JPS63280223A - Method for serial driving of plural ec elements - Google Patents

Method for serial driving of plural ec elements

Info

Publication number
JPS63280223A
JPS63280223A JP62116175A JP11617587A JPS63280223A JP S63280223 A JPS63280223 A JP S63280223A JP 62116175 A JP62116175 A JP 62116175A JP 11617587 A JP11617587 A JP 11617587A JP S63280223 A JPS63280223 A JP S63280223A
Authority
JP
Japan
Prior art keywords
layer
coloring
ecd
oxide
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62116175A
Other languages
Japanese (ja)
Inventor
Satoru Oshikawa
識 押川
Tatsuo Niwa
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62116175A priority Critical patent/JPS63280223A/en
Publication of JPS63280223A publication Critical patent/JPS63280223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To contrive the coincidence of responses with each other by serially connecting and driving respective elements at the time of coloring operation, and at the time of maintaining a coloring state, driving respective elements in parallel. CONSTITUTION:An ITO electrode layer is formed on a glass substrate 1 and a groove is formed between an upper electrode 6 fetching part 6a and a lower electrode layer 2 by etching or cutting. Then, 2nd oxide coloring EC layer 2 consisting of mixture of iridium oxide and zinc oxide, a tantalum oxide layer as an ion conductive layer 4 and a tungsten oxide layer as a 1st reduction coloring EC layer 5 are successively formed and Al is vapor-deposited as an upper electrode layer 6. Finally, epoxy resin sealant 7 is applied and stuck to a sealing glass plate 8 to obtain a light quantity control element ECD. Consequently, coloring responses are made to coincide with each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕、 本発明は複数のエレクトロクロミック素子を同時に駆動
する方法に関するものである。以下、エレクトロクロミ
ックをrEcJと略する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for simultaneously driving a plurality of electrochromic devices. Hereinafter, electrochromic will be abbreviated as rEcJ.

〔従来の技術〕[Conventional technology]

電圧を印加すると可逆的に電解酸化または還元反応が起
こり可逆的に着色する現象をエレクトロクロミズムと言
う、このような現象を示すEC物質を用いて、電圧操作
により着消色する光量制御素子をECDと呼ぶ、そして
、例えば、第2図に示すように、ガラス基板1上に透明
電極層(下部電極層2)、第2EC層3(酸化発色層)
、イオン導電層4、第1EC層5(還元発色層)、反射
膜兼金属電極又は透明電極層(上部電極層6)を積層し
てなるECDが全固体型ECDとして知られている。こ
のECDは、乾電池から得られる程度の着色電圧を一対
の電極層間に印加すると、着色し、逆極性の消色電圧を
印加すると消色して元の無色透明に戻る。
Electrochromism is a phenomenon in which a reversible electrolytic oxidation or reduction reaction occurs when a voltage is applied, resulting in reversible coloring. Using an EC material that exhibits this phenomenon, ECD is a light amount control element that can be colored or erased by voltage manipulation. For example, as shown in FIG.
, an ion conductive layer 4, a first EC layer 5 (reduced color forming layer), and a reflective film/metal electrode or a transparent electrode layer (upper electrode layer 6) are laminated together, and an ECD is known as an all-solid-state ECD. This ECD becomes colored when a coloring voltage obtained from a dry battery is applied between a pair of electrode layers, and disappears and returns to its original colorless and transparent state when a decoloring voltage of the opposite polarity is applied.

従って、上部電極層6が反射性か又は透過性のときには
更に上層に反射層を設けた場合には、基板1側の入射光
は、EC層の着色により吸収されるので、反射光は減光
する。つまり、反射率を電気的に変えることができる。
Therefore, if the upper electrode layer 6 is reflective or transmissive and a reflective layer is provided above, the incident light on the substrate 1 side will be absorbed by the coloring of the EC layer, so the reflected light will be attenuated. do. In other words, the reflectance can be changed electrically.

