JPS63279157A - Carbon dioxide electrode - Google Patents

Carbon dioxide electrode

Info

Publication number
JPS63279157A
JPS63279157A JP62113927A JP11392787A JPS63279157A JP S63279157 A JPS63279157 A JP S63279157A JP 62113927 A JP62113927 A JP 62113927A JP 11392787 A JP11392787 A JP 11392787A JP S63279157 A JPS63279157 A JP S63279157A
Authority
JP
Japan
Prior art keywords
carbon dioxide
electrode
film
bacteria
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62113927A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
博章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62113927A priority Critical patent/JPS63279157A/en
Publication of JPS63279157A publication Critical patent/JPS63279157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To enable massproduction with compactization, by forming two insulated electrodes on the top surface of a planar body from internal surfaces of recesses formed over one surface thereof to immobilize hydrophilic independent nurse bacteria therein. CONSTITUTION:After recesses 5 are formed on an Si substrate 2 on which an SiO2 film 3 is formed and the internal surface thereof is covered with an SiO2 film 6. Then, after the formation of positive and negative electrodes 7 and 8, independent nurse bacteria 10 are placed into the recesses 5 to make carbon dioxide conductive as suspended in a physiological salt water and a thermosetting resin is dropped to form an immobilizing film 16 for immobilization of microorganism. Then, an Si rubber or the like is applied to form a water repelling film 17. In the measuring of the concentration of carbon dioxide using an electrode thus obtained, the electrode is immersed into a buffer to stabilize and then, a sample liquid is added into the buffer to detect changes in a detection value. This compactizes the electrode in dimensions, thereby enabling massproduction with ease of use.

Description

【発明の詳細な説明】 (Jl要〕 工業用プラスチック例えばナイロン等の高分子化合物、
ガラス、石英、シリコン等の板状体の一面に凹部を形成
し、この凹部の内面から板状体の上面にかけて、相互に
絶縁された2個の電極を形成し、凹部内に好気性独立栄
養細菌を固定し。
[Detailed description of the invention] (Jl required) Industrial plastics, such as polymer compounds such as nylon,
A recess is formed on one side of a plate-like body made of glass, quartz, silicon, etc., and two mutually insulated electrodes are formed from the inner surface of this recess to the upper surface of the plate-like body, and aerobic autotrophy is generated within the recess. Fix the bacteria.

好気性独立栄養細菌をガス透過膜をもってカバーして製
造された二酸化炭素電極であり、寸法がコンパクトであ
り、使用しやすく、大量生産にも適する二酸化炭素電極
である。
This is a carbon dioxide electrode manufactured by covering aerobic autotrophic bacteria with a gas-permeable membrane, and is compact in size, easy to use, and suitable for mass production.

〔産業上の利用分野〕[Industrial application field]

本発明は、m酵の進行状態の制御等に使用される二酸化
炭素センサとして機能する二酸化炭素電極の構造的改良
に関する。特に、二酸化炭素を資化する好気性独立栄養
細菌を使用する二酸化炭素電極の構造的改良に関する。
The present invention relates to structural improvements to a carbon dioxide electrode that functions as a carbon dioxide sensor used to control the progress of m-fermentation. In particular, it relates to structural improvements in carbon dioxide electrodes that use aerobic autotrophic bacteria that utilize carbon dioxide.

〔従来の技術〕[Conventional technology]

本発明の発明者は1本来的に酸素センサである酸素電極
と二酸化炭素を資化する好気性独立栄養細菌とを組み合
わせて、第6図に示す構造を有し二酸化炭素センサとし
て機能するアンペロメトリックな二酸化炭素電極を開発
して、特許出願をなしている0図において、11は鉛よ
りなる7ノードであり、12は内金よりなるカソードで
あり、水酸化カリウム水溶液13中に浸漬されている。
The inventor of the present invention has developed an amperone having the structure shown in FIG. 6 and functioning as a carbon dioxide sensor by combining an oxygen electrode, which is essentially an oxygen sensor, and an aerobic autotrophic bacterium that utilizes carbon dioxide. In the figure, 11 is 7 nodes made of lead, 12 is a cathode made of inner metal, which is immersed in a potassium hydroxide aqueous solution 13. There is.

