上記の電気接点lを閉じるのに寄与する磁束を増加させ
る過程は、次のようになる。ニオブ・ゲルマニウム系合
金とニオブ・チタン系合金は共に超伝導合金であるが、
ニオブ・ゲルマニウム系合金の方が超伝導臨界温度が高
いので、ニオブ・ゲルマニウム系合金の超伝導臨界温度
と、ニオブ・チタン系合金の超伝導臨界温度の間の温度
においては、ニオブ・ゲルマニウム系合金よりなる超伝
導体lOは超伝導状態であるが、ニオブ・チタン系合金
より成る超伝導体8は超伝導状態ではない。The process of increasing the magnetic flux contributing to closing the electrical contact l described above is as follows. Niobium-germanium alloys and niobium-titanium alloys are both superconducting alloys, but
Niobium-germanium-based alloys have higher superconducting critical temperatures, so at temperatures between the superconducting critical temperatures of niobium-germanium-based alloys and the superconducting critical temperatures of niobium-titanium-based alloys, niobium-germanium-based alloys The superconductor 8 made of a niobium-titanium alloy is not in a superconducting state.
したがって、超伝導体8にはそれを横断して磁束は流れ
るので、板片9より発生する磁束は、超伝導体8との接
合面から流れだすことができる。しかし、超伝導体lO
にはそれを横断して磁束は流れないので、超伝導体lO
との接合面から磁束は流れないが、その分が超伝導体8
との接合面から流れだすこととなり、第3図の矢印で示
される電気接点lを閉じるのに寄与する磁束が増加する
ことになるのである。Therefore, since magnetic flux flows across the superconductor 8, the magnetic flux generated from the plate piece 9 can flow out from the interface with the superconductor 8. However, the superconductor lO
Since no magnetic flux flows across it, the superconductor lO
Although no magnetic flux flows from the junction surface with the superconductor 8
This results in an increase in the magnetic flux that flows out from the joint surface with the magnetic flux and contributes to closing the electrical contact l shown by the arrow in FIG.
以上のように本実施例によれば、電気接点を支持する導
電性を持つ永久磁化された板片の電気接点側の表面に接
着した超伝導体の超伝導臨界温度より高い超伝導臨界温
度を持つ超伝導体を電気接点を支持する導電性を持つ永
久cイl化された板片の電気接点の反対側表面に接着す
ることにより、板片より発生ずるより多くの磁束を電気
接点の開閉に利用できるので、効率的な感温スイッチと
なる。As described above, according to this embodiment, the superconducting critical temperature is higher than the superconducting critical temperature of the superconductor bonded to the electrical contact side surface of the electrically conductive permanently magnetized plate supporting the electrical contact. By adhering a superconductor with a conductive material to the opposite surface of the electrical contact of a conductive permanently sealed plate supporting the electrical contact, more magnetic flux than that generated by the plate can be used to open and close the electrical contact. This makes it an efficient temperature-sensitive switch.
なお、第1の実施例の様に板片が磁束発生手段として機
能しない場合において、永久磁石7を磁束発生手段とし
て用いているが、?I!lfi石を用いてもよい。そし
て、超伝導体8を板片2の表面に接着しているが、2枚
の板片で超伝導体をはさむサンドインチ構造としても同
様に動作する。さらに、板片2の材料としてNi52%
残鉄を用いているが、それに限定されるものではなく超
伝導体8を板片2の表面に接着する場合には、磁性と導
電性を持つ他の材料を用いてもよいし、板片が前述のサ
ンドインチ構造の場合には、残留磁気が残りにくい磁性
と導電性を持つ他の材料を用いてもよい。Incidentally, in the case where the plate piece does not function as a magnetic flux generating means as in the first embodiment, the permanent magnet 7 is used as a magnetic flux generating means. I! lfi stone may also be used. Although the superconductor 8 is bonded to the surface of the plate piece 2, it also operates similarly as a sandwich structure in which the superconductor is sandwiched between two plate pieces. Furthermore, Ni52% is used as the material for plate piece 2.