そこで反射型ECDは、現在自動車等の防眩ミラーとし
て開発が進められている。
Therefore, reflective ECDs are currently being developed as anti-glare mirrors for automobiles and the like.

ところで、防眩ミラーに限らず、複数0ECDを同時に
駆動したい場合がある。この場合、回路はスペース(場
所)や電気部品点数、コストなどを考えると、1個の方
が好ましく、そのため従来、複数0ECDを同時に駆動
する場合、共通の回路1個で並列に駆動することが考え
られていた。
By the way, there are cases where it is desired to drive not only anti-glare mirrors but also a plurality of 0ECDs at the same time. In this case, considering space, number of electrical parts, cost, etc., it is preferable to use one circuit. Therefore, conventionally, when driving multiple 0ECDs at the same time, it is not possible to drive them in parallel using one common circuit. It was considered.

しかし、特に防眩ミラーの場合にそうであるが、室内の
ルームミラーと車外のサイドミラー(又はドアミラー)
との合計2個又は3個を同時に駆動する場合、各ECD
の周囲温度が異なる。
However, this is especially true in the case of anti-glare mirrors, as well as interior rearview mirrors and exterior side mirrors (or door mirrors).
When driving a total of 2 or 3 at the same time, each ECD
The ambient temperature is different.

ECDは一般に周囲温度が低温になるほど着色のレスポ
ンスが遅くなる。
In general, the coloring response of ECD becomes slower as the ambient temperature becomes lower.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そのため、各ECDの周囲温度が異なると、同時に駆動
しても各ECDのレスポンスが一致せず、観察者が不快
感を覚えるという第1の問題点があった。
Therefore, if the ambient temperatures of the ECDs differ, the responses of the ECDs will not match even if they are driven at the same time, leading to the first problem that the observer will feel uncomfortable.

また、ECDでは一対の電極層のうち少なくとも一方は
透明電極であり、透明電極材料としては、今のところ、
SnowやIn、O,、ITO(1n20.とSnO,
との混合物)しかなく、比較的電気抵抗が高い、そのた
め、表示面積が例えば10c+*X20cmと大型化す
るに伴ない、全体が均一な所定濃度に着色するまでの時
間(レスポンス)は、例えば約5秒と比較的遅い。同じ
理由で仮に表示面積が同じでも形状が互いに異なる(鏡
面対称形に相当する場合を除く)複数のECDを並列に
駆動すると、仮に周囲温度が同じでも、各ECDのレス
ポンスが一致せず、観察者が不快感を覚えるという第2
の問題点があつた。
In addition, in ECD, at least one of the pair of electrode layers is a transparent electrode, and as of now, as a transparent electrode material,
Snow, In, O, ITO (1n20. and SnO,
(a mixture of It is relatively slow at 5 seconds. For the same reason, if multiple ECDs with the same display area but different shapes (excluding mirror-symmetric shapes) are driven in parallel, even if the ambient temperature is the same, the responses of each ECD will not match, making observation difficult. The second problem is that the person feels uncomfortable.
There was a problem.

従って、本発明の目的は、複数のECDを同一回路で同
時駆動する場合、■各ECDの周囲温度が異なるときで
もレスポンスを一致させること、■各ECDの周囲温度
が同一であって表示形状が異なるときでもレスポンスが
一致させることにある。
Therefore, when multiple ECDs are driven simultaneously by the same circuit, the objects of the present invention are: (1) to match the responses even when the ambient temperature of each ECD is different; and (2) to make the display shape consistent even when the ambient temperature of each ECD is the same. The purpose is to match the responses even when they are different.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、鋭意研究の結果、各ECDの表示面積が
等しいか又はほり等しい場合に限って、直列駆動すれば
、前記第1及び第2の問題点が解決されることを第1に
見い出した。
As a result of intensive research, the inventors of the present invention have determined that the first and second problems can be solved by driving the ECDs in series only when the display area of each ECD is equal or almost equal. I found it.

