JPS6327888B2 - - Google Patents

Info

Publication number
JPS6327888B2
JPS6327888B2 JP3696180A JP3696180A JPS6327888B2 JP S6327888 B2 JPS6327888 B2 JP S6327888B2 JP 3696180 A JP3696180 A JP 3696180A JP 3696180 A JP3696180 A JP 3696180A JP S6327888 B2 JPS6327888 B2 JP S6327888B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
resonator
vibration
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3696180A
Other languages
Japanese (ja)
Other versions
JPS56134818A (en
Inventor
Hiroshi Shimizu
Hiroshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3696180A priority Critical patent/JPS56134818A/en
Priority to US06/241,738 priority patent/US4356421A/en
Publication of JPS56134818A publication Critical patent/JPS56134818A/en
Publication of JPS6327888B2 publication Critical patent/JPS6327888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type

Description

【発明の詳細な説明】 本発明はセラミツクフイルタやセラミツク発振
回路に使用されるセラミツク共振子に関するもの
で、特に周波数上昇型エネルギー閉じ込めを利用
した縦効果型幅たて振動共振子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic resonator used in a ceramic filter or a ceramic oscillation circuit, and more particularly to a longitudinal effect type vertically vibrating resonator using frequency increasing type energy confinement.

従来セラミツク共振子は使用される共振周波数
および比帯域幅などの用途に応じて各種の振動モ
ードが利用されており共振周波数が数MHz以下
の場合には円板、正方形板の輪郭振動や矩形板の
長さ振動など共振子全体が振動する振動モードが
利用され共振周波数が数MHzから数十MHzの場
合には振動エネルギーが圧電磁器板の中央部に局
部的に集中していわゆるエネルギーとじ込め振動
モードが利用されている。
Conventionally, ceramic resonators have been used in various vibration modes depending on the application, such as the resonant frequency and specific bandwidth used.When the resonant frequency is less than a few MHz, contour vibration of a circular plate, square plate, or rectangular plate is used. A vibration mode in which the entire resonator vibrates, such as length vibration, is used, and when the resonance frequency is from several MHz to several tens of MHz, the vibration energy is locally concentrated in the center of the piezoelectric ceramic plate, resulting in so-called energy trapped vibration. mode is used.

第1図はAMラジオ等の中間周波数増幅回路用
455kHzセラミツクフイルタに用いられているセ
ラミツク共振子の1例であり第1図aは厚さ方向
に分極された直径約5mmの円板であり第1図bは
厚さ方向に分極された1辺の長さ約4.7mmの正方
形板である。第1図の円板および正方形板共振子
はいずれも中心部分を振動の節とした輪郭振動を
する。したがつてこれらの共振子の支持および電
気端子の取り出しは微小突起の形成された金属端
子板を振動の節に圧接するか、振動の節に細いリ
ード線を半田付する方法で行なわれており前者で
は圧接部の電極がはがれたり機械的な振動により
接触不良を起すなど信頼性的に問題があり、後者
では半田付作業が難しいうえに支持による特性の
ばらつきが大きいという欠点があつた。第2図は
共振周波数10.7MHzのエネルギーとじ込め共振
子の構造例であり厚さ約0.2mm辺長約5mmの正方
形板の中央部に直径約1.5mmの円形電極が対向し
て形成され、両面の円形電極から基板端部に外部
接続用電極が引出されている。第2図のエネルギ
ーとじ込め共振子ではリード端子との接続は振動
にほとんど影響を与えることがない基板の端部で
半田付によつて行われるため特性のばらつきの少
ない信頼性の高い共振子が得られる。しかし従来
のエネルギーとじ込め共振子は「厚みたてモー
ド」あるいは「厚みすべりモード」が利用されて
いるため共振周波数はセラミツク基板の厚さによ
つて定まり、共振周波数を低くしようとすると基
板の厚さが厚くなりこれにほぼ比例して外形寸法
が大きくなることから共振周波数の下限は数
MHzに限られていた。
Figure 1 is for intermediate frequency amplification circuits such as AM radio.
This is an example of a ceramic resonator used in a 455kHz ceramic filter. Figure 1a shows a disk with a diameter of about 5 mm polarized in the thickness direction, and Figure 1b shows one side polarized in the thickness direction. It is a square plate with a length of approximately 4.7 mm. Both the disk and square plate resonators shown in FIG. 1 vibrate in contour with the central portion as the node of vibration. Therefore, the support of these resonators and the extraction of electrical terminals are carried out by pressing metal terminal plates on which minute protrusions are formed onto the vibration nodes, or by soldering thin lead wires to the vibration nodes. The former had reliability problems such as peeling of the electrode at the press-contact part and poor contact due to mechanical vibration, while the latter had the drawbacks of difficult soldering work and large variations in characteristics due to support. Figure 2 shows an example of the structure of an energy trapping resonator with a resonance frequency of 10.7MHz.A circular electrode with a diameter of about 1.5mm is formed facing the center of a square plate with a thickness of about 0.2mm and a side length of about 5mm. An external connection electrode is drawn out from the circular electrode to the edge of the substrate. In the energy confinement resonator shown in Figure 2, the connection to the lead terminals is made by soldering at the edge of the board, which has little effect on vibration, resulting in a highly reliable resonator with little variation in characteristics. can get. However, because conventional energy-containing resonators utilize a "thickness vertical mode" or "thickness shear mode," the resonant frequency is determined by the thickness of the ceramic substrate. The lower limit of the resonant frequency is a few
It was limited to MHz.