 +4はガス透過膜であり1以上の部材をもって酸素電
極が構成され、ガス透過膜を貫通して酸素が水酸化カリ
ウム水溶液13中に溶解してこの溶液13中の酸素濃度
が変化すると正・負の電極11−12間に流れる電流が
変化して酸素センサとして機能する。
+4 is a gas permeable membrane, and an oxygen electrode is composed of one or more members, and when oxygen penetrates the gas permeable membrane and dissolves in the potassium hydroxide aqueous solution 13, and the oxygen concentration in this solution 13 changes, it becomes positive or negative. The current flowing between the electrodes 11 and 12 changes to function as an oxygen sensor.

15が二酸化炭素を資化する好気性独立栄養細菌であり
、ガス透過膜14を貫通した二酸化炭素がこれに接触す
るとこの独立栄養線!i15の呼吸作用が活発になり酸
素の消費量が増大し1周囲の酸素濃度が減少するから、
この酸素減少量を上記の酸素電極を使用して測定すれば
、二酸化炭素濃度を測定することができる。
15 is an aerobic autotrophic bacterium that assimilates carbon dioxide, and when carbon dioxide that has penetrated the gas permeable membrane 14 comes into contact with it, this autotrophic line! The respiratory action of i15 becomes active, the amount of oxygen consumed increases, and the surrounding oxygen concentration decreases.
By measuring this amount of oxygen reduction using the oxygen electrode described above, the carbon dioxide concentration can be measured.

上記の二酸化炭素電極を使用して二酸化炭素濃度を測定
するには、まず、上記の二酸化炭素電極。
To measure the carbon dioxide concentration using the carbon dioxide electrode described above, first, measure the carbon dioxide concentration using the carbon dioxide electrode described above.

を緩衝液中に浸漬して、その検出電流を十分安定させた
後、上記の緩衝液中に二酸化炭素を含んだ試料液を加え
、上記の反応により変化する酸素電極の検出値の変化を
検出すればよい。
After immersing the sensor in a buffer solution and stabilizing the detection current sufficiently, add a sample solution containing carbon dioxide to the buffer solution and detect the change in the detection value of the oxygen electrode that changes due to the above reaction. do it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の二酸化炭素電極は、アンペロメトリックで高感度
であり、原理的には極めてすぐれており、実験室的には
すぐれた結果を与えているが、寸法がかなり大きく、産
業的に使用するには、実用上不便な点があり、大量生産
にも適さず、なお改良の余地があり、よりコンパクトで
使用しやすく大量生産しやすい構造の二酸化炭素電極の
開発が望まれている。
The above-mentioned carbon dioxide electrode is amperometric, highly sensitive, extremely good in principle, and has given excellent results in the laboratory, but its dimensions are quite large and it cannot be used industrially. However, there are practical inconveniences and it is not suitable for mass production, and there is still room for improvement, and there is a desire to develop a carbon dioxide electrode with a structure that is more compact, easier to use, and easier to mass produce.

本発明の目的は、この要望に応えることにあり、二酸化
炭素を資化する好気性独立栄養細菌と酸素電極との組み
合わせにもとづく二酸化炭素電極を、コンパクトにし、
使用しやすくシ、大量生産しやすいように改良された構
造の二酸化炭素電極を提供することにある。
The purpose of the present invention is to meet this demand by making a carbon dioxide electrode compact, which is based on a combination of an aerobic autotrophic bacterium that utilizes carbon dioxide, and an oxygen electrode.
The object of the present invention is to provide a carbon dioxide electrode having an improved structure that is easy to use and mass-produced.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明が採った手段は、板
状体(2)の一面に四部(5)を形成し、該凹部(5)
の内面から前記板状体(2)の上面にかけて、相互に絶
縁された2個の電極(7・8)を形成し、前記凹部(5
)内に好気性独立栄養細菌(10)を固定し、該好気性
独立栄養細菌(10)をガス透過1!51(17)をも
ってカバーして二酸化炭素電極を構成することにある。
The means taken by the present invention to achieve the above object is to form four parts (5) on one surface of the plate-shaped body (2), and to form the four parts (5) in the recessed part (5).
Two mutually insulated electrodes (7, 8) are formed from the inner surface to the upper surface of the plate-shaped body (2), and the recess (5)
), and the aerobic autotrophic bacteria (10) are covered with a gas permeation of 1.51 (17) to form a carbon dioxide electrode.

板状体2の材料には、工業用プラスチック例えばナイロ
ン等の高分子化合物をはじめ、ガラス。
Materials for the plate-shaped body 2 include industrial plastics such as polymer compounds such as nylon, and glass.

石英、単結晶シリコン等が使用しうる。Quartz, single crystal silicon, etc. can be used.