しかし、一般にE CD !上着色させた後、着色電圧
の印加を止めても着色状態が保持される性質(メモリー
性)を有するものの、ECDを着色状態のまま着色電圧
の印加なしに余り長いこと放置しておくと、自然消色す
る。
But generally E CD! Although it has a property (memory property) of retaining the colored state even if the application of the coloring voltage is stopped after being colored, if the ECD is left in the colored state for too long without applying the coloring voltage, Discolors naturally.

そのため、着色状態を維持する時、連続的又は間けつ的
に着色電圧を印加する必要がある。
Therefore, when maintaining the colored state, it is necessary to apply a coloring voltage continuously or intermittently.

しかし、製作時に制御不可能な原因により各ECDでメ
モリー性が異なり、消色傾向が異なる。
However, due to factors that cannot be controlled during manufacturing, each ECD has different memory properties and different discoloration tendencies.

そのため、直列に着色維持電圧を印加すると、ECD間
で着色濃度にバラつきがでる。そこで本発明者らは更に
研究を進めた結果、並列に着色維持電圧を印加すると、
各ECD間にオートバランス作用が働いてメモリー性を
見掛は上一致させることができることを第2に見い出し
た。
Therefore, if a coloring maintenance voltage is applied in series, the coloring density will vary between ECDs. Therefore, the inventors conducted further research and found that when a coloring maintenance voltage is applied in parallel,
Second, it was discovered that an autobalance effect works between each ECD, so that the appearance of memory properties can be made to match.

本発明は第1の知見及び第2の知見に基づき、成された
もので、以下の駆動方法を提供する。
The present invention was made based on the first knowledge and the second knowledge, and provides the following driving method.

即ち、本発明は表示面積が等しいか又はほり等しい複数
のエレクトロクロミック素子を同一回路で同時に駆動す
る方法に於いて、 着色動作時は、各素子を直列に接続して駆動し、着色状
態を維持する時は、各素子を並列に駆動することを特徴
とする複数のエレクトロクロミック素子の直列駆動方法
を提供する。
That is, the present invention provides a method for simultaneously driving a plurality of electrochromic elements having the same or almost equal display area using the same circuit. During coloring operation, each element is connected in series and driven to maintain the colored state. When doing so, the present invention provides a method for driving a plurality of electrochromic devices in series, characterized in that each device is driven in parallel.

尚、着色動作は、最大着色濃度への着色ばかりでな(、
中間濃度への着色動作も含む。
In addition, the coloring operation is not only coloring to the maximum color density (,
It also includes coloring operations to intermediate densities.

〔作 用〕[For production]

本発明では、(1)着色動作時に直列駆動するので、各
ECDへ注入される電荷の注入速度および注入電荷量が
必然的に同一となり、■各ECDの周囲温度が仮に異な
っていても、また■周囲温度は同一であるが、表示形状
が異なっている場合でも、着色レスポンスを一致させる
ことができ、そして(2)−互着色させた後、着色維持
電圧を今度は並列に印加するので、メモリー性の異なる
ECD間で蓄積電荷量がオートバランスして、メモリー
性が一致する。
In the present invention, (1) Since the coloring operation is performed in series, the injection speed and amount of charge injected into each ECD are necessarily the same, and (1) Even if the ambient temperature of each ECD is different, ■ Even if the ambient temperature is the same but the display shape is different, the coloring response can be matched, and (2) - After mutually coloring, coloring maintenance voltages are applied in parallel, The amount of stored charge is automatically balanced between ECDs with different memory properties, and the memory properties match.

尚、消色動作時は、前記第1、第2の問題点は、着色動
作時はどには深刻ではないので、並列駆動でもよいが、
どちらかと言えば直列駆動が好ましい、また、仮に消色
維持のために短絡又は消色維持電圧を印加する場合、後
者のとき、並列駆動が好ましい。
Incidentally, during the color erasing operation, the first and second problems mentioned above are not as serious as during the coloring operation, so parallel driving may be used.
If anything, series driving is preferable, and if a short circuit or a decoloring maintaining voltage is to be applied to maintain decoloring, in the latter case, parallel driving is preferable.

