JPS632810A - Method for recovering vanadium - Google Patents

Method for recovering vanadium

Info

Publication number
JPS632810A
JPS632810A JP61144792A JP14479286A JPS632810A JP S632810 A JPS632810 A JP S632810A JP 61144792 A JP61144792 A JP 61144792A JP 14479286 A JP14479286 A JP 14479286A JP S632810 A JPS632810 A JP S632810A
Authority
JP
Japan
Prior art keywords
vanadium
ammonium
ammonium salt
leachate
mineral acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144792A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nishida
和彦 西田
Hiroshi Aragaki
新垣 浩
Makoto Uchioki
内沖 誠
Isao Nakamoto
中本 五月男
Masato Kuroki
黒木 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shinko Corp
Shinko Chemical Co Ltd
Original Assignee
Shinko Chemical Co Ltd
Shinko Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Chemical Co Ltd, Shinko Chemical Industries Co Ltd filed Critical Shinko Chemical Co Ltd
Priority to JP61144792A priority Critical patent/JPS632810A/en
Publication of JPS632810A publication Critical patent/JPS632810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover V in high yield by adding an NH4 salt to the leachate of a roasted substance contg. Si, Cr, and V, controlling the pH in two steps, then cooling and agitating the leachate, and separating and colleclting the deposited vanadate crystal in high separation efficiency. CONSTITUTION:The leachate obtained by the leaching of a roasted substance contg. Si, Cr, and V or of blast furnace slag contg. the above-mentioned elements is used as a starting material. A mineral acid (e.g., sulfuric acid) is firstly added to the material to control the pH to 5.0-6.0, and 1.0-2.0mol of an NH4 salt (e.g., NH4Cl), based on the V dissolved in the leachate, is added. Alkaline water (e.g., aq. ammonia) and/or a mineral acid are used for controlling the pH to 5.0-5.2 during or after the addition of the NH4 salt, cooling and agitation are then carried out for about 1hr to deposit sodium ammonium vanadate as a crystal, and the crystal is separated from the remaining soln. contg. impurities and recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は硼素(Si)、クロムCCr)及びバナジウ
ム(V)を多く含むスラグ、その他の産業副産物、廃棄
物の焙焼物質よりこれら元素を水で浸出させた3i、C
r及びVを大量に含む浸出液より、VをSi及びC「と
分離して回収する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the extraction of boron (Si), chromium (CCr), and vanadium (V) from slag, other industrial by-products, and roasted waste materials. 3i,C leached with water
This invention relates to a method for separating and recovering V from Si and C from a leachate containing a large amount of r and V.

〔従来技術及び問題点〕[Prior art and problems]

従来バナジウム含有残滓をアルカリ焙焼抽出した浸出液
を脱シリカ、脱鉄処理し、硫酸アンモニアを大過剰に添
加し、鉱酸にてpH5,2乃至5.4に調整し、8時間
攪拌して結晶化したナトリウムア単にS、A、Vと云う
〕を結晶化して沈澱させる方法が特開昭60−1662
28号特許公開公報に如られている。
Conventionally, the leachate obtained by roasting and extracting the vanadium-containing residue with alkali is desilicated and deironated, a large excess of ammonia sulfate is added, the pH is adjusted to 5.2 to 5.4 with mineral acid, and the mixture is stirred for 8 hours to form crystals. A method for crystallizing and precipitating the converted sodium atoms (simply referred to as S, A, and V) was disclosed in Japanese Patent Application Laid-Open No. 1662-1983.
It is mentioned in the Patent Publication No. 28.

またバナジン酸ソーダ溶液な鉱酸添加し、75乃至95
′cで脱シリカし、その後pH3,5乃至5.5に調整
し、塩化アンモニア(NH4Cl )を添加し、田を4
.6乃至4.8に調整してS、A、Vを回収する方法が
英国特許、1−1269639号明細書によって知られ
ている。
In addition, a mineral acid such as a sodium vanadate solution is added, and 75 to 95
The pH was adjusted to 3.5 to 5.5, and ammonia chloride (NH4Cl) was added to the rice.
.. A method for recovering S, A, and V by adjusting the concentration between 6 and 4.8 is known from British Patent No. 1-1269639.

