JPS6328015B2 - - Google Patents

Info

Publication number
JPS6328015B2
JPS6328015B2 JP55171803A JP17180380A JPS6328015B2 JP S6328015 B2 JPS6328015 B2 JP S6328015B2 JP 55171803 A JP55171803 A JP 55171803A JP 17180380 A JP17180380 A JP 17180380A JP S6328015 B2 JPS6328015 B2 JP S6328015B2
Authority
JP
Japan
Prior art keywords
temperature
shape memory
shape
heating
memory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171803A
Other languages
Japanese (ja)
Other versions
JPS5795452A (en
Inventor
Juichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP55171803A priority Critical patent/JPS5795452A/en
Publication of JPS5795452A publication Critical patent/JPS5795452A/en
Publication of JPS6328015B2 publication Critical patent/JPS6328015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は形状記憶材の改良に関するもので、特
に誘導加熱による遠隔的加熱復元を容易にし、か
つ加熱復元の温度制御を可能にしたものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improvement of shape memory materials, and in particular, to a material that facilitates remote heating restoration by induction heating and enables temperature control of heating restoration. be.

〔従来の技術〕[Conventional technology]

形状記憶材とは、マルテンサイト変態温度以上
の温度で所定形状に成形加工した後、同変態温度
以下の温度で変形加工し、これをマルテンサイト
変態温度以上の温度に加熱することにより、所定
形状に戻る所謂形状記憶効果を有するもので、
Ni−Ti系合金、数種のCu基合金が形状記憶材と
して知られており、種々の用途に用いられてい
る。例えば形状記憶材によりパイプ接続用カプリ
ング、電気導体接続用クランプ、機器締付用フイ
ツテイング等が造られ、また医療用として歯列矯
正用デンタルアーチワイヤー、頭蓋内脈瘤用クリ
ツプ、人工股関節、髄内釘等が造られ、更に脊柱
矯正用ハリントンロツド、人工筋肉、人工臓器等
への応用が検討されている。
Shape memory materials are formed by forming into a predetermined shape at a temperature above the martensitic transformation temperature, deforming it at a temperature below the same transformation temperature, and then heating it to a temperature above the martensitic transformation temperature. It has a so-called shape memory effect,
Ni-Ti alloys and several types of Cu-based alloys are known as shape memory materials and are used for various purposes. For example, shape memory materials can be used to make couplings for connecting pipes, clamps for connecting electrical conductors, fittings for tightening equipment, etc., and for medical purposes, such as dental archwires for orthodontics, clips for intracranial aneurysms, artificial hip joints, and intramedullary Nails and other products have been made, and further applications are being considered for Harrington rods for spinal column correction, artificial muscles, artificial organs, etc.

これ等は何れも形状記憶効果を応用したもの
で、形状記憶材をマルテンサイト変態温度以上の
温度で所定形状に成形加工した後、同変態温度以
下の温度で取付けやすい形状に塑性変形し、これ
を目的のものに取付けてから同変態温度以上の温
度に加熱することにより所定形状に復元させるも
のである。加熱復元には一般にトーチバーナを用
いて直接加熱し、医療用には通電加熱が行なわれ
ている。
These all utilize the shape memory effect, and after forming the shape memory material into a predetermined shape at a temperature above the martensitic transformation temperature, the material is plastically deformed into a shape that is easy to attach at a temperature below the martensitic transformation temperature. The material is attached to a target object and then heated to a temperature higher than the transformation temperature to restore the desired shape. For thermal restoration, direct heating is generally performed using a torch burner, and for medical use, electrical heating is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら用途によつては、直接加熱や通電
加熱が不可能な場合もあり、このような場合には
誘導装置による遠隔的加熱が行なわれているが、
非磁性体である形状記憶材を加熱するためには、
強力な誘導装置を必要とし、しかも加熱温度を制
御することが極めて困難であつた。特に生体内に
埋込んで使用する場合には、生体を損傷する恐れ
があつた。
However, depending on the application, direct heating or electrical heating may not be possible, and in such cases remote heating using an induction device is used.
In order to heat the non-magnetic shape memory material,
A powerful induction device was required, and it was extremely difficult to control the heating temperature. Particularly when used by being implanted in a living body, there is a risk of damaging the living body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み、種々検討の結果、小容量
の誘導装置による遠隔的加熱が容易で、加熱温度
を容易に制御できる形状記憶複合材を開発したも
ので、形状記憶材に、キユリー温度が該記憶材の
形状回復温度と該温度より50℃高い温度範囲内に
ある強磁性材を接合したことを特徴とするもので
ある。
In view of this, and as a result of various studies, the present invention has developed a shape memory composite material that can be easily heated remotely using a small-capacity induction device and whose heating temperature can be easily controlled. It is characterized in that a ferromagnetic material having a shape recovery temperature of the memory material and a temperature 50° C. higher than the temperature is bonded.