本発明におけるECDの積層構造は、特にどれと限定さ
れるものではないが、固体型ECDの構造としては、例
えば■電極層/EC層/イオン導電層/電極層のような
4層構造、■電極層/還元着色型EC層/イオン導電層
/可逆的電解酸化層ないし酸化着色型EC層/電極層の
ような5層構造があげられる。この場合、電極層の何れ
か一方は透明でなければならず、そこを透過して着色状
態を見ない電極層は不透明層又は反射層でもよい。
The laminated structure of the ECD in the present invention is not particularly limited, but the structure of the solid-state ECD includes, for example, a four-layer structure such as (1) electrode layer/EC layer/ion conductive layer/electrode layer; Examples include a five-layer structure such as electrode layer/reduction colored EC layer/ion conductive layer/reversible electrolytic oxidation layer or oxidation colored EC layer/electrode layer. In this case, one of the electrode layers must be transparent, and the electrode layer through which the colored state cannot be seen may be an opaque layer or a reflective layer.

しかし、本発明は特に着色面積の大きなECDの駆動に
適している。
However, the present invention is particularly suitable for driving an ECD with a large colored area.

透明電極の材料としては、例えばSnO,,1nt O
,、ITOなどが使用される。このような電極層は、一
般には真空蒸着、イオンブレーティング、スパッタリン
グなどの真空薄膜形成技術で形成される。(還元着色性
)EC層としてはmmにWOx 、M O02などが使
用される。
As the material of the transparent electrode, for example, SnO, 1 nt O
, ITO, etc. are used. Such an electrode layer is generally formed by vacuum thin film forming techniques such as vacuum evaporation, ion blasting, and sputtering. (Reduction coloring property) As the EC layer, WOx, MO02, etc. are used.

イオン導電層としては、例えば酸化ケイ素、酸化タンタ
ル、酸化チタン、酸化アルミニウム、酸化ニオブ、酸化
ジルコニウム、酸化ハフニウム、酸化ランタン、フッ化
マグネシウムなどが使用される。これらの物質薄膜は製
造方法により電子に対して絶縁体であるが、プロトン(
Ho)およびヒドロキシイオン(OH−)に対しては良
導体となる。EC層の着色消色反応にはカチオンが必要
とされ、H′″イオンやL1°イオンをEC層その他に
含有させる必要がある H+イオンは初めからイオンで
ある必要はなく、電圧が印加されたときにH9イオンが
生じればよく、従ってH′″イオンの代わりに水を含有
させてもよい、この水は非常に少なくて十分であり、し
ばしば、大気中から自然に侵入する水分でも着消色する
As the ion conductive layer, for example, silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, magnesium fluoride, etc. are used. Due to the manufacturing method, these thin films of materials are insulators for electrons, but they are insulators for protons (
It is a good conductor for Ho) and hydroxy ions (OH-). Cations are required for the coloring and decoloring reaction of the EC layer, and it is necessary to contain H′″ ions and L1° ions in the EC layer and other parts. Sometimes it is only necessary to generate H9 ions, and therefore water may be included instead of H'''ions; very little of this water is sufficient, and often even moisture that naturally enters from the atmosphere is sufficient for quenching. color.

・ EC層とイオン導電層とは、どちらを上にしても下
にしてもよい、さらにEC層に対して間にイオン導電層
を挟んで可逆的電解酸化層(ないし酸化着色型EC層又
は触媒層)を配設してもよい。
・The EC layer and the ion conductive layer may be placed on top or bottom, and the EC layer is sandwiched between the ion conductive layer and the reversible electrolytic oxidation layer (or oxidation-colored EC layer or catalyst). layer) may be provided.