Although residual iron is used, the superconductor 8 is not limited to this, and when bonding the superconductor 8 to the surface of the plate piece 2, other materials having magnetism and conductivity may be used, or the plate piece In the case of the above-mentioned sand inch structure, other materials having magnetism and conductivity that hardly leave residual magnetism may be used.
しているが、少なくともどちらか1本に取り付けられて
いればよい。However, it is sufficient if it is attached to at least one of them.
また、第2あるいは第3の実施例のように板片が磁束発
生手段として機能する場合において、板片2の材料とし
てNi52%残鉄を用いているが、磁性と導電性を持つ
材料であれば、残留磁気が小さい材料に限定されるもの
ではない、そして、板片9の材料としてアルミニウムと
マンガンと鉄の合金を用いているが、保磁力を持つ他の
材料を用いてもよい、さらに、超伝導体8を板片9に接
着しているが、これは超伝導体8を板片2の電気接点l
側の表面に接着しても同様に働く。In addition, in the case where the plate piece functions as a magnetic flux generating means as in the second or third embodiment, 52% Ni residual iron is used as the material for the plate piece 2, but any material having magnetism and conductivity may be used. For example, the material is not limited to materials with small residual magnetism, and although an alloy of aluminum, manganese, and iron is used as the material for the plate piece 9, other materials having coercive force may be used. , the superconductor 8 is glued to the plate 9, which means that the superconductor 8 is connected to the electrical contact l of the plate 2.
It works the same way if glued to the side surface.
また、第1.第2あるいは第3の実施例において密封容
器3はガラス製としたが、他の絶縁性材料でできていて
もかまわない。Also, 1st. Although the sealed container 3 is made of glass in the second or third embodiment, it may be made of other insulating materials.
なお、第1あるいは第2の実施例において超伝導体8の
材料としてニオブ・チタン系合金を用いているが、他の
金属系、セラミックス系、有機系の超伝導体を用いても
よいし、いわゆる常温超伝導体を用いてもよい。Although a niobium-titanium alloy is used as the material for the superconductor 8 in the first or second embodiment, other metal-based, ceramic-based, or organic-based superconductors may also be used. A so-called room temperature superconductor may also be used.
常温超伝導体の一例としてストロンチウム(S「)、バ
リウム(Ba)、インドリウム(Y)及び銅(Cu)を
夫夫1:1:I:3の比率で含有するセラミック酸化物
がある。その製造方法の一例としては、出発原料として
S r CO3,[3a Co3゜Y、01.CuOの
夫人の!5)体を所定量混合し、粉砕し、空気中におい
て920°Cで5時間焼成する。この焼成・粉砕を3回
繰り返し、均質性を高める。このようにして処理した混
合粉体を冷間圧縮成型した後、空気中において1000
°Cで5時間焼成し、徐冷することにより製造する。An example of a room-temperature superconductor is a ceramic oxide containing strontium (S), barium (Ba), indium (Y), and copper (Cu) in a ratio of 1:1:I:3. An example of the production method is to mix a predetermined amount of S r CO3, [3a Co3゜Y, 01.CuO's !5) body as a starting material, crush it, and sinter it in air at 920°C for 5 hours. .This firing and pulverization process is repeated three times to improve homogeneity.After cold compression molding of the mixed powder treated in this way,
Produced by baking at °C for 5 hours and slow cooling.
