JPS63278945A - Porous membrane - Google Patents

Porous membrane

Info

Publication number
JPS63278945A
JPS63278945A JP62114999A JP11499987A JPS63278945A JP S63278945 A JPS63278945 A JP S63278945A JP 62114999 A JP62114999 A JP 62114999A JP 11499987 A JP11499987 A JP 11499987A JP S63278945 A JPS63278945 A JP S63278945A
Authority
JP
Japan
Prior art keywords
water
porous membrane
polybutadiene
polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114999A
Other languages
Japanese (ja)
Inventor
Hajime Ito
元 伊藤
Hiroshi Takahashi
洋 高橋
Koji Takehata
竹端 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62114999A priority Critical patent/JPS63278945A/en
Publication of JPS63278945A publication Critical patent/JPS63278945A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To obtain a porous membrane having a high water flux, excelling in heat resistance, chemical resistance, storage stability and handleability and suited for treatment of condensate, treatment of water for supercritical pressure boilers, comprising a mixture of a specified polyether-imide with a polybutadiene. CONSTITUTION:A saturated vapor or mist-containing vapor of a poor solvent which is miscible with component B and does not dissolve component A (e.g., water) is fed at a rate of 0.1-1,000mg/sec.cm<2> and forcibly contacted with at least either surface of a thin-film object formed from a 2-40wt.% concentration polymer solution formed by dissolving a mixture (A) of 99-90pts.wt. polyether-imide (a) having a weight-average MW >=30,000 and repeating units of the formula (wherein n is 1-7), obtained by polycondensing phenoxyphenyldicarboxylic acid with phenylenediamine, with 1-10pts.wt. polybutadiene (b) of a weight-average MW of 1,000-10,000 in a good solvent (B) such as N-methylpyrrolidone to obtain a porous membrane of an average pore diameter <=0.20mu, a thickness >=50mu and a water flux >=25ml/cm<2>.min.10psi.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体中に存在する微粒子の濾過等に有効な多孔
質膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a porous membrane that is effective for filtering fine particles present in a fluid.

〔従来の技術〕[Conventional technology]

多孔質膜を用いる濾過技術は年々用途が拡大されており
、それに伴なって種々の機能を兼ね備えた多孔質膜が要
求されるようになってきた。
The applications of filtration techniques using porous membranes are expanding year by year, and as a result, porous membranes with various functions have been required.

たとえば超臨界ボイラーの用水処理等の水処理において
は、小粒子の阻止が可能で水フラックスが高く、かつ耐
熱性を有する多孔質膜が要求されている。
For example, in water treatment such as water treatment for supercritical boilers, porous membranes that can block small particles, have a high water flux, and are heat resistant are required.

流体中の微粒子除去用の多孔質膜としては、従来より、
酢酸セルロース、ポリスルホン、ポリエチレン等のもの
が知られているが、これらのものは機械的特性、耐溶剤
性、耐熱性のいずれかの点において欠点を有している。
Traditionally, porous membranes for removing particulates from fluids include:
Cellulose acetate, polysulfone, polyethylene and the like are known, but these have drawbacks in mechanical properties, solvent resistance, and heat resistance.

これらの問題点を解消するものとして、最近ではポリエ
ーテルイミドからなる多孔質膜(特開昭60−5150
3号公報尋)が提案されている。
In order to solve these problems, porous membranes made of polyetherimide (Japanese Patent Laid-Open No. 60-5150
3) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記のポリエーテルイミド製多孔質膜は
次のような問題点を有している。
However, the polyetherimide porous membrane described above has the following problems.

即ち、通常の湿式製膜法によって得゛られるポリエーテ
ルイミド製の多孔質膜には非多孔質の緻密層が存在する
ために水フラックスが小さいことが問題である。
That is, the problem is that a porous polyetherimide film obtained by a normal wet film forming method has a small water flux because of the presence of a non-porous dense layer.

水フラックスの大きいものとし【、塩化リチウム等の金
属塩類やエチレングリコール等の膨潤剤を使用して製造
された多孔質膜が提案されているが、このような多孔質
膜には膨潤剤が残存しており、使用中に溶出するという
問題がある。又、このような方法による多孔質膜におい
ては、水フジツクスが大きい場合は細孔の平均孔径が大
きく、細孔の平均孔径が小さいものは水7ラツクスが小
さい点が問題であり、ポリエーテルイミド製でありて細
孔の平均孔径が小さく、かつ水フラックスの大きい多孔
質膜は知られていない。
Porous membranes manufactured using metal salts such as lithium chloride or swelling agents such as ethylene glycol have been proposed, but the swelling agent remains in such porous membranes. However, there is a problem that it elutes during use. In addition, the problem with porous membranes made by this method is that when the water physis is large, the average pore diameter of the pores is large, and when the pores have a small average pore diameter, the water 7 lux is small. There are no known porous membranes that have a small average pore diameter and a large water flux.