このような層としては、例えば酸化ないし水酸化イリジ
ウム、同じ(ニッケル1.同じくクロム、同じくバナジ
ウム、同じくルテニウム、同じ(ロジウムなどがあげら
れる。これらの物質はイオン導電層又は透明電極中に分
散されていても良いし、それらの構成物質を分散して含
有していてもよい。
Such layers include, for example, iridium oxide or hydroxide, nickel, chromium, vanadium, ruthenium, rhodium, etc. These substances are dispersed in the ionically conductive layer or the transparent electrode. They may contain these constituent substances, or they may be dispersed and contained.

不透明な電極層は、反射層と兼用していてもよく、例え
ば金、銀、アルミニウム、クロム、スズ、亜鉛、ニッケ
ル、ルテニウム、ロジウム、ステンレスなどの金属が使
用される。
The opaque electrode layer may also serve as a reflective layer, and for example, metals such as gold, silver, aluminum, chromium, tin, zinc, nickel, ruthenium, rhodium, and stainless steel are used.

〔実施例〕〔Example〕

縦B cta X横15CIIX厚さ2−のガラス基板
(1)を用意し、これにITO電極層を形成し、次にホ
トエツチング又はレーザーカッティングにより上部電極
(6)用の取出し部(6a)と下部電極層(2)との間
に溝を形成した。これにより取出し部(6a)と下部電
極層(2)とそれに連続して続く下部電極の取出し部を
形成した。
A glass substrate (1) of length B cta A groove was formed between the electrode layer (2) and the electrode layer (2). This formed a lead-out portion (6a), a lower electrode layer (2), and a lead-out portion of the lower electrode that continued therefrom.

なお、ITOをマスク蒸着することにより直接にこれら
のパターンを形成してもよい。
Note that these patterns may be directly formed by depositing ITO using a mask.

次に酸化イリジウムと酸化スズとの混合物からなる酸化
発色性の第2EC層(3)、イオン導電層(4)として
の酸化タンタル層及び還元発色性の第1EC層(5)と
して酸化タングステン層を順に形成した。
Next, a second EC layer (3) with oxidation coloring properties made of a mixture of iridium oxide and tin oxide, a tantalum oxide layer as an ion conductive layer (4), and a tungsten oxide layer as the first EC layer (5) with reduction coloring properties are formed. formed in sequence.

次に上部電極層(6)としてA2を蒸着した。Next, A2 was deposited as the upper electrode layer (6).

このときAj!は既に基板(1)上に形成された取出し
部(6)aと一端が接触するようにする。
At this time Aj! One end is brought into contact with the take-out portion (6)a already formed on the substrate (1).

最後に封止用ガラス板(8)にエポキシ樹脂封止剤(7
)を多めに塗布してこれをECDに張り合わせ、そして
放置することによりエポキシ樹脂を硬化させ、第2図に
示すECDを作製した。第2図は、一部をデホルメして
あり、正確な寸法比を有しない。
Finally, apply the epoxy resin sealant (7) to the sealing glass plate (8).
) was applied to the ECD, and the epoxy resin was cured by leaving it to stand, thereby producing the ECD shown in FIG. 2. FIG. 2 is partially deformed and does not have accurate dimensional ratios.

このECDは、上部電極層(6)がAffiで反射層を
兼用していることから基板1側から入射した光は上部電
極層(6)で反射されるので、消色状態で反射率Rを測
定したところ、R=60%あった。しかし、着色状態で
は、反射光は、途中で第1EC層(5)−と第2EC層
(3)をそれぞれ2度透過するので、それらのEC層が
着色状態のときには吸収されて反射光量が減少し、その
結果反耐重Rも低下する。
In this ECD, since the upper electrode layer (6) is Affi and also serves as a reflective layer, the light incident from the substrate 1 side is reflected by the upper electrode layer (6), so the reflectance R is maintained in the decolorized state. When measured, R=60%. However, in the colored state, the reflected light passes through the first EC layer (5) and the second EC layer (3) twice on the way, so when those EC layers are in the colored state, it is absorbed and the amount of reflected light decreases. However, as a result, the anti-load resistance R also decreases.