即ち本発明は、マルテンサイト変態温度以上の
温度で所定形状に成形加工した後、同変態温度以
下の温度で取付け易い形状に変形した形状記憶材
に、その取付けに支障を来さない位置に強磁性材
を接合したものである。形状記憶材に接合する強
磁性材は、そのキユリー温度が形状記憶材の形状
回復温度と、この温度より50℃高い温度範囲内に
あるものを使用する。例えばNi−Ti系形状記憶
材の形状回復温度が20℃又は45℃の場合、20℃〜
70℃又は45℃〜95℃の範囲内にキユリー温度が存
在する強磁性材を選択する。これに該当する強磁
性材としては、例えばNi合金(キユリー温度60
℃)、フエライト(キユリー温度55℃)等がある。
That is, the present invention provides a shape memory material that is formed into a predetermined shape at a temperature above the martensitic transformation temperature and then deformed into a shape that is easy to install at a temperature below the same transformation temperature, and then is strengthened at a position that does not interfere with the installation. It is made by joining magnetic materials. The ferromagnetic material to be bonded to the shape memory material is one whose Curie temperature is within the range of the shape recovery temperature of the shape memory material and 50° C. higher than this temperature. For example, if the shape recovery temperature of Ni-Ti-based shape memory material is 20℃ or 45℃, 20℃~
A ferromagnetic material with a Curie temperature in the range of 70°C or 45°C to 95°C is selected. Examples of ferromagnetic materials that fall under this category include Ni alloys (Curie temperature 60
℃), ferrite (Curie temperature 55℃), etc.

使用する強磁性材を上記キユリー温度範囲のも
のに限定した理由は、下限は形状記憶材の形状回
復温度の加熱が少くとも必要であり、上限はかな
り高温加熱でも作動上は問題ないが、特に生体内
に埋込んで使用する場合、過度の加熱は問題があ
るため、上限を形状回復温度より50℃高い温度と
することが望ましい。所定のキユリー温度を有す
る強磁性材の接合は、形状記憶材を所定形状に成
形する前でも、形成した後でもよく、また取付け
易い形状に変形した後でもよい。また接合には溶
接、ロー付け又はビス止め等任意の手段を用い、
相互熱伝達が良好な状態に接合すればよい。
The reason why we limited the ferromagnetic materials to be used to those in the above-mentioned Curie temperature range is that the lower limit requires heating at least to the shape recovery temperature of the shape memory material, and the upper limit requires heating at a fairly high temperature without causing any operational problems, but in particular When implanted and used in a living body, excessive heating is problematic, so it is desirable to set the upper limit to a temperature 50°C higher than the shape recovery temperature. The ferromagnetic material having a predetermined Curie temperature may be joined before or after the shape memory material is formed into a predetermined shape, or after it is deformed into a shape that is easy to attach. In addition, any means such as welding, brazing, or screwing may be used for joining.
It is sufficient to join them in a state where mutual heat transfer is good.