また−般的な方法として、前記浸出液を脱シリカし、鉱
酸にてpH2,5乃至3.0 としてアンモニア水にて
pH8,0乃至8.5に調整後塩化アンモニアの添加に
よりメクバナジン酸アンモン(NH4VO3)を回収す
る方法が知られている。
In addition, as a general method, the leachate is desilicated, adjusted to pH 2.5 to 3.0 with mineral acid and pH 8.0 to 8.5 with aqueous ammonia, and then ammonium mecvanadate is added by adding ammonium chloride. Methods for recovering NH4VO3) are known.

しかしながら、前述の何れの方法においても、■と他の
不純物との分離が充分でなく、回収したVの純度が光分
なものが得られず、その品位に問題があった。
However, in any of the above-mentioned methods, the separation of (1) and other impurities was insufficient, and the recovered V could not be of optical purity, resulting in a problem with its quality.

〔目 的〕〔the purpose〕

この発明f!Si、Crなどの不純物と共にVを含む浸
出液より、VをS、A、Vの形態で結晶として析出させ
ることによって、Si、Crなとの不純物と効率よ(充
分に除去し、■の回収率の向上及びその品質の向上と回
収コストの低減をはかることを目的とする。
This invention f! By precipitating V as crystals in the form of S, A, and V from the leachate containing V together with impurities such as Si and Cr, impurities such as Si and Cr can be removed efficiently (with a recovery rate of 1). The purpose is to improve the quality of the products and reduce the collection costs.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明はSi、Crおよび■を含む焙焼物質乃至はこ
れら元素を含むスラグより浸出させた前記各元素を含む
浸出液にこれに俗存する■とのモル比でアンモニアとし
て1.0乃至2倍となるアンモニウム塩を添加し、この
アンモニウム塩添加と相前後して、鉱酸または/および
アルカリ水としてNH4OH又はNaOHを添加して、
pH5,0乃至6.0の範囲に保ち、最終的にpH5,
0乃至5.2  に調整し、次に冷却攪拌してS、尤V
、を結晶として析出させ、これを残りの溶液と分離して
、Si、CrとVを分離することを特徴とするバナジウ
ム回収方法とすることによって問題点を解決した。
This invention provides a leachate containing the above-mentioned elements leached from a roasted material containing Si, Cr and Adding an ammonium salt of
Maintain the pH in the range of 5.0 to 6.0, and finally adjust the pH to 5.0 to 6.0.
Adjust to 0 to 5.2, then cool and stir to
The problem was solved by a vanadium recovery method characterized by precipitating , as crystals, and separating this from the rest of the solution to separate Si, Cr, and V.

また他の発明は、前記の方法により分離したS。Another invention provides S separated by the method described above.

ANを再び温水に洛解させ、この溶液pHを8.0乃至
9.OKアンモニア水を加えて調整し、次に塩化アンモ
ニアまたは/および硫酸アンモニアを添加して、冷却攪
拌してNH4VO3を結晶析出させて、これを回収する
ことを特徴とするV回収方法とすることKよって問題点
を解決した。
The AN was again dissolved in warm water and the pH of the solution was adjusted to 8.0-9. A V recovery method characterized by adding OK ammonia water for adjustment, then adding ammonia chloride or/and ammonia sulfate, cooling and stirring to precipitate crystals of NH4VO3, and recovering the same.K Therefore, the problem was solved.

今この発明を具体的に説明する。This invention will now be explained in detail.