なお、第3の実施例において超伝導体8の材料としてニ
オブ・チタン系合金を超伝導体lOの材料としてニオブ
・ゲルマニウム系合金を用いているが、超伝導臨界温度
の異なる2種類の他の金属系の超伝導体、または超伝導
臨界温度の異なる金属系の超伝導体とセラミックス系の
超伝導体、あるいは超伝導臨界温度の異なる2種類のセ
ラミックス系の超伝導体を用いてもよい。In the third embodiment, a niobium-titanium alloy is used as the material for the superconductor 8, and a niobium-germanium alloy is used as the material for the superconductor IO, but two other types with different superconducting critical temperatures are used. A metal-based superconductor, a metal-based superconductor and a ceramic-based superconductor with different superconducting critical temperatures, or two types of ceramic-based superconductors with different superconducting critical temperatures may be used.
発明の効果
以上のように本発明によれば、電気接点を支持する板片
と磁束発生手段とを含んで構成する磁路の横断面を覆う
超伝導体を設けることにより、安価な材料で構成でき、
信頼性の高い、部品点数の少ない小型で安価な、しかも
効率のよい感温スイッチが得られる。Effects of the Invention As described above, according to the present invention, by providing a superconductor that covers the cross section of the magnetic path that includes the plate pieces that support the electrical contacts and the magnetic flux generating means, the structure can be constructed using inexpensive materials. I can,
A highly reliable, compact, inexpensive, and efficient temperature-sensitive switch with a small number of parts can be obtained.
第1図は本発明の第1の一実施例の怒温スイ。
チの断面図、第2図は本発明の第2の一実施例の感温ス
イッチの断面図、第3図は本発明の第3の一実施例の感
温スイッチの断面図、第4図は従来の感温スイッチの断
面図である。
l・・・・・・電気接点、2・・・・・・板片、7・・
・・・・永久磁石、8・・・・・・超伝導体、9・・・
・・・板片、10・・・・・・超伝導体。
代理人の氏名 弁理士 中尾敏男 はか1名7−永久磁
石
第 1 図
8−一−ズSイ云Δ唾右収M2図
9−液温
第3図
Iθ−m−5訃?rイ云虜)、本
δ / 2
/FIG. 1 shows an example of the first embodiment of the present invention. 2 is a cross-sectional view of a temperature-sensitive switch according to a second embodiment of the present invention, FIG. 3 is a cross-sectional view of a temperature-sensitive switch according to a third embodiment of the present invention, and FIG. is a sectional view of a conventional temperature-sensitive switch. l...Electrical contact, 2...Plate piece, 7...
...Permanent magnet, 8...Superconductor, 9...
... Plate piece, 10 ... Superconductor. Name of agent: Patent attorney Toshio Nakao 7-Permanent magnet Figure 1
8-1-Z
9-Liquid temperature Figure 3 Iθ-m-5? r iun prisoner), book δ / 2 /
Claims (6)
性を持つ板片と、磁束発生手段と、前記電気接点を接触
状態にするために前記磁束発生手段と前記板片とを含ん
で構成する磁路と、前記磁路の横断面を覆う超伝導体と
を備え、前記超伝導体が超伝導臨界温度以上の非超伝導
状態では前記磁路に前記磁束発生手段より発生した磁束
が流れて前記電気接点を接触状態にし超伝導臨界温度以
下の超伝導状態では前記磁路に前記磁束発生手段より発
生した磁束を流さないことで前記電気接点を非接触状態
にすることを特徴とする感温スイッチ。(1) An electric contact, a magnetic and conductive plate supporting the electric contact, a magnetic flux generating means, and the magnetic flux generating means and the plate for bringing the electric contact into contact. comprising a magnetic path and a superconductor covering a cross section of the magnetic path, and when the superconductor is in a non-superconducting state at a superconducting critical temperature or higher, the magnetic flux generated by the magnetic flux generating means is applied to the magnetic path. The magnetic flux generated by the magnetic flux generating means is not allowed to flow through the magnetic path in a superconducting state below a superconducting critical temperature so that the electrical contacts are brought into a non-contact state. Temperature sensitive switch.
載の感温スイッチ。(2) The temperature-sensitive switch according to claim (1), wherein the magnetic flux generating means uses a permanent magnet.