〔作用〕[Effect]

このように本発明複合材は、形状記憶材に強磁
性材が熱的に接合されているため、誘導加熱によ
つてヒステリシス損失や残留損失により単なる金
属導体の渦電流損失に比較しはるかに有効に加熱
することができる。また形状記憶材に接合する強
磁性材のキユリー温度を選択することにより、誘
導加熱時に当該キユリー温度まで急速に加熱さ
れ、それ以上の温度では加熱速度が著しく遅くな
るため、所定の温度に保持することが容易とな
る。
In this way, in the composite material of the present invention, since the ferromagnetic material is thermally bonded to the shape memory material, the hysteresis loss and residual loss caused by induction heating are much more effective than the eddy current loss of a simple metal conductor. It can be heated to. In addition, by selecting the Curie temperature of the ferromagnetic material to be bonded to the shape memory material, it will be rapidly heated to the Curie temperature during induction heating, and since the heating rate will be significantly slower at higher temperatures, it will be necessary to maintain it at a predetermined temperature. This makes it easier.

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

〔実施例〕〔Example〕

第1図イ,ロは本発明形状記憶複合材により形
成した髄内針を示すもので、図において1はマル
テンサイト変態温度(復元温度)が45℃のNi−
Ti系形状記憶材、2は強磁性材として知られる
キユリー温度60℃のNi合金線を示し、形状記憶
材1マルテンサイト変態温度以上の温度、例えば
500℃で管状に丸め、その内側軸方向に強磁性材
2を溶接により接合せしめたものである。このよ
うな髄内針を第2図に示すように髄内3に挿入す
るためには、形状記憶材1をマルテンサイト変態
温度以下の温度、例えば室温で第3図イに示すよ
うに髄内に挿入し易い小径の管状に変形加工し、
これを髄内に挿入した後、高周波誘導加熱すれば
強磁性材2はヒステリシス損失と残留損失によ
り、通常の形状記憶材の渦電流損失による発熱に
比較し、はるかに速く発熱してマルテンサイト変
態温度以上の温度に上昇し、Ni合金線のキユリ
ー温度(60℃)に達して形状記憶材1は第3図ロ
に示すように同変態温度以上の温度で記憶させた
形状に復元し、髄内に確実に固着させることがで
きる。
Figures 1A and 1B show intramedullary needles made of the shape memory composite material of the present invention.
Ti-based shape memory material 2 indicates a Ni alloy wire with a Curie temperature of 60°C, which is known as a ferromagnetic material, and shape memory material 1 indicates a temperature higher than the martensitic transformation temperature, e.g.
It is rolled into a tubular shape at 500°C, and a ferromagnetic material 2 is welded to the inner axial direction. In order to insert such an intramedullary needle into the intramedullary region 3 as shown in FIG. It is transformed into a small diameter tubular shape that is easy to insert into the
After inserting this into the spinal cord, when high-frequency induction heating is applied, the ferromagnetic material 2 generates heat much faster due to hysteresis loss and residual loss than the heat generated by eddy current loss in ordinary shape memory materials, and transforms into martensitic material. When the temperature rises above the transformation temperature and reaches the Curie temperature (60℃) of the Ni alloy wire, the shape memory material 1 restores its memorized shape at a temperature above the transformation temperature as shown in Fig. It can be firmly fixed inside.

また本発明形状記憶複合材は形状記憶材に強磁
性材が接合されているため、高周波誘導加熱には
小出力のもので充分であり、生体の組織に与える
影響も少ない。
Furthermore, since the shape memory composite material of the present invention has a ferromagnetic material bonded to the shape memory material, a small output power is sufficient for high frequency induction heating, and there is little influence on living tissue.