この、IF1番目発明1の出発物質としては、V、Si
、及びCrなどを含む浸出液を用〜・る。この浸出液と
しては石油煤煙或は高炉スラグより浸出させたもの若く
は産業廃棄物の焙焼物質より浸出させたものなどが含ま
れる。
The starting materials of IF 1st invention 1 include V, Si
A leachate containing , Cr, etc. is used. This leachate includes those leached from petroleum soot or blast furnace slag, and those leached from roasted materials of industrial waste.

先ずこの浸出液に鉱酸として硫酸又は塩酸を添加して、
pH5,5乃至6.0に調整する。
First, sulfuric acid or hydrochloric acid is added as a mineral acid to this leachate,
Adjust the pH to 5.5 to 6.0.

次にアンモニウム塩を浸出液に溶存するVに対シ、モル
比でNH4として1.0倍以上好ましくは、1.0乃至
2倍添加する。
Next, ammonium salt is added to V dissolved in the leachate at a molar ratio of 1.0 times or more as NH4, preferably 1.0 to 2 times.

而して、前記アンモニウム塩添加中乃至添加後にアンモ
ニア水又は鉱酸を用いてpH5,0乃至5.2調整する
Then, during or after the addition of the ammonium salt, the pH is adjusted to 5.0 to 5.2 using aqueous ammonia or a mineral acid.

この液を冷却攪拌を約1時間継続し、S、尤Vを析出さ
せ、残余の液と適宜の固液分離法によって例えば篩別す
る。
This liquid is cooled and stirred for about 1 hour to precipitate S and V, which are then separated from the remaining liquid by an appropriate solid-liquid separation method, for example, by sieving.

、NH2番目の発明としては、前記の才1番目の方法発
明を前処理とし、この前処理によって得られたS、A、
Vを70°乃至90℃の温水に溶解する。この場合70
′Cの条件にお〜・てV濃度に換算して47F!/lま
で浴解する。
, NH The second invention uses the first method invention as a pretreatment, and the S, A,
Dissolve V in warm water at 70° to 90°C. In this case 70
Converting to V concentration under the conditions of 'C ~ 47F! Dissolve in bath up to /l.

次にアンモニア水を前記S、A、Vi液のpHを8.0
乃至9.0になるまで加える。
Next, add ammonia water to the pH of the S, A, and Vi solutions to 8.0.
Add until it reaches 9.0 to 9.0.

而して、塩化アンモニアおよび/または硫酸アンモニア
を10乃至15y/ノ添加し塩析し、更に冷却撹拌して
NH4VO3を析出させる。
Then, 10 to 15 y/min of ammonia chloride and/or ammonia sulfate are added to effect salting out, and the mixture is further cooled and stirred to precipitate NH4VO3.

前記、171香目及び才2番目の発明に用いるアンモニ
ウム塩としては、塩化アンモニウム、硫酸アンモニウム
、硝酸アンモニウムのうちの一種又は混合物を用いる。
The ammonium salt used in the 171st invention and the second invention is one or a mixture of ammonium chloride, ammonium sulfate, and ammonium nitrate.

〔実施例〕〔Example〕

Vllo、16%、5ti7.8%、Crt 1.36
%、Fei:34.87%、PiO,05%、ん’i 
1.17%を含む鉱滓なソーダ塩400f/kgを混合
し、酸化焙焼後4.01/〜の水を加え浸出した浸出液
の組成は下記懺1に示す通りであった。
Vllo, 16%, 5ti7.8%, Crt 1.36
%, Fei: 34.87%, PiO, 05%, n'i
The composition of the leachate obtained by mixing 400 f/kg of slag soda salt containing 1.17% and oxidizing roasting and adding 4.01/kg of water was as shown in Table 1 below.

表  1 この浸出液を出発物質として、4扉を用いこれに硫酸を
添加して、pH5,5とし、塩化アンモニウム136 
Icg(NH4/V モv比”C” 1.3 K相当)
 ヲ添加する。
Table 1 Using this leachate as a starting material, sulfuric acid was added to it using a 4-door to adjust the pH to 5.5, and ammonium chloride 136
Icg (NH4/V mov ratio "C" equivalent to 1.3 K)
Add wo.