2本の板片で支持される請求項(1)または請求項(2
)のいずれかに記載の感温スイッチ。(3) Claim (1) or Claim (2) wherein the electrical contact has a pair of configurations, each of which is supported by two different plate pieces.
) Temperature-sensitive switch described in any of the above.
た板片を用いた請求項(1)または請求項(3)のいず
れかに記載の感温スイッチ。(4) The temperature-sensitive switch according to claim 1 or 3, wherein the magnetic flux generating means uses a permanently magnetized plate piece that supports the electrical contacts.
項(2)、請求項(3)または請求項(4)のいずれか
に記載の感温スイッチ。(5) The temperature-sensitive switch according to any one of claims (1), (2), (3), and (4), wherein the superconductor is fixed to the plate piece.
を覆う超伝導体の超伝導臨界温度より高い超伝導臨界温
度を持つ超伝導体で、電気接点を接触させるのに寄与し
ない磁路の横断面を覆う請求項(1)、請求項(2)、
請求項(3)、請求項(4)または請求項(5)のいず
れかに記載の感温スイッチ。(6) A superconductor that has a superconducting critical temperature higher than the superconducting critical temperature of the superconductor that covers the cross section of the magnetic path that contributes to bringing electrical contacts into contact, and that does not contribute to bringing electrical contacts into contact. Claim (1), claim (2) covering the cross section of the road,
The temperature-sensitive switch according to claim (3), claim (4), or claim (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10453788A JPH01276526A (en) | 1988-04-27 | 1988-04-27 | Temperature sensitive switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10453788A JPH01276526A (en) | 1988-04-27 | 1988-04-27 | Temperature sensitive switch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01276526A true JPH01276526A (en) | 1989-11-07 |
Family
ID=14383242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10453788A Pending JPH01276526A (en) | 1988-04-27 | 1988-04-27 | Temperature sensitive switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01276526A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01164640U (en) * | 1988-05-09 | 1989-11-16 | ||
US10677659B2 (en) | 2017-11-29 | 2020-06-09 | International Business Machines Corporation | Superconducting switch thermometer array |
-
1988
- 1988-04-27 JP JP10453788A patent/JPH01276526A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01164640U (en) * | 1988-05-09 | 1989-11-16 | ||
US10677659B2 (en) | 2017-11-29 | 2020-06-09 | International Business Machines Corporation | Superconducting switch thermometer array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boll et al. | Sensors, Magnetic Sensors | |
US4668928A (en) | Bi-stable switch with pivoted armature | |
CA2109700A1 (en) | Electromagnetic actuator | |
JPH01276526A (en) | Temperature sensitive switch | |
CS213750B1 (en) | Method of making the anizotropic permanent magnets | |
US4325042A (en) | Thermo-magnetically operated switches having two different operating temperatures | |
US3227840A (en) | Polarized relay having wire mesh contacts | |
US4509029A (en) | Thermally actuated switch | |
JPH0273677A (en) | Switching element | |
US20040060164A1 (en) | High-performance substrate for magnetic isolator | |
US2897312A (en) | Magnetostriction switch | |
JPS606976Y2 (en) | reed switch | |
JPS6013148Y2 (en) | Band-operated temperature switch | |
JPS6193924A (en) | Heat sensitive sensor | |
JPS63281330A (en) | Electromagnetically driven switch | |
Chari et al. | Finite element analysis of magnetomechanical devices | |
JPH01122535A (en) | Heat-sensitive switch | |
JPS603472Y2 (en) | Band-operated temperature switch | |
JPS6128359Y2 (en) | ||
JPS6244351Y2 (en) | ||
SU993353A1 (en) | Thermal relay | |
JPH082903Y2 (en) | Temperature switch | |
Lai et al. | A normally closed MEMS micro reed switch with fill in liquid metal micro hinge structure | |
JPS606979Y2 (en) | temperature switch | |
JPS606977Y2 (en) | reed switch |