〔作用〕[Effect]

本発明は、半導体装置の製造方法に広く使用されている
技術、例えば、エツチング法、金属等の本積法、金属膜
等のパターニング法等を使用することを前提として、二
酸化炭素電極の構造を改良したものであり、工業用プラ
スチック等の高分子化合物をはじめ、ガラス、石英、単
結晶シリコン等の板状体2の1面に凹部5を形成し、そ
の凹部5の内面から板状体2の上面にかけて2個の電極
7・8を形成し、上記の凹部5内に二酸化炭素を資化す
る好気性独立栄養細菌lOを固定し、その上をガス透過
膜!7をもってカバーしたものであり。
The present invention is based on the premise that techniques widely used in semiconductor device manufacturing methods, such as etching methods, metal deposition methods, patterning methods for metal films, etc., are used to develop the structure of carbon dioxide electrodes. This is an improved version in which a recess 5 is formed on one side of a plate-shaped body 2 made of polymer compounds such as industrial plastics, glass, quartz, single crystal silicon, etc., and the plate-shaped body 2 is formed from the inner surface of the recess 5. Two electrodes 7 and 8 are formed over the upper surface of the recess 5, and aerobic autotrophic bacteria lO that assimilates carbon dioxide are fixed in the recess 5, and a gas permeable membrane is placed on top of the aerobic autotrophic bacteria lO. This is covered by 7.

寸法は例えば5面膳×5膳腸Xl■腸程度と小さくする
ことができ、取り扱いも容易であり、大量生産にも適す
る。
The dimensions can be as small as, for example, 5 servings x 5 servings x 1 serving, making it easy to handle and suitable for mass production.

〔実施例〕〔Example〕

以下、図面を参照しつ一1本発明の一実施例に係る二酸
化炭素電極についてさらに説明する。
Hereinafter, a carbon dioxide electrode according to an embodiment of the present invention will be further described with reference to the drawings.

第2図参照 シリコン基板2を酸化して、その表面に厚さが1鉢層程
度の二酸化シリコン膜3を形成する。
Referring to FIG. 2, a silicon substrate 2 is oxidized to form a silicon dioxide film 3 having a thickness of about one pot layer on its surface.

第3図参照 リソグラフィー法を使用して1例えばls鵬×1 ++
++sX  0.3mlの凹部5を形成する。この工程
に使用されるエッチャントは、二酸化シリコンエツチン
グ用にはフッ酸とフッ化アンモニウムとの混合水溶液が
、シリコンエツチング用には水酸化カリウム水溶液が好
適である。レジストパターン形成後、二酸化シリコンの
エツチングを行ない、レジストを除去した後、二酸化シ
リコンをマスクとしてシリコンのエツチングを行なう。
Refer to Figure 3 using the lithography method 1 eg ls Peng x 1 ++
++sX Form a recess 5 of 0.3 ml. The etchant used in this step is preferably a mixed aqueous solution of hydrofluoric acid and ammonium fluoride for silicon dioxide etching, and a potassium hydroxide aqueous solution for silicon etching. After the resist pattern is formed, silicon dioxide is etched, and after the resist is removed, silicon is etched using the silicon dioxide as a mask.

第4図参照 再び熱庸化して凹部5の内面を二酸化シリコン膜6をも
ってカバーする。
Referring to FIG. 4, the temperature is increased again and the inner surface of the recess 5 is covered with a silicon dioxide film 6.

第5図参照 リソグラフィー法を使用してパターニングした後、クロ
ムを500A蒸着し、さらに金をIJL騰蒸着して、止
り負の電極7・8を形成する。9はこの工程に使用され
たレジスト膜である。
After patterning using the lithography method shown in FIG. 5, chromium is deposited at 500A, and gold is further deposited by IJL vapor deposition to form negative electrodes 7 and 8. 9 is a resist film used in this step.

第1a図、第1b図参照 レジスト膜9を除去した後、凹部5中に、生理的食塩水
中に懸濁した二酸化炭素を資化する独立栄養細菌10.
例えば、微工研寄第8473号を入れ、光硬化性樹脂例
えばポリビニルアルコールを滴下し、室内光をもって徐
々に硬化して、固定膜1Bを形成して微生物を固定する
After removing the resist film 9 (see FIGS. 1a and 1b), autotrophic bacteria 10 that assimilate carbon dioxide suspended in physiological saline are placed in the recess 5.
For example, a photocurable resin such as polyvinyl alcohol is added dropwise to the resin, and is gradually cured under room light to form a fixed film 1B to fix microorganisms.