塩化アンモニアの添加によりpH3,9に低下するがア
ンモニア水を添加してpH5,1とする。
Addition of ammonia chloride lowers the pH to 3.9, but aqueous ammonia is added to bring the pH to 5.1.

その後約1時間冷却攪拌し、結晶析出したS。Thereafter, the S was cooled and stirred for about 1 hour to precipitate crystals.

A、Vを244kg回収シタ、 コノS、A、V (7
) m成t”! 次の聚2に示す通りであった。この場
合のVの収率は97乃至98%であった。
Collected 244kg of A, V, Kono S, A, V (7
) m formation t"! It was as shown in the following 2. The yield of V in this case was 97 to 98%.

弐   2 次に矛2発明の実施例としては前記の実施例により得ら
れたS、んV244kgを温水2.5コに投入るまで添
加し、塩化アンモニアは15 fl/lの割合で添加し
、NH4VO3を塩析する。
2. Next, as an example of the second invention, 244 kg of S, N V obtained in the above example was added to 2.5 cups of hot water, and ammonia chloride was added at a rate of 15 fl/l. Salting out NH4VO3.

而して濾過及び少量の水で水洗し、NH4VO5を回収
する。得られたNH4VO3の分析結果は以下の表3の
通りであった。
Then, NH4VO5 is recovered by filtration and washing with a small amount of water. The analysis results of the obtained NH4VO3 were as shown in Table 3 below.

表   3 このようにして得られた浸出液のVの収率は97%であ
った。
Table 3 The yield of V in the leachate thus obtained was 97%.

〔比較実験例〕[Comparative experiment example]

実施例と同じ浸出敷を出発物質とし、これを70℃に加
温し硫酸を添加し、pHを2.5としてアンモニア水を
加えpHを8.5とした後、塩化アンモニウム50ノ/
lの割合で添加し、NH4VO3を塩析し室温まで冷却
し、少量の水で水洗を行いf別し、得られたNH4VO
5tの分析値は以下の表4に示す通りであった。
Using the same leaching bed as in the example as a starting material, it was heated to 70°C, sulfuric acid was added, the pH was adjusted to 2.5, aqueous ammonia was added to adjust the pH to 8.5, and then ammonium chloride was added at 50°C.
NH4VO3 was salted out, cooled to room temperature, washed with a small amount of water and separated, and the obtained NH4VO
The analytical values for 5t were as shown in Table 4 below.

表       4 このように、この比較例ではSiとCrの不純物が本件
発明の方法とは、オーダが一桁又は二桁多い。
Table 4 As shown, in this comparative example, the Si and Cr impurities are one or two orders of magnitude higher than in the method of the present invention.

〔効 果〕〔effect〕

叙上のように第1番目の発明においては、簡単なpHの
調整を行い、特にアンモニウム塩添加時のp渣5.0乃
至6.0の範囲とし、最終的にpH5,0乃至5.2と
して塩析させることになってS、A、Vを結晶析出させ
ることができ、■と他の不純物の81、Crなどとの分
離率が極めて高くなる。
As mentioned above, in the first invention, the pH was simply adjusted, especially when the ammonium salt was added, so that the pH range was 5.0 to 6.0, and the final pH was 5.0 to 5.2. As a result, S, A, and V can be crystallized by salting out as a result of salting out, and the separation rate between ■ and other impurities such as 81 and Cr is extremely high.