事実、二0ECDに駆動電源(Su)から直流着色電圧
Vc−+1.35Vを印加すると、R−15%に低下し
た。
In fact, when a DC coloring voltage Vc-+1.35V was applied from the drive power source (Su) to the 20ECD, the R-15% was reduced.

こ0ECD (10)2枚を第1図に示すように回路を
組み、連動スイッチ(9)を直列(A)側に倒し、着色
方向に+2.7vの電圧(着色電圧)を印加したところ
、両ECDとも5秒後に反射率が60%から15%に低
下した。
When the two 0ECDs (10) were assembled into a circuit as shown in Figure 1, the interlocking switch (9) was turned to the series (A) side, and a voltage of +2.7V (coloring voltage) was applied in the coloring direction. The reflectance of both ECDs decreased from 60% to 15% after 5 seconds.

次にその状態で連動スイッチ(9)を並列(B)側に倒
して着色維持電圧+1.2Vを印加し24時間放置した
が、反射率の変化は双方とも認められなかった。尚、駆
動電源(Su)は、ON。
Next, in this state, the interlocking switch (9) was turned to the parallel (B) side, a coloring maintenance voltage of +1.2 V was applied, and it was left for 24 hours, but no change in reflectance was observed in either case. Note that the drive power supply (Su) is ON.

OFFおよび電圧方向の選択及び電圧値の選択が自由に
可能なものとして第1図に示した。
It is shown in FIG. 1 that it is possible to freely select OFF, voltage direction, and voltage value.

また、一方のECD (10)を室温に他方を一20°
Cに保持し、同様に駆動させたところ、この2枚のEC
D(10)でレスポンスに違いはみられなかった。
Also, keep one ECD (10) at room temperature and the other at -20°.
When held at C and driven in the same way, these two EC
No difference in response was observed for D(10).

〔比較例〕[Comparative example]

一方のECD(10)を室温に、他方を一20℃に保持
して、連動スイッチ(9)を並列側に倒して、着色方向
に+1.35 Vの直流電圧を印加したところ、全体に
反射率が15%に低下するのに前者は5秒かかり、後者
は10秒かかった。着色レスポンスが2倍異なる。
When one ECD (10) was held at room temperature and the other at -20°C, the interlocking switch (9) was turned to the parallel side, and a DC voltage of +1.35 V was applied in the coloring direction, reflections were observed throughout. The former took 5 seconds and the latter 10 seconds for the rate to drop to 15%. The coloring response is two times different.

また、そのまま連動スイッチ(9)を直列側に倒して、
消色方向に−1,35Vの直流電圧−20℃→5秒、室
温→2秒を印加したところ、全体に反射率が60%に回
復するのに、前者(室温)2秒、後者(−20°C)5
秒を要した。
Also, turn the interlock switch (9) to the series side,
When a DC voltage of -1,35V was applied in the decoloring direction for 5 seconds at -20°C and 2 seconds at room temperature, it took 2 seconds for the former (room temperature) and 2 seconds for the latter (- 20°C)5
It took seconds.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、着色レスポンスが一致す
るので、観察者が不快感を覚えることがなく、また着色
維持時に各ECDのメモリー性が仮に異なっていても見
掛は状一致するので見栄えが良い。
As described above, according to the present invention, since the coloring responses match, the observer does not feel discomfort, and even if the memory properties of each ECD are different when maintaining coloring, the appearance is the same. Looks good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で用いたECD駆動回路の回
路図である。 第2図は、同じ〈実施例で用いたECDの概略垂直断面
図である。 〔主要部分の符号の説明〕 1・・・・・・基板 2・・・・・・下部電極層(透明電極)3・・・・・・
酸化発色性の第2EC層4・・・・・・イオン導電層 5・・・・・・還元発色性の第1EC層6・・・・・・
上部電極1m(反射性電極)7・・・・・・封止剤 8・・・・・・封止用ガラス板 9・・・・・・連動スイッチ
FIG. 1 is a circuit diagram of an ECD drive circuit used in an embodiment of the present invention. FIG. 2 is a schematic vertical sectional view of the ECD used in the same example. [Explanation of symbols of main parts] 1...Substrate 2...Lower electrode layer (transparent electrode) 3...
Oxidation color-forming second EC layer 4...Ion conductive layer 5...Reduction color-forming first EC layer 6...
Upper electrode 1m (reflective electrode) 7...Sealant 8...Glass plate for sealing 9...Interlocking switch