このような状況に鑑み、本発明者等は機械特性に優れ、
耐熱性、耐溶剤性が良好で、微粒子の阻止径が小さくて
水7ラツクスが高い多孔質膜を開発すべく鋭意研究し、
本発明を完成した。
In view of this situation, the present inventors have developed a material with excellent mechanical properties.
We conducted extensive research to develop a porous membrane that has good heat resistance and solvent resistance, a small particle inhibition diameter, and a high water content.
The invention has been completed.

〔問題点を解決するための手段] 本発明の要旨は、下記の一般式 〔但し、nは1〜7の整数を示す〕 で示される繰り返し単位を有するポリエーテルイミド9
9−90重量部とポリブタジェン1〜lO重量部の混合
物からなり、細孔の平均孔径が0.20μm以下、膜厚
が50μm以上であり、水フラックスが25 wl/c
rIL”、 min −10p、s、i  以上である
ことを特徴とする多孔質膜にある。
[Means for solving the problems] The gist of the present invention is to provide a polyetherimide 9 having a repeating unit represented by the following general formula [where n is an integer of 1 to 7].
It consists of a mixture of 9-90 parts by weight of polybutadiene and 1-10 parts by weight, the average pore diameter is 0.20 μm or less, the film thickness is 50 μm or more, and the water flux is 25 wl/c.
rIL'', min -10p,s,i or more.

前記一般式で示されるポリエーテルイミドはフェノオキ
シフェニルジカルボン酸無水物とフェニレンジアミンと
の縮重合によりて得られる重合体であり、 CnH,H
基は直鎖構造あるいは分岐構造をとることができる。
The polyetherimide represented by the above general formula is a polymer obtained by condensation polymerization of phenoxyphenyldicarboxylic anhydride and phenylenediamine, and CnH,H
The group can have a linear or branched structure.

該重合体の代表例として、2,2−ビス〔4−(3,4
−ジカルボキシフェノオキシ)フェニル〕プロパン無水
物とメタ7二二レンジアミンとの縮重合反応によりて得
られる を挙げることができる。前記一般式で示される重合体は
、機械的特性、耐溶剤性、耐熱性に優れており、これら
の諸特性が要求される本発明の多孔質膜の素材として最
適な重合体である。
A typical example of the polymer is 2,2-bis[4-(3,4
-dicarboxyphenoxy)phenyl] obtained by a polycondensation reaction of propane anhydride and meta-72-diamine. The polymer represented by the above general formula has excellent mechanical properties, solvent resistance, and heat resistance, and is the most suitable polymer as a material for the porous membrane of the present invention, which requires these properties.

本発明の多孔質膜は、前記一般式で示されるポリエーテ
ルイミド99〜90重量部とポリブタジェン1〜10重
量部との混合物で構成されている。
The porous membrane of the present invention is composed of a mixture of 99 to 90 parts by weight of polyetherimide represented by the above general formula and 1 to 10 parts by weight of polybutadiene.

ここにポリブタジェンとは、一般式 0式% 〔但し、m、nは任意の整数を示す〕 で表わされる重合体をいう。該多孔質膜においズ、ポリ
ブタジェンの分散状態は特に限定されず、分子分散状襲
であることが好ましいが、全体の均質性が著しく損なわ
れない限り二以上の分子が凝集体を形成し、それが分散
した状態であってもよい。
Here, polybutadiene refers to a polymer represented by the general formula 0 (where m and n are arbitrary integers). The state of dispersion of polybutadiene in the porous membrane is not particularly limited, and is preferably in the form of molecular dispersion, but as long as the overall homogeneity is not significantly impaired, two or more molecules may form aggregates, may be in a dispersed state.

本発明の多孔質膜において、1〜10重量%のポリブタ
ジェンが含有されているが、ポリブタジェンの含有量が
この範囲であれば、均一分散が可能なため、ポリエーテ
ルイミドの有する諸特性が損なわれることなく、細孔の
平均孔径が小さく、かつ水フラックスが大きい多孔質膜
とすることができる。一方、ポリブタジェンの含有量が
この範囲からはずれると多孔質膜の水フラックスを大き
くすることができず、10重量%を越える場合はポリブ
タジェンの均一分散が困難となる。
The porous membrane of the present invention contains 1 to 10% by weight of polybutadiene, but if the polybutadiene content is within this range, uniform dispersion is possible, so the various properties of polyetherimide are impaired. It is possible to obtain a porous membrane with a small average pore diameter and a large water flux. On the other hand, if the polybutadiene content deviates from this range, the water flux in the porous membrane cannot be increased, and if it exceeds 10% by weight, it becomes difficult to uniformly disperse the polybutadiene.