第4図は本発明形状記憶複合材により形成した
脊柱矯正用ハリントンロツドを示すもので、図に
おいて4は復元温度が約45℃のNi−Ti系形状記
憶材からなるハリントンロツド、5はキユリー温
度が55℃のフエライトリングを示し、ハリントン
ロツド4に間隔を設けて複数個のフエライトリン
グ5を挿着したものである。ハリントンロツド4
はマルテンサイト変態温度以上の温度で直線状に
成形されており、常温において脊柱と同じ形状
(通常はS字状)に曲げられ、脊柱に針金又はボ
ルト等により固定される。次に外皮を縫合した
後、ハリントンロツド4を徐々に加熱復元させて
脊柱を矯正するものである。加熱復元には前記髄
内針の場合と同様高周波誘導加熱を用い、非常に
効果的に加熱が行なわれる。更に形状記憶材の復
元温度を約45℃、フエライトリングのキユリー温
度を55℃としたことにより、フエライトリングは
高周波誘導加熱により急速に55℃の温度に達し、
強磁性が消失するため、フエライトリングは55℃
の温度に保持されることになり、ハリントンロツ
ドは一様な回復応力で直線状に復元し、また過熱
されることがないので、生体を損傷することがな
い。
Figure 4 shows a Harrington rod for spinal column correction made of the shape memory composite material of the present invention. This shows a ferrite ring with a Curie temperature of 55°C, and a plurality of ferrite rings 5 are inserted into a Harrington rod 4 at intervals. harrington rod 4
is formed into a straight line at a temperature above the martensitic transformation temperature, is bent into the same shape as the spinal column (usually an S-shape) at room temperature, and is fixed to the spinal column with a wire or bolt. Next, after the outer skin is sutured, the Harrington rod 4 is gradually heated and restored to correct the spinal column. For heating restoration, high-frequency induction heating is used as in the case of the intramedullary needle, and heating is performed very effectively. Furthermore, by setting the restoration temperature of the shape memory material to approximately 45℃ and the Curie temperature of the ferrite ring to 55℃, the ferrite ring rapidly reaches a temperature of 55℃ by high-frequency induction heating.
The ferrite ring is heated to 55℃ due to the loss of ferromagnetism.
Since the Harrington rod is maintained at a temperature of 100 mL, the Harrington rod will restore its straight shape with uniform recovery stress, and will not be overheated, so it will not damage living organisms.

尚、第4図において6はフエライトリング5と
生体の反応を防止するために設けたポリエチレン
等の被膜である。
In FIG. 4, reference numeral 6 denotes a coating made of polyethylene or the like provided to prevent a reaction between the ferrite ring 5 and the living body.

以上本発明形状記憶複合材の2例について説明
したが、これに限るものではなく、種々の工業的
用途は勿論、医療的用途に使用し得るものであ
る。
Although two examples of the shape memory composite material of the present invention have been described above, the present invention is not limited to these, and can be used not only for various industrial purposes but also for medical purposes.

〔発明の効果〕〔Effect of the invention〕

このように本発明形状記憶複合材によれば誘導
加熱により遠隔的加熱復元を容易にし、加熱復元
の温度制御が可能となる等顕著な効果を有するも
のである。
As described above, the shape memory composite material of the present invention has remarkable effects such as facilitating remote heating restoration by induction heating and making it possible to control the temperature of heating restoration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロは本発明複合材からなる髄内針の
一例を示すもので、イは斜視図、ロは断面図、第
2図は同髄内針の挿着例を示す斜視図、第3図
イ,ロは同髄内針の復元状態を示すもので、イは
挿着時の断面図、ロは復元後の断面図、第4図は
本発明複合材からなる脊柱矯正用ハリントンロツ
ドを示す側面図である。 1……形状記憶材、2……強磁性材、3……
髄。
1A and 1B show an example of an intramedullary needle made of the composite material of the present invention, where A is a perspective view, B is a sectional view, and FIG. 2 is a perspective view showing an example of insertion of the same intramedullary needle, Figures 3A and 3B show the restored state of the intramedullary needle, where A is a cross-sectional view when inserted, B is a cross-sectional view after restoration, and Figure 4 is a harringtonine for spinal column correction made of the composite material of the present invention. FIG. 3 is a side view showing the rod. 1...Shape memory material, 2...Ferromagnetic material, 3...
Pith.