Claims (1)

【特許請求の範囲】 表示面積が等しいか又はほゞ等しい複数のエレクトロク
ロミック素子を同一回路で同時に駆動する方法に於いて
、 着色動作時は、各素子を直列に接続して駆動し、着色状
態を維持する時は、各素子を並列に駆動することを特徴
とする複数のエレクトロクロミック素子の直列駆動方法
[Claims] In a method for simultaneously driving a plurality of electrochromic elements having equal or substantially equal display areas using the same circuit, each element is connected in series and driven during a coloring operation, and the colored state is A method for driving multiple electrochromic devices in series, characterized in that each device is driven in parallel when maintaining the same.
JP62116175A 1987-05-13 1987-05-13 Method for serial driving of plural ec elements Pending JPS63280223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116175A JPS63280223A (en) 1987-05-13 1987-05-13 Method for serial driving of plural ec elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116175A JPS63280223A (en) 1987-05-13 1987-05-13 Method for serial driving of plural ec elements

Publications (1)

Publication Number Publication Date
JPS63280223A true JPS63280223A (en) 1988-11-17

Family

ID=14680650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116175A Pending JPS63280223A (en) 1987-05-13 1987-05-13 Method for serial driving of plural ec elements

Country Status (1)

Country Link
JP (1) JPS63280223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479111B1 (en) * 1997-02-05 2005-07-11 주식회사 엘지이아이 Electro-Chromic Device and Manufacturing Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479111B1 (en) * 1997-02-05 2005-07-11 주식회사 엘지이아이 Electro-Chromic Device and Manufacturing Method

Similar Documents

Publication Publication Date Title
JP2696827B2 (en) Driving method of electrochromic device
KR0128732B1 (en) Electrochromic device
JP5247695B2 (en) Glazing-type electrochemical and / or electrically controllable element with variable optical and / or energy characteristics
EP0363045B1 (en) Electrochromic devices having a gradient of colour intensities
US5011582A (en) Method for producing electrochromic device with application of AC voltage between the electrode layers
US7158276B1 (en) Pressure sensitive electrochromic device and method of fabricating the same
EP0470867A2 (en) Electrochromic assembly
WO2000017701A2 (en) Electrochromic device comprising tandem layers of cathodic/anodic materials
US4940315A (en) Patterning of insulator on electrochromic material as determinant for area of coloration
JPS63280223A (en) Method for serial driving of plural ec elements
JPS61249026A (en) Electrochromic element group connected in series
JPH04107427A (en) Production of transmission type electrochromic element
JP2569439B2 (en) Manufacturing method of reflective electrochromic device
JP2827247B2 (en) Electrochromic element that uniformly colors
JP2567786Y2 (en) Electrochromic device
JPS6186733A (en) Electrochromic element
JPH0820648B2 (en) EC device with extraction electrodes on the end face
JPH06289435A (en) Electrochromic element
JPH11242246A (en) Electrochromic element and its production
JPS58218583A (en) Window glass with blind
JPH07175090A (en) Electrochromic ophthalmic lens
JPH0980489A (en) Fully solid state type electrochromic element and its production
JP2722505B2 (en) Method for manufacturing sealed electrochromic device
JPS58114086A (en) Bar-graph display and use thereof
JPH0263233B2 (en)