本発明の多孔質膜は細孔の平均孔径が0.20μm以下
である。ここに細孔の平均孔径とは、ポリマーラテック
ス(通常はポリスチレンラテックス)粒子の阻止率が9
0%に相当する粒子径をもって表わされる値をいい、多
孔質膜について粒子径の異なるポリマーラテックス(0
,01wt%水分散液)三種以上の阻止率を測定し、ポ
リマーラテックス粒子径と阻止率との関係を示す曲線か
ら求めることができる。
The porous membrane of the present invention has pores with an average diameter of 0.20 μm or less. The average pore diameter here refers to the rejection rate of polymer latex (usually polystyrene latex) particles of 9.
This value is expressed as a particle size corresponding to 0%, and is a value expressed as a particle size corresponding to 0%.
, 01 wt% aqueous dispersion) can be determined from a curve showing the relationship between the polymer latex particle diameter and the rejection rate.

細孔の平均孔径は0.20μm以下であるが、更に濾過
精度が要求される用途に対しては0.15μm以下であ
ることがより好ましい。
The average pore diameter of the pores is 0.20 μm or less, and is more preferably 0.15 μm or less for applications that require higher filtration accuracy.

多孔質膜の細孔構造は特に限定されず、たとえば全体が
均質もしくは不均質のスポンジ状構造、又は平均孔径が
0.20μm以下のスポンジ状構造と平均孔径がより大
きい指状構造とからなる構造をとることができる。又、
該多孔質膜は、平膜、中空糸膜、管状膜等の任意の形状
をとることができる。
The pore structure of the porous membrane is not particularly limited; for example, it may have a homogeneous or heterogeneous sponge-like structure as a whole, or a structure consisting of a sponge-like structure with an average pore diameter of 0.20 μm or less and a finger-like structure with a larger average pore diameter. can be taken. or,
The porous membrane can take any shape such as a flat membrane, hollow fiber membrane, or tubular membrane.

本発明の多孔質膜の膜厚は50μm以上である。この膜
厚は取扱い性等の実用性能の点から設定されたものであ
り、膜厚が50μm未満のものは概し【機械的強度が劣
り、取扱い時に損傷されやすいという問題がある。膜厚
の上限値は特に限定されないが、およそ150μm以下
であることが好ましい。
The thickness of the porous membrane of the present invention is 50 μm or more. This film thickness is set from the point of view of practical performance such as ease of handling, and films with a film thickness of less than 50 μm generally have a problem of poor mechanical strength and being easily damaged during handling. Although the upper limit of the film thickness is not particularly limited, it is preferably about 150 μm or less.

本発明の多孔質膜の水フラックスは25ゴ/二2・mi
n −10p、s、1  以上である。即ち、細孔の平
均孔径が0.20μm以下と小さく、膜厚が50μm以
上と厚いにも拘らず、高い水ラテックスを有している点
に特徴がある。水フラックスが25 #/an” 、 
min 、 10 pog、i  以上であるため、単
位膜面積当たりの処理水量を充分確保できるという利点
を有している。水フラックスがこれより小さいと充分な
処理水量が確保できず好ましくない。水7ラツクスは3
0 d/ crrL” 1w1n −10p、s、1 
 以上であることがより好ましい。
The water flux of the porous membrane of the present invention is 25 go/22·mi
n −10p,s,1 or more. That is, it is characterized in that it has a small average pore diameter of 0.20 μm or less, and has a high water latex despite having a thick film thickness of 50 μm or more. Water flux is 25 #/an”,
min, 10 pog, i or more, it has the advantage that a sufficient amount of water to be treated per unit membrane area can be secured. If the water flux is smaller than this, a sufficient amount of treated water cannot be secured, which is not preferable. Water 7 lux is 3
0 d/crrL" 1w1n -10p, s, 1
It is more preferable that it is above.

次に本発明の多孔質膜の製造方法について述べる。製膜
方法として種々の方法を採用しうるが、好ましい方法と
して以下に掲げる蒸気凝固法を挙げることができる。
Next, the method for manufacturing the porous membrane of the present invention will be described. Although various methods can be adopted as a film forming method, the following steam coagulation method can be mentioned as a preferable method.

ここで蒸気凝固法とは、ポリエーテルイミドとポリブタ
ジェン(以下これらを合わせて「重合体」という)を良
溶媒に溶解した重合体溶液からなる薄膜状物の少なくと
も一方の表面に、前記良溶媒と相溶性があり、前記重合
体を溶解しない貧溶媒の飽和蒸気又はミストを含む蒸気
を強制的に接触させる製膜方法をいう。蒸気凝固法は群
成製膜法と比較すると、薄膜状物中の重合体−溶媒系の
相分離開始とそれに続く重合体の凝固開始の間の時間を
長くすることができ、これKよって重合体の凝固速度が
遅くなるために非多孔質層(緻密m)のない多孔質膜を
得ることができるものと考えられる。
Here, the vapor coagulation method means that the good solvent and It refers to a film forming method in which saturated vapor or mist-containing vapor of a poor solvent that is compatible and does not dissolve the polymer is forced into contact with the polymer. Compared to the group film forming method, the vapor coagulation method can lengthen the time between the start of phase separation of the polymer-solvent system in a thin film and the subsequent start of coagulation of the polymer. It is believed that a porous membrane without a non-porous layer (dense m) can be obtained because the solidification rate of coalescence is slow.