次に、シリコンゴム等をコートして厚さ10#L諺程度
の撥水性膜17を形成する。第tb図は斜視図である。
Next, a water-repellent film 17 having a thickness of approximately 10 #L is formed by coating with silicone rubber or the like. Figure tb is a perspective view.

上記の製造方法においては、板状体2の材料としてシリ
コン基板が使用されているが、これは1例であり、上記
のとおり、工業用ナイロンをはじめ各種の高分子化合物
やガラス等も使用可能である。エツチング法をもって凹
部を形成しうる材料であれば足りる。電極の材料・寸法
や四部の大きさ等も上記せるところは単なる例であり、
その選択は全く自由である0wL生物固定膜・ガス透過
膜の材料・形成法等も全く自由に選択することが許され
る。多孔質撥水性の膜材であればよい、独立栄養細菌も
、二酸化炭素を資化するものであれば上記せるところ以
外でも全くさしつかえない。
In the above manufacturing method, a silicon substrate is used as the material for the plate-shaped body 2, but this is just one example; as mentioned above, industrial nylon, various polymer compounds, glass, etc. can also be used. It is. Any material that can form recesses using an etching method is sufficient. The materials and dimensions of the electrodes, the sizes of the four parts, etc. mentioned above are just examples.
The selection is completely free. The material, formation method, etc. of the 0wL biological immobilization membrane and gas permeable membrane are also allowed to be completely freely selected. Any porous water-repellent membrane material may be used, and autotrophic bacteria other than those mentioned above are also acceptable as long as they can assimilate carbon dioxide.

上記のようにして製造した二酸化炭素電極を使用して二
酸化炭素濃度を測定するには、まず、上記の二酸化炭素
電極を緩衝液中に浸漬して、その検出電圧を十分安定さ
せた後、上記の緩衝液中に二酸化炭素を含んだ試料液を
加え、上記の反応により変化する酸素電極の検出値の変
化を検出すればよい。
To measure the carbon dioxide concentration using the carbon dioxide electrode manufactured as described above, first immerse the carbon dioxide electrode in a buffer solution to sufficiently stabilize its detection voltage, and then A sample solution containing carbon dioxide may be added to the buffer solution, and changes in the detected value of the oxygen electrode caused by the above reaction may be detected.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る二酸化炭素電極は、
工業用プラスチック例えばナイロン等の高分子化合物、
ガラス、石英、シリコン等の板状体の一面に四部を形成
し、この凹部の内面から板状体の上面にかけて、相互に
絶縁された2個の電極を形成し、凹部内に好気性独立栄
養細菌を固定し、好気性独立栄養細菌をガス透過膜をも
ってカバーして製造することとされているので、寸法が
コンパクトであり、使用しやすく、大量生産にも適する
As explained above, the carbon dioxide electrode according to the present invention is
Industrial plastics such as high molecular compounds such as nylon,
Four parts are formed on one side of a plate-shaped body made of glass, quartz, silicon, etc., and two mutually insulated electrodes are formed from the inner surface of this concave part to the top surface of the plate-shaped body, and aerobic autotrophy is formed in the concave part. Since it is manufactured by fixing the bacteria and covering the aerobic autotrophic bacteria with a gas-permeable membrane, it is compact in size, easy to use, and suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は、本発明の一実施例に係る二酸化炭素電極の
断面図である。 第tb図は、本発明の一実施例に係る二酸化炭素電極の
斜視図である。 第2〜5図は、本発明の一実施例に係る二酸化炭素電極
の製造工程図である。 第6図は、従来技術に係る二酸化炭素電極の構成図であ
る。 2・争・板状体(シリコン基板)、 3・拳・二酸化シリコン膜、 5・・・凹部。 6・番・二酸化シリコン膜、 7・8・−・正−負電極、 9II・・レジスト膜、 10−−・二酸化炭素を資化する独立栄養細菌、11・
12・・・正慟負電極。 13・参〇水酸化カリウム水溶液、 14・・・ガス透過膜、 15−−・二酸化炭素を資化する独立栄養細菌。 16・参会固定膜。 17・・・ガス透過膜(撥水性膜)。 第6図 工程図 第2図 工程図 第3図 第4図 第5図 本発明 第18図
FIG. 1a is a cross-sectional view of a carbon dioxide electrode according to an embodiment of the present invention. FIG. tb is a perspective view of a carbon dioxide electrode according to an embodiment of the present invention. 2 to 5 are process diagrams for manufacturing a carbon dioxide electrode according to an embodiment of the present invention. FIG. 6 is a block diagram of a carbon dioxide electrode according to the prior art. 2. Battle: plate-like body (silicon substrate), 3. Fist: silicon dioxide film, 5: recess. 6. Silicon dioxide film, 7.8 -- Positive and negative electrodes, 9 II. Resist film, 10 -- Autotrophic bacteria that utilizes carbon dioxide, 11.
12... Positive and negative electrodes. 13. Potassium hydroxide aqueous solution, 14... Gas permeable membrane, 15-- Autotrophic bacteria that assimilate carbon dioxide. 16. Participation fixation membrane. 17... Gas permeable membrane (water repellent membrane). Figure 6 Process diagram Figure 2 Process diagram Figure 3 Figure 4 Figure 5 Present invention Figure 18