前記塩析させるときのpHが5.2以上では、Siを溶
存する場合、&A、V析出後の上液中のV濃度が高<p
H5,5テ上記上i中ノVyjk度1.089 / l
 。
When the pH at the time of salting out is 5.2 or higher, when Si is dissolved, the V concentration in the upper solution after &A and V precipitation is high < p
H5,5 te above i middle no Vyjk degree 1.089/l
.

pH6,0で■の濃度は2.Of/73で、それぞれp
H5,5トpH6,0(1:) トきのvの収率は96
%及び92%となり、■の回収率が低くなる。またpH
6,0以上pH9,0までではNH4VO3が沈澱し、
比較例に示したよ5KCr及びSiの不純物が多量に混
入する。ま酸アンモン(レッドケーキ〕が析出し、純度
のよいS、A、Vが得られなくなる。特にpHが2乃至
3のときは、レッドケーキが析出し、5i03”’−1
Cr042−と共沈し、不純物率が増大する。
At pH 6.0, the concentration of ■ is 2. Of/73, each p
H5,5 pH6,0 (1:) Tokino v yield is 96
% and 92%, and the recovery rate of ■ becomes low. Also pH
At pH 6.0 to pH 9.0, NH4VO3 precipitates,
As shown in the comparative example, a large amount of 5KCr and Si impurities are mixed in. Ammonium chloride (red cake) precipitates, making it impossible to obtain S, A, and V with good purity.Especially when the pH is between 2 and 3, red cake precipitates and 5i03'''-1
Co-precipitates with Cr042-, increasing the impurity rate.

アンモニウム塩の添加は多い程バナジウムの回収率はよ
くなるが、コストの関係上、浸出液に溶存するバナジウ
ムとのモル比でアンモニアとして1乃至2倍で充分であ
る。
The more ammonium salt is added, the better the recovery rate of vanadium will be, but for reasons of cost, a molar ratio of 1 to 2 times the amount of vanadium dissolved in the leachate as ammonia is sufficient.

矛2発明の発明の効果としては1,1−1番目の方法に
叙上の方法を加えた後処理を行うことによって、更Vc
vの回収率と他の不純物の分離効果を高め、高純度の■
が回収でき、■の収率は実施例においては97%であっ
た。
The effect of the invention of the second invention is that by performing post-processing by adding the above method to the method 1 and 1-1, it is possible to further improve Vc.
Enhance the recovery rate of v and the separation effect of other impurities, and achieve high purity.
could be recovered, and the yield of ■ was 97% in the example.

Claims (1)