ポリエーテルイミドの重合度は特に限定されないが、製
膜特性や耐熱性等を考慮すると重量平均分子量でおよそ
30000以上程度のものを用いることが好ましい。又
、ポリブタジェンの重合度も特に限定されないが、重量
平均分子量チオよそ1000〜10000s度、20℃
における粘度でおよそ1.5〜1000ボイズ程度のも
のを用いることが好ましい。この程度の低分子量のポリ
ブタジェンを使用することにより重合体全体の凝固開始
を遅らせることが可能であり、水フラックスの大きい多
孔質膜を得ることができると考えられる。
The degree of polymerization of polyetherimide is not particularly limited, but in consideration of film forming properties, heat resistance, etc., it is preferable to use a polyetherimide having a weight average molecular weight of about 30,000 or more. Further, the degree of polymerization of polybutadiene is not particularly limited, but the weight average molecular weight is approximately 1,000 to 10,000 seconds at 20°C.
It is preferable to use one having a viscosity of approximately 1.5 to 1000 voids. It is thought that by using polybutadiene with such a low molecular weight, it is possible to delay the onset of coagulation of the entire polymer, and it is possible to obtain a porous membrane with a large water flux.

重合体の良溶媒としては、N−メチルピロリドン、ジメ
チルアセトアミド、ジメチルスルホキシド、1,4−ジ
オキサン、トリクロルエチレン等を挙げることができる
。ポリエーテルイミドとポリブタジェンの重量組成比を
99〜90:1〜10とし【、これらの溶媒に溶解させ
ることにより重合体溶液が調製される。
Examples of good solvents for polymers include N-methylpyrrolidone, dimethylacetamide, dimethylsulfoxide, 1,4-dioxane, and trichlorethylene. A polymer solution is prepared by dissolving polyetherimide and polybutadiene in a solvent such that the weight composition ratio of polyetherimide and polybutadiene is 99-90:1-10.

重合体溶液中の重合体の含有量は、多孔質膜の空孔率、
孔径分布等に影響を及ぼし、溶媒の種類によりて最適含
有量は変化するが、およそ2〜40重量%程度であるこ
とが好ましく、5〜30重量%であることがより好まし
い。
The content of the polymer in the polymer solution is determined by the porosity of the porous membrane,
Although the optimum content changes depending on the type of solvent since it affects the pore size distribution, etc., it is preferably about 2 to 40% by weight, and more preferably 5 to 30% by weight.

重合体溶液から調製される薄膜状物の厚みは目的とする
多孔質膜の厚みにより【適宜設定すればよいが、通常の
場合およそ50〜2000μm程度とすればよく、前記
重合体溶液をガラス板、金属板、重合体フィルム、回転
ドラム、エンドレスベルト等の表面が平滑な物体の上に
流延、塗布等することによって得ることができるが、薄
膜状物の平滑性が損われない限り多孔質重合体フィルム
等の多孔質物体を用いることもできる。
The thickness of the thin film prepared from the polymer solution may be set as appropriate depending on the thickness of the intended porous membrane, but usually it is approximately 50 to 2000 μm. , can be obtained by casting or coating on objects with smooth surfaces such as metal plates, polymer films, rotating drums, endless belts, etc. However, as long as the smoothness of the thin film is not impaired, porous Porous objects such as polymeric films can also be used.

また、重合体溶液中の重合体濃度を適宜選択し、中空糸
用ノズルを用いて紡糸することによって中空糸状の薄膜
状物とすることもできる。
Further, a hollow fiber-like thin film can also be obtained by appropriately selecting the polymer concentration in the polymer solution and spinning using a hollow fiber nozzle.

更に、スリット状の溝から重合体溶液を流下させること
により、支持体を使用することなくシート状の薄膜状物
を形成させることができる。
Furthermore, by allowing the polymer solution to flow down through the slit-like grooves, a sheet-like thin film can be formed without using a support.

通常、薄膜状物は作製後、直ちに蒸気と接触させるが、
若干時間を経過した後に蒸気と接触させてもよい。
Normally, thin film-like materials are brought into contact with steam immediately after they are made, but
It may be brought into contact with steam after some time has elapsed.

蒸気凝固法においては、飽和蒸気又はミストを含む蒸気
が使用されるが、ミストを含む蒸気は不飽和蒸気であり
てもよいが、飽和蒸気である方が好ましい。
In the steam coagulation method, saturated steam or mist-containing steam is used, and although the mist-containing steam may be unsaturated steam, saturated steam is preferable.