Claims (1)

【特許請求の範囲】[Claims] 1 形状記憶材に、キユリー温度が該記憶材の形
状回復温度と該温度より50℃高い温度範囲内にあ
る強磁性材を接合したことを特徴とする形状記憶
複合材。
1. A shape memory composite material comprising a shape memory material and a ferromagnetic material whose Curie temperature is within a temperature range of 50° C. higher than the shape recovery temperature of the memory material.
JP55171803A 1980-12-04 1980-12-04 Form memorizing composite material Granted JPS5795452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171803A JPS5795452A (en) 1980-12-04 1980-12-04 Form memorizing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171803A JPS5795452A (en) 1980-12-04 1980-12-04 Form memorizing composite material

Publications (2)

Publication Number Publication Date
JPS5795452A JPS5795452A (en) 1982-06-14
JPS6328015B2 true JPS6328015B2 (en) 1988-06-07

Family

ID=15930000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171803A Granted JPS5795452A (en) 1980-12-04 1980-12-04 Form memorizing composite material

Country Status (1)

Country Link
JP (1) JPS5795452A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653369A5 (en) * 1983-03-14 1985-12-31 Bbc Brown Boveri & Cie COMPOSITE MATERIAL IN BAR, TUBE, STRIP, SHEET OR PLATE SHAPE WITH REVERSIBLE THERMO-MECHANICAL PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF.
JPS6045356A (en) * 1983-08-20 1985-03-11 住友電気工業株式会社 Artificial joint
CA1246956A (en) * 1983-10-14 1988-12-20 James Jervis Shape memory alloys
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
JPS60145133A (en) * 1984-01-09 1985-07-31 工業技術院長 Bone connection tool
JPS60114861U (en) * 1984-01-12 1985-08-03 津田 祥子 finger tape
JPS60261448A (en) * 1984-06-08 1985-12-24 原田 忠 Erection forming jig of penis
JPS62164459A (en) * 1986-01-14 1987-07-21 水尾 敏之 Artificial urethra sphincter
JPH0193013U (en) * 1987-10-30 1989-06-19

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13

Also Published As

Publication number Publication date
JPS5795452A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
EP0703761B1 (en) Stent
US3868956A (en) Vessel implantable appliance and method of implanting it
JP2715377B2 (en) Method of manufacturing medical device
US4984581A (en) Flexible guide having two-way shape memory alloy
US5409460A (en) Intra-luminal expander assembly
US5885074A (en) Ligatures for orthodontic appliances and orthodontic brackets incorporating such ligatures
JPS6328015B2 (en)
EP0346564B1 (en) Compressive stent and delivery system
US6200317B1 (en) Device for moving two objects relative to each other
JPH0510938B2 (en)
EA027060B1 (en) Implant device and system for ablation of a renal arterial wall from the inside
WO1992019310A1 (en) Removable heat-recoverable tissue supporting device
EP0634059A1 (en) Method and apparatus for forming an electrical connection
JPH06246004A (en) Catheter
JPS5950730B2 (en) How to improve residual stress in austenitic stainless steel pipes, etc.
GR1003340B (en) Method and arrangement for exterior bloodless heating of metallic stents with the use of alternating magnetic field
Datla et al. A flexible active needle for steering in soft tissues
Ayvali et al. A novel discretely actuated steerable probe for percutaneous procedures
JP5491674B2 (en) Method for manufacturing a flexible elongated structure having an orientable end
JPS6214217B2 (en)
JP2643355B2 (en) Pipe fittings
JPS61144590A (en) Bimetal part
DE29519982U1 (en) Induction heating system for metallic implants used in living things
CA2079944A1 (en) Apparatus for widening a stenosis in a body cavity
JPH03215020A (en) Heater for bending thermoplastic resin pipe and manufacture of bent pipe