【特許請求の範囲】 1)硅素、クロム及びバナジウムを含む焙焼物質乃至は
これら元素を含むスラグより浸出させた前記各元素を含
む浸出液に、これに溶存するバナジウムとのモル比でア
ンモニアとして1.0倍以上好ましくは1.0乃至2倍
となるアンモニウム塩を添加し、 このアンモニウム塩添加と相前後して、鉱酸または/お
よびアルカリ水を添加して、pH5.0乃至6.0の範
囲に保ち、最終的にpH5.0乃至5.2に調整し次に
冷却攪拌して、ナトリウムアンモニウムバナジン酸塩を
結晶として析出させ、これを残りの溶液と分離して硅素
及びクロムとバナジウムを分離することを特徴とするバ
ナジウム回収方法。 2)前記pHの調整方法はアンモニウム塩を浸出液に添
加前に鉱酸によりpH5.5乃至6.0とし、次にアン
モニウム塩の添加後に鉱酸または/およびアンモニア水
によりpH5.0乃至5.2に調整する方法であること
を特徴とする特許請求の範囲第1項記載のバナジウム回
収方法。 3)前記pHの調整方法はアンモニウム塩の添加と同時
的に行うことを特徴とする特許請求の範囲第1項記載の
バナジウム回収方法。 4)前記アンモニウム塩としては、塩化アンモニウム硫
酸アンモニウム硝酸アンモニウムのうちの1種又は2種
以上の混合物であることを特徴とする特許請求の範囲第
1項記載のバナジウム回収方法。 5)前記pH調整に用いる鉱酸としては塩酸又は硫酸で
あることを特徴とする特許請求の範囲第1項、第2項又
は第3項記載のバナジウム回収方法6)硅素、クロム及
びバナジウムを含む焙焼物質乃至これら元素を含むスラ
グより浸出させた前記各元素を含む浸出液に、これに溶
存するバナジウムとのモル比でアンモニアとして1.0
乃至2.0倍となるアンモニウム塩を添加し、このアン
モニウム塩添加と相前後して、鉱酸または/およびアン
モニア水を添加してpH5.0乃至6.0の範囲に保ち
、最終的にpH5.0乃至5.2に調整し、次に冷却攪
拌して、ナトリウムアンモニウムバナジン酸塩を結晶と
して析出させ、これを残りの溶液より分離し、次にこの
ナトリウムアンモニウムバナジン酸塩を再び温水に溶解
させ、この溶液pHを8.0乃至9.0にアンモニア水
を加えて調整し、次にアンモニウム塩を添加して、冷却
攪拌してメタバナジン酸アンモンを結晶析出させて、こ
れを回収することを特徴とするバナジウム回収方法。 7)前記アンモニウム塩としては塩化アンモニウム、硫
酸アンモニウム、硝酸アンモニウムのうちの一種又は2
種以上の混合物であることを特徴とする特許請求の範囲
第6項記載のバナジウム回収方法。
[Scope of Claims] 1) A leachate containing each of the above elements leached from a roasted material containing silicon, chromium and vanadium or a slag containing these elements is added as ammonia in a molar ratio of 1 to the vanadium dissolved therein. .0 times or more, preferably 1.0 to 2 times the ammonium salt, and before and after this addition of the ammonium salt, mineral acid or/and alkaline water are added to adjust the pH to 5.0 to 6.0. Finally, the pH is adjusted to 5.0 to 5.2, and then cooled and stirred to precipitate sodium ammonium vanadate as crystals, which are separated from the rest of the solution to remove silicon, chromium, and vanadium. A vanadium recovery method characterized by separation. 2) The pH adjustment method is to adjust the pH to 5.5 to 6.0 with mineral acid before adding the ammonium salt to the leachate, and then adjust the pH to 5.0 to 5.2 with mineral acid or/and aqueous ammonia after adding the ammonium salt. 2. The method for recovering vanadium according to claim 1, which is a method for adjusting vanadium. 3) The vanadium recovery method according to claim 1, wherein the pH adjustment method is carried out simultaneously with the addition of ammonium salt. 4) The vanadium recovery method according to claim 1, wherein the ammonium salt is one or a mixture of two or more of ammonium chloride, ammonium sulfate, and ammonium nitrate. 5) The vanadium recovery method according to claim 1, 2 or 3, wherein the mineral acid used for pH adjustment is hydrochloric acid or sulfuric acid. 6) Contains silicon, chromium and vanadium. The leachate containing the above-mentioned elements leached from the roasted material or slag containing these elements has a molar ratio of 1.0 as ammonia to the vanadium dissolved therein.
Add ammonium salt to a concentration of 2.0 to 2.0 times, add mineral acid or/and aqueous ammonia to maintain the pH in the range of 5.0 to 6.0, and finally adjust the pH to 5. .0 to 5.2, then cooled and stirred to precipitate sodium ammonium vanadate as crystals, which were separated from the rest of the solution, and then this sodium ammonium vanadate was redissolved in warm water. The pH of this solution was adjusted to 8.0 to 9.0 by adding aqueous ammonia, and then an ammonium salt was added, and the mixture was cooled and stirred to precipitate ammonium metavanadate into crystals, which was recovered. Characteristic vanadium recovery method. 7) The ammonium salt is one or two of ammonium chloride, ammonium sulfate, and ammonium nitrate.
7. The method for recovering vanadium according to claim 6, which is a mixture of more than one species.
JP61144792A 1986-06-23 1986-06-23 Method for recovering vanadium Pending JPS632810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144792A JPS632810A (en) 1986-06-23 1986-06-23 Method for recovering vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144792A JPS632810A (en) 1986-06-23 1986-06-23 Method for recovering vanadium