このような飽和蒸気又はミストを含む蒸気な発生させる
液体としては、前記重合体の・貧溶媒となる液体であれ
ばいかなるものであってもよいが、その代表例として水
を挙げることができ、更ニ、メチルアルコール、エチル
アルコール、メチルエチルケトン、アセトン、テトラヒ
ドロフラン、酢酸メチル等の蒸気の発生が容易な低沸点
の有機溶媒を挙げることができる。しかしながら、取扱
い性、作業環境、安全性、経済性等を考慮すると水を用
いることが好ましい。
The liquid to generate such saturated vapor or vapor containing mist may be any liquid as long as it is a poor solvent for the polymer, and a typical example thereof is water. Examples include organic solvents with a low boiling point that easily generate vapor, such as carbon dioxide, methyl alcohol, ethyl alcohol, methyl ethyl ketone, acetone, tetrahydrofuran, and methyl acetate. However, in consideration of ease of handling, working environment, safety, economy, etc., it is preferable to use water.

ここでは代表例として、飽和水蒸気又はミストを含む水
蒸気を重合体溶液からなる薄膜状物の表面に供給する製
法につい工説明する。水蒸気は公知の装置によりて温度
や濃度を調節して供給させることができるが、通常は散
気圧の飽和水蒸気をノズルから噴出させ、薄膜状物の表
面に供給する方法が採用される。
Here, as a representative example, a manufacturing method will be described in which saturated steam or steam containing mist is supplied to the surface of a thin film-like material made of a polymer solution. Water vapor can be supplied by adjusting the temperature and concentration using a known device, but usually a method is adopted in which saturated steam at diffused pressure is ejected from a nozzle and supplied to the surface of the thin film-like material.

重合体溶液の濃度、薄膜状物の厚み、良溶媒の沸点、良
溶媒と水との相溶性等によって1合体の凝固速度、凝固
挙動が異なるので、水蒸気の温度、濃度、供給速度、供
給時間等の条件を適宜選択することによりて孔径、孔径
分布及び空孔率等を好ましい値にコントロールすること
ができる。
Since the solidification rate and solidification behavior of a single polymer vary depending on the concentration of the polymer solution, the thickness of the thin film, the boiling point of the good solvent, the compatibility of the good solvent with water, etc., the temperature, concentration, supply rate, and supply time of water vapor vary. By appropriately selecting such conditions, the pore diameter, pore diameter distribution, porosity, etc. can be controlled to preferable values.

薄膜状物の表面に対する飽和水蒸気又はミストを含む水
蒸気の供給量は、およそ0.1〜1000■/l・c 
’ Cal”程度であることが好ましく、およそ0.5
〜10089/ I@g+ 、 C1l”程度であるこ
とがより好ましい。又、水蒸気等の供給量は、およそ1
0分間以内で充分である。
The amount of saturated steam or steam containing mist supplied to the surface of the thin film is approximately 0.1 to 1000 ■/l・c
It is preferable that it is approximately 0.5
It is more preferable that the amount of water vapor, etc. to be supplied is approximately 10089/I@g+, C1l".
0 minutes or less is sufficient.

薄膜状物の表面に対する水蒸気の供給方向は特に限定さ
れないが、水蒸気の供給効率を考慮すると垂直方向から
供給することが好ましい。
Although the direction in which the water vapor is supplied to the surface of the thin film-like material is not particularly limited, it is preferable to supply the water vapor from the vertical direction in consideration of the supply efficiency of the water vapor.

重合体溶液からなる薄膜状物の表面へ水蒸気を供給する
ことにより重合体成分が凝固され、多孔質構造が形成さ
れる。その際、重合体の凝固促進及び再溶解防止の点か
ら、水蒸気の供給中や供給後において薄膜状物もしくは
多孔質化された重合体から、良溶媒を除去することが好
ましい。良溶媒は蒸発により、もしくは凝縮した水の水
溶液として流去することにより除去することができる。
By supplying water vapor to the surface of a thin film made of a polymer solution, the polymer components are solidified and a porous structure is formed. In this case, from the viewpoint of promoting coagulation of the polymer and preventing re-dissolution, it is preferable to remove a good solvent from the thin film-like material or the porous polymer during or after supplying water vapor. The good solvent can be removed by evaporation or by running off as an aqueous solution of condensed water.

重合体の凝固後によって得られた多孔質膜の内部、に良
溶媒等が残存している場合は、必要に応じて乾燥、水洗
等により除去すればよい。
If a good solvent or the like remains inside the porous membrane obtained after coagulating the polymer, it may be removed by drying, washing with water, etc., if necessary.

〔実施例〕〔Example〕

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例において、エアー7ラツクス、水72ツクス、ポ
リマーラテックス粒子の阻止率は次の方法により測定し
た。又、実施例において各成分の使用量は全て重量部を
示す。
In the examples, the rejection rates of air 7lux, water 72lux, and polymer latex particles were measured by the following method. In addition, in the examples, all amounts of each component used are shown in parts by weight.