ところで、この様な「エネルギー閉じ込めモー
ド」とは、広義に解せば、単純な形状を持つ振動
体の一部分に振動エネルギーが集中し、そこから
はずれたほとんど振動しない部分の寸法や力学的
条件によつて影響されないような共振モードと言
える。上記でも述べた様に、一般にエネルギー閉
じ込めモードを用いた共振子では、最大寸法が波
長に比し著しく大きいにも拘らずスプリアスの共
振応答が少なく、また変位と応力とが零とみなせ
る部分が広範囲に存在するため、モードに影響し
ないような振動子の支持やリード線の取りつけが
容易であるという特長があつた。従来使用されて
いる共振子やフイルタにおけるエネルギー閉じ込
めの適用は、板の厚み振動(とりわけ遮断周波数
以下の低周波側で伝搬定数kHが虚数となる低域
遮断型分散特性を持つ厚み振動)に限られてお
り、そのため適用周波数も数MHz以上のHF帯、
VHF帯に限られていた。
By the way, in a broad sense, this kind of "energy confinement mode" means that vibration energy is concentrated in a part of a vibrating body with a simple shape, and the vibration energy is concentrated in a part of the vibrating body that has a simple shape, and the vibration energy is concentrated in a part that hardly vibrates due to the dimensions and mechanical conditions. This can be said to be a resonant mode that is not affected by this phenomenon. As mentioned above, in general, resonators using an energy confinement mode have little spurious resonance response even though the maximum dimension is significantly larger than the wavelength, and there is a wide range where displacement and stress can be considered zero. , it has the advantage that it is easy to support the vibrator and attach lead wires without affecting the mode. The application of energy confinement in conventionally used resonators and filters is limited to plate thickness vibrations (particularly thickness vibrations with low-cut dispersion characteristics where the propagation constant kH is an imaginary number on the low frequency side below the cutoff frequency). Therefore, the applicable frequency is HF band of several MHz or more,
It was limited to the VHF band.

本発明はこの様な問題点に鑑みてなされたもの
で、圧電磁器板を小型にし、しかも数MHz以下
の低周波にも適用できるようにしたもので、駆動
電極部分の遮断周波数を周辺部分のそれより高く
することにより、共振点付近の周波数で周辺部分
の伝搬定数が虚数となる様にして、エネルギー閉
じ込めを実現する、いわゆる、周波数上昇型エネ
ルギー閉じ込めを利用した圧電磁器矩形板のたて
効果型幅たて振動圧電共振子を提供するにある。
The present invention has been made in view of these problems, and it is a piezoelectric ceramic plate that is made smaller and can be applied to low frequencies of several MHz or less. By making it higher than that, the propagation constant of the peripheral part becomes an imaginary number at the frequency near the resonance point, realizing energy confinement.The vertical effect of the piezoelectric ceramic rectangular plate using so-called frequency increasing energy confinement. To provide a type wide vertical vibrating piezoelectric resonator.