Publications (1)

Publication Number Publication Date
JPS632810A true JPS632810A (en) 1988-01-07

Family

ID=15370560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144792A Pending JPS632810A (en) 1986-06-23 1986-06-23 Method for recovering vanadium

Country Status (1)

Country Link
JP (1) JPS632810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088207A (en) * 2013-01-02 2013-05-08 河北钢铁股份有限公司承德分公司 Efficient vanadium extraction method by performing alkali roasting on vanadium mineral
CN109207745A (en) * 2017-07-07 2019-01-15 中国科学院过程工程研究所 A method of it leaches from ammonium oxalate containing separation ammonium metavanadate in vanadium raw materials roasting clinker solution
CN112267028A (en) * 2020-12-24 2021-01-26 矿冶科技集团有限公司 Method for extracting vanadium and chromium from vanadium slag and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166228A (en) * 1984-01-25 1985-08-29 ゲー・エフ・エー、ゲゼルシヤフト、フユール、エレクトロメタルルギー、ミツト、ベシユレンクテル、ハフツング Manufacture of vanadium compound from vanadium-containing residue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166228A (en) * 1984-01-25 1985-08-29 ゲー・エフ・エー、ゲゼルシヤフト、フユール、エレクトロメタルルギー、ミツト、ベシユレンクテル、ハフツング Manufacture of vanadium compound from vanadium-containing residue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088207A (en) * 2013-01-02 2013-05-08 河北钢铁股份有限公司承德分公司 Efficient vanadium extraction method by performing alkali roasting on vanadium mineral
CN103088207B (en) * 2013-01-02 2015-02-25 河北钢铁股份有限公司承德分公司 Efficient vanadium extraction method by performing alkali roasting on vanadium mineral
CN109207745A (en) * 2017-07-07 2019-01-15 中国科学院过程工程研究所 A method of it leaches from ammonium oxalate containing separation ammonium metavanadate in vanadium raw materials roasting clinker solution
CN112267028A (en) * 2020-12-24 2021-01-26 矿冶科技集团有限公司 Method for extracting vanadium and chromium from vanadium slag and application thereof

Similar Documents

Publication Publication Date Title
US4645651A (en) Method of producing vanadium compounds from vanadium-containing residues
CA1075015A (en) Process for working up manganese modules and recovery of the contained valuable constituents
CN106629846A (en) Method for preparing ammonium polyvanadate from sodiumizing, roasting and leaching solution
US3071439A (en) Method for the preparation of titanium hydrate
EP0011475B1 (en) Recovery of tungsten values from tungsten-bearing materials
EP0186370A2 (en) Titanium dioxide pigment production from ilmenite
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
CN110092419A (en) A method of preparing high-purity ammonium poly-vanadate
JPS632810A (en) Method for recovering vanadium
US6764669B2 (en) Method for producing fluorinated potassium tantalate crystal
CA1337504C (en) Method of refining ferrous ion-containing acid solution
CA1076364A (en) Process for concentrating and recovering gallium
US2481584A (en) Separation of columbium and tantalum
JPH09150065A (en) Recovery of valued metal from waste ni catalyst
CN109988918A (en) The method that vanadium iron dedusting ash prepares ammonium metavanadate
CN115181854A (en) Double-acid leaching method for fluorine-containing rare earth ore
US4497779A (en) Production of potassium hexafluotitanates using dilute hydrofluoric acid
US2176609A (en) Process of extracting values from complex ores of vanadium and uranium
US2418073A (en) Ore treatment process
CN110127772A (en) Method for preparing high-purity ammonium ferric chloride from sulfuric acid cinder
JPH07126013A (en) Treatment of chlorides in crude zinc oxide
US3740199A (en) Ore separation process
CN110042248A (en) The method for preparing ferric vandate as raw material using dephosphorization mud
US1912590A (en) Indium recovery process
JPH0475291B2 (en)