エアー7ラツクスは、直径255mに打ち抜いた多孔質
膜をメンブランフィルタ−ホルダーに組み込み、20℃
の清浄空気上膜間差圧10 p、s、1で供給し、その
透過流量を測定することによりて求めた。
Air 7 Lux has a porous membrane punched out to a diameter of 255 m and is assembled into a membrane filter holder, and
It was determined by supplying clean air at a transmembrane pressure of 10 p, s, and measuring the permeation flow rate.

水フラックスは、直径25顛に打ち抜いた多孔質膜をエ
タノールに浸漬し、ついで水と置換して微細孔内に水を
導いた後、同様にしてメンブランフィルタ−ホルダーに
組み込み、20℃の清澄水を膜間差圧10 p、s、i
  で供給し、その透過流量を測定することにより求め
た。
For the water flux, a porous membrane punched to a diameter of 25 mm was immersed in ethanol, then replaced with water to guide the water into the micropores, and then incorporated into a membrane filter holder in the same way, and clarified water at 20°C. The transmembrane pressure difference is 10 p, s, i
The permeation flow rate was measured.

又、種々の粒子径のポリスチレン製ラテックスについて
0.01tvt%水溶液を調製し、ついで差圧0.1ゆ
7cm”で加圧濾過して得た透過液及び原液につい’1
:UV吸光度法(波長2.75部m)により缶々の吸光
度を測定し、両者の差から、ポリマーラテックス粒子の
阻止率を算出した。
In addition, 0.01 tvt% aqueous solutions of polystyrene latex with various particle sizes were prepared, and the permeate and stock solutions obtained by pressure filtration at a differential pressure of 0.1 to 7 cm were
: The absorbance of each can was measured by UV absorbance method (wavelength: 2.75 parts m), and the rejection rate of the polymer latex particles was calculated from the difference between the two.

実施例1 ポリエーテルイミド(G、B社製UL’rEM1000
)100重量部をジメチルアセトアミド900重量部に
溶解し、これに液状ポリブタジェン(日本ゼオン(株)
製Po1yoil 110  粘度7.5ボイズ、20
℃)2重量部を加え充分に攪拌を行ない重合体溶液を調
製した。
Example 1 Polyetherimide (UL'rEM1000 manufactured by G, Company B)
) was dissolved in 900 parts by weight of dimethylacetamide, and liquid polybutadiene (Nippon Zeon Co., Ltd.) was dissolved in 900 parts by weight of dimethylacetamide.
manufactured by Polyyoil 110, viscosity 7.5 voids, 20
℃) was added and sufficiently stirred to prepare a polymer solution.

この溶液をフィルム作製用アプリケーターを用いてガラ
ス板上に厚み127μmに流延し、重合体溶液の薄膜状
物を形成した。
This solution was cast onto a glass plate to a thickness of 127 μm using a film-forming applicator to form a thin film of polymer solution.

次いで3 kg f /crIL”の飽和水蒸気を有す
る配管のパルプを開き、直径5寵φのノズルから、該薄
膜状物の表面に飽和水蒸気を4分間供給することにより
重合体を凝固させた。
Next, the pulp in the pipe containing 3 kg f/crIL'' of saturated steam was opened, and the polymer was solidified by supplying saturated steam to the surface of the thin film for 4 minutes from a nozzle with a diameter of 5 cm.

尚、該薄膜状物はノズルから30(1mの所に垂直に置
いた。
The thin film material was placed vertically at a distance of 30 m (1 m) from the nozzle.

同様の条件で水蒸気を供給し、薄膜状物の表面から1c
rILの位置の温度を測定したところ83℃であった。
Water vapor was supplied under the same conditions, and 1 c
The temperature at the rIL position was measured to be 83°C.

また、水蒸気流量の実測値は267P/minであり、
ノズルから30cmの位置の噴霧中(直@15cmφ)
の面積177(m”から算出される単位面積当りの水蒸
気の供給量は25m97 sec −(−でありた◎ 次に、凝固した重合体をガラス板よりはく離し、約1時
間流水洗浄した後、45℃で約12時間通風乾燥した。
In addition, the actual measured value of the water vapor flow rate is 267P/min,
Spraying at a position 30cm from the nozzle (direct @ 15cmφ)
The amount of water vapor supplied per unit area calculated from the area of 177 (m") was 25 m97 sec - (-) Next, the coagulated polymer was peeled off from the glass plate, and after washing with running water for about 1 hour, It was dried with ventilation at 45° C. for about 12 hours.

このようにして得られた多孔質膜の膜厚、エアーフラッ
クス、水フラックス、ポリマーラテックス粒子の阻止率
を測定し第1表に示した。
The thickness, air flux, water flux, and rejection rate of polymer latex particles of the porous membrane thus obtained were measured and shown in Table 1.