Claims (1)

【特許請求の範囲】 板状体(2)の一面に凹部(5)が形成され、該凹部(
5)の内面から前記板状体(2)の上面にかけて、相互
に絶縁された2個の電極(7・8)が形成され、 前記凹部(5)内に好気性独立栄養細菌(10)が固定
され、 該好気性独立栄養細菌(10)はガス透過膜(17)を
もってカバーされてなる ことを特徴とする二酸化炭素電極。
[Claims] A recess (5) is formed on one surface of the plate-shaped body (2), and the recess (5)
Two mutually insulated electrodes (7, 8) are formed from the inner surface of the plate (5) to the upper surface of the plate-like body (2), and aerobic autotrophic bacteria (10) are formed in the recess (5). A carbon dioxide electrode characterized in that the aerobic autotrophic bacteria (10) are fixed and covered with a gas permeable membrane (17).
JP62113927A 1987-05-11 1987-05-11 Carbon dioxide electrode Pending JPS63279157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113927A JPS63279157A (en) 1987-05-11 1987-05-11 Carbon dioxide electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113927A JPS63279157A (en) 1987-05-11 1987-05-11 Carbon dioxide electrode

Publications (1)

Publication Number Publication Date
JPS63279157A true JPS63279157A (en) 1988-11-16

Family

ID=14624678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113927A Pending JPS63279157A (en) 1987-05-11 1987-05-11 Carbon dioxide electrode

Country Status (1)

Country Link
JP (1) JPS63279157A (en)

Similar Documents

Publication Publication Date Title
US4975175A (en) Miniaturized oxygen electrode and miniaturized biosensor and production process thereof
US5225374A (en) Method of fabricating a receptor-based sensor
US5111221A (en) Receptor-based sensor
JPS5825221B2 (en) FET reference electrode
Suzuki et al. Fabrication of an oxygen electrode using semiconductor technology
JPH0688806A (en) Oxygen electrode, biosensor, and their manufacture
Suzuki et al. A miniature Clark-type oxygen electrode using a polyelectrolyte and its application as a glucose sensor
Kimura et al. An integrated multibiosensor for simultaneous amperometric and potentiometric measurement
DK308286D0 (en) ELECTROCHEMICAL SENSOR AND PROCEDURE FOR MANUFACTURING A MEMBRANE FOR USE THEREOF
EP0489601A2 (en) Small glass electrode and process for preparation thereof
JPS63279157A (en) Carbon dioxide electrode
JP3683150B2 (en) Restricted permeable membrane, method for producing the same, chemical sensor element, and method for producing chemical sensor element
JPS59164952A (en) Fet ion sensor
JPS63238548A (en) Oxygen electrode and its preparation
Suzuki et al. Development of a miniature Clark-type oxygen electrode using semiconductor techniques and its improvement for practical applications
JPS63238549A (en) Microbiosensor
JPH02129541A (en) Disposable type enzyme electrode
Suzuki et al. Disposable oxygen electrodes fabricated by semiconductor techniques and their application to biosensors
Suzuki et al. Disposable amperometric CO2 sensor employing bacteria and a miniature oxygen electrode
Suzuki Disposable Clark oxygen electrode using recycled materials and its application
JPH02236154A (en) Preparation of small-sized oxygen electrode
JP2530690B2 (en) Small oxygen electrode
Suzuki et al. Fabrication of a microbial carbon dioxide sensor using semiconductor fabrication techniques
JP2661240B2 (en) Small L-lysine sensor and method of manufacturing the same
JPS62132160A (en) Biosensor using separation gate type isfet