また、多孔質膜中のポリブタジェンの含有量は、’)I
−NMR法によりポリエーテルイミドの芳香環ピークと
ポリブタジェンの炭素・炭素二重結合の炭素に結合する
プロトンピークを測定して求めた。
In addition, the content of polybutadiene in the porous membrane is ')I
- It was determined by measuring the aromatic ring peak of polyetherimide and the proton peak bonded to the carbon of the carbon-carbon double bond of polybutadiene by NMR method.

また、該多孔質膜を走査製電子顕微鏡で観察したところ
、表層には実質的に多孔質化したスポンジ状構造が内部
から裏面にかけて指屋構造が認められた。
Further, when the porous membrane was observed using a scanning electron microscope, a substantially porous sponge-like structure was observed on the surface layer, and a finger-like structure was observed from the inside to the back surface.

実施例2 ポリブタジェンの添加量を5部°とした以外は実施例1
と同様に製膜を行なりた。得られた膜の特性を第1表に
示した。走査型電子顕微鏡で観察したところ、実施例1
と同様の構造が認められた。
Example 2 Example 1 except that the amount of polybutadiene added was 5 parts.
Film formation was carried out in the same manner. The properties of the obtained film are shown in Table 1. When observed with a scanning electron microscope, Example 1
A similar structure was observed.

実施例3 ポリブタジェンの添加量を11部とした以外は実施例1
と同様に製膜を行なった。得られた膜の特性を第1表に
示した。走査型電子顕微鏡で観察したところ、実施例1
と同様の構造が認められた。
Example 3 Example 1 except that the amount of polybutadiene added was 11 parts.
Film formation was carried out in the same manner. The properties of the obtained film are shown in Table 1. When observed with a scanning electron microscope, Example 1
A similar structure was observed.

比較例1 ポリエーテルイミド120部をN−メチル−2−ピロリ
ドン880部中において、95℃で4時間かけて溶解し
、塗布膜厚を100μmとし、直ちに22℃の水中に3
0分間浸漬して凝固させた。続いて実施例1と同様にし
て流水洗浄と通風乾燥を行なった。
Comparative Example 1 120 parts of polyetherimide was dissolved in 880 parts of N-methyl-2-pyrrolidone at 95°C over 4 hours to give a coating thickness of 100 μm, and immediately dissolved in water at 22°C for 3 hours.
It was immersed for 0 minutes to solidify. Subsequently, in the same manner as in Example 1, washing with running water and ventilation drying were performed.

得られた膜の特性を第1表に示した。走査型電子顕微鏡
で観察した結果、表層は実質的に多孔質化していないス
キン層で覆われており、内部には指星構造が認められた
The properties of the obtained film are shown in Table 1. As a result of observation with a scanning electron microscope, the surface layer was covered with a skin layer that was not substantially porous, and a finger structure was observed inside.

比較例2 ポリエーテルイミド100部をN−メチル−2−ピロリ
ドン400部とテトラヒドロ7ラン500部からなる混
合溶媒で溶解し、塗布膜厚を127μmとした以外は比
較例1と同様にして製膜゛を行なった。
Comparative Example 2 A film was formed in the same manner as Comparative Example 1, except that 100 parts of polyetherimide was dissolved in a mixed solvent consisting of 400 parts of N-methyl-2-pyrrolidone and 500 parts of tetrahydro7ran, and the coating thickness was 127 μm. I did ゛.

得られた膜の特性を第1表に示した。走査型電子顕微鏡
で観察した結果、表層は実質的に多孔質化していないス
キン層で覆われており、内部には指壓構造が認められた
The properties of the obtained film are shown in Table 1. As a result of observation with a scanning electron microscope, the surface layer was covered with a skin layer that was not substantially porous, and a finger-shaped structure was observed inside.

比較例3 ポリエーテルイミド25部をN−メチル−2−ピロリド
ン115部とエチレンカーボネートを加え、更に80℃
で4時間攪拌した後、フィルム作製用アプリケーターを
用いてガラス板上に厚み127μmに流延し、重合体溶
液の薄膜状物を形成した。次いで20℃の水15部、N
−メチル−2−ピロリドン42.5部、エチレンカーボ
ネー)42.5部からなる凝固液に30分間浸漬し、重
合体を凝固させた。
Comparative Example 3 25 parts of polyetherimide was added with 115 parts of N-methyl-2-pyrrolidone and ethylene carbonate, and further heated at 80°C.
After stirring for 4 hours, the polymer solution was cast onto a glass plate to a thickness of 127 μm using a film-forming applicator to form a thin film of the polymer solution. Then 15 parts of water at 20°C, N
-Methyl-2-pyrrolidone (42.5 parts) and ethylene carbonate (42.5 parts) for 30 minutes to coagulate the polymer.

次に凝固した重合体をガラス板よりはく離し約1時間流
水洗浄した後、45℃で約12時間通風乾燥した。
Next, the coagulated polymer was peeled off from the glass plate, washed with running water for about 1 hour, and then dried with ventilation at 45° C. for about 12 hours.

得られた膜の特性を第1表に示した。走査製電子顕微鏡
で観察した結果、表層も内部も実質的に多孔質化した均
質なスポンジ状構造であった。
The properties of the obtained film are shown in Table 1. As a result of observation using a scanning electron microscope, it was found to have a homogeneous spongy structure with substantially porous surfaces and insides.

比較例4 比較例1と同様にして調製した重合体溶液を塗布膜厚1
2711m、水蒸気量を17.2 a97s@e−α1
、水蒸気供給時間を5分間とし、その他は実施例1と同
様にして製膜した。
Comparative Example 4 A polymer solution prepared in the same manner as Comparative Example 1 was coated with a film thickness of 1
2711m, water vapor amount 17.2 a97s@e-α1
A film was formed in the same manner as in Example 1 except that the water vapor supply time was 5 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔質膜は以下に掲げる優れた効果を有してい
る。
The porous membrane of the present invention has the following excellent effects.

(1)  耐熱性、耐薬品性に優れている。、(2) 
 透過阻止可能な粒径が小さいにもかかわらず著しく高
い水フラックスを有している。
(1) Excellent heat resistance and chemical resistance. ,(2)
Despite the small particle size that can be blocked, it has a significantly high water flux.

(3)  保存安定性が良好であり、乾燥状態で保存し
ても多孔lX構造が変化しないので取扱いが容易で・あ
る。
(3) It has good storage stability and is easy to handle because the porous IX structure does not change even when stored in a dry state.

以上のような優れた性能を有する本発明の多孔質膜は、
超臨界ボイラー用水の水処理、原子復 力発電、火力発電の後水処理、電子回路製造における超
純水の製造を始めとする種々の分野に適用することがで
きる。
The porous membrane of the present invention having the above-mentioned excellent performance,
It can be applied to various fields including water treatment for supercritical boilers, nuclear power generation, post-water treatment for thermal power generation, and production of ultrapure water in electronic circuit manufacturing.

Claims (1)

【特許請求の範囲】 下記の一般式 ▲数式、化学式、表等があります▼ 〔但し、nは1〜7の整数を示す〕 で示される繰り返し単位を有するポリエーテルイミド9
9〜90重量部とポリブタジエン1〜10重量部の混合
物からなり、細孔の平均孔径が0.20μm以下、膜厚
が50μm以上であり、水フラックスが25ml/cm
^2・min.10p.s.i以上であることを特徴と
する多孔質膜。
[Claims] Polyetherimide 9 having a repeating unit represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [However, n represents an integer from 1 to 7]
Consisting of a mixture of 9 to 90 parts by weight and 1 to 10 parts by weight of polybutadiene, the average pore diameter is 0.20 μm or less, the film thickness is 50 μm or more, and the water flux is 25 ml/cm.
^2・min. 10p. s. A porous membrane characterized in that it is more than or equal to i.
JP62114999A 1987-05-12 1987-05-12 Porous membrane Pending JPS63278945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114999A JPS63278945A (en) 1987-05-12 1987-05-12 Porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114999A JPS63278945A (en) 1987-05-12 1987-05-12 Porous membrane

Publications (1)

Publication Number Publication Date
JPS63278945A true JPS63278945A (en) 1988-11-16

Family

ID=14651793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114999A Pending JPS63278945A (en) 1987-05-12 1987-05-12 Porous membrane

Country Status (1)

Country Link
JP (1) JPS63278945A (en)

Similar Documents

Publication Publication Date Title
US4933083A (en) Polybenzimidazole thin film composite membranes
EP2913096B1 (en) Porous polymeric membrane with high void volume
JP5722621B2 (en) Polyvinylidene fluoride porous flat membrane and method for producing the same
JP2694341B2 (en) Improved oxidation resistant film and method of manufacturing the same
JPS63248405A (en) Porous membrane
JPH03196822A (en) Semipermeable membrane made from homogeneously mixable polymer mixture
JPS584561B2 (en) Kanjiyouporiniyosono Fuseihan Umaku
CN109173753A (en) Casting solution, ultrafiltration membrane, reverse osmosis composite membrane or Nano filtering composite membrane
EP0247597B1 (en) Process for producing porous membranes
JPS63278944A (en) Porous membrane
CN112619443A (en) Composite reverse osmosis membrane and preparation method thereof
JP3681219B2 (en) Polysulfone porous separation membrane
JPS63278945A (en) Porous membrane
JPS63267406A (en) Manufacture of porous film
JPH0929078A (en) Production of hollow yarn membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPS6148964B2 (en)
JPH022856A (en) Porous film
WO2019018587A1 (en) Microporous material and systems and methods for making the same
JPH0338226A (en) Porous separation membrane
JPS62160109A (en) Manufacture of microporous filter membrane
JPS61222503A (en) Method for preparing desalted water
JPS6146203A (en) Composite semipermeable membrane and its manufacture
JPH02131126A (en) Production of porous film
JPS60255109A (en) Sulfonated polysulfone semipermeable membrane and its production