本発明の要旨は幅方向に分極された圧電磁器矩
形板の長さ方向の中央部分をのぞいた周辺部の片
面に、全面あるいはほぼ全面に亘つて電極を施こ
し、同一面の中央部に長さ方向と平行な一対のス
トリツプ状の駆動電極を形成し、各々駆動電極を
異なる側の一方の周辺電極に夫々接続し、その周
辺電極の夫々をリード引き出し端子とすることを
特徴とする幅たて振動を利用した圧電共振子にあ
り、さらには、同一面内の一対の駆動電極の幅方
向の中間に一つ以上のストリツプ状浮遊電極を設
けたことを特徴とする幅たて振動を利用した圧電
共振子である。
The gist of the present invention is to provide an electrode on one side of the peripheral part of a piezoelectric ceramic rectangular plate polarized in the width direction, excluding the central part in the length direction, and to apply an electrode over the entire or almost the entire surface, and to apply a long electrode to the central part of the same surface. A width strip characterized in that a pair of strip-shaped drive electrodes are formed parallel to the width direction, each drive electrode is connected to one peripheral electrode on a different side, and each of the peripheral electrodes is used as a lead extraction terminal. This piezoelectric resonator utilizes vertical vibration, and furthermore, it utilizes vertical vibration characterized by having one or more strip-shaped floating electrodes provided in the middle in the width direction of a pair of drive electrodes in the same plane. It is a piezoelectric resonator.

有限幅の薄い圧電磁器板を伝わる幅たて振動は
大抵の圧電体で高域遮断型の分散特性を示しその
エネルギー閉じ込め法は周波数上昇型となる。第
3図のように幅方向に分極された圧電磁器板1
(幅H、厚さt)の表面に幅H1の1対の電極2,
2′を形成するとこのときの圧電磁器板1を伝わ
る幅たて振動の分散曲線は第4図のようになる。
図中の実線は無電極の場合、破線は全面電極の場
合でありまた鎖線は一部分電極(d/H=0.1、 H1/H=0.2)の場合の曲線である。この図から
わかるように、幅たて振動では板面に設ける電極
の幅と間隔の板幅に対する比(d/H、H1/H)
によつて遮断周波数を制御することができる。図
において伝搬定数0の垂線と交わる周波数Ωcが
遮断周波数である。
Vertical vibration transmitted through a thin piezoelectric ceramic plate with a finite width exhibits a high-frequency cutoff type dispersion characteristic in most piezoelectric materials, and the energy confinement method is a frequency increase type. Piezoelectric ceramic plate 1 polarized in the width direction as shown in Fig. 3
A pair of electrodes 2 with width H 1 on the surface of (width H, thickness t),
2' is formed, the dispersion curve of the longitudinal vibration transmitted through the piezoelectric ceramic plate 1 at this time becomes as shown in FIG.
In the figure, the solid line is the curve for no electrode, the broken line is for the entire surface electrode, and the chain line is the curve for the partial electrode (d/H=0.1, H 1 /H=0.2). As can be seen from this figure, in vertical vibration, the ratio of the width and spacing of the electrodes provided on the plate surface to the plate width (d/H, H 1 /H)
The cutoff frequency can be controlled by In the figure, the frequency Ωc that intersects the perpendicular line with a propagation constant of 0 is the cutoff frequency.

このような結果に基づいて第5図〜第7図に示
す様に、幅方向に分極された圧電磁器矩形板1
(幅H、長さl0、厚さt)の中央部に駆動電極を
形成し、長さ方向の中央部を除いた左右の周辺部
に周辺電極を全面あるいはほぼ全面にわたつて施
した構成すれば中央部の遮断周波数が周辺部の遮
断周波数より高くなり中央の駆動電極部分に縦効
果幅たて振動の周波数上昇型エネルギーとじ込め
が実現できる。第5図は周辺電極と駆動電極を板
の片面にのみ設けた場合、第6図は周辺電極を板
の両面に設け短絡し、駆動電極を片面に設けた場
合、第7図は周辺電極と駆動電極をともに両面に
設け、周辺電極を短絡し、駆動電極を両面に対向
させている場合の構成例を示す。
Based on these results, as shown in FIGS. 5 to 7, a piezoelectric ceramic rectangular plate 1 polarized in the width direction
(Width H, length l 0 , thickness t) A drive electrode is formed at the center, and peripheral electrodes are applied over the entire surface or almost the entire surface on the left and right peripheral regions excluding the central region in the length direction. Then, the cutoff frequency at the center becomes higher than the cutoff frequency at the periphery, and it is possible to trap the energy of increasing frequency of longitudinal effect width vertical vibration in the drive electrode section at the center. Figure 5 shows the case where the peripheral electrode and drive electrode are provided only on one side of the plate, Figure 6 shows the case where the peripheral electrode and drive electrode are provided on both sides of the plate and short-circuited, and the drive electrode is provided on one side. A configuration example is shown in which drive electrodes are provided on both surfaces, peripheral electrodes are short-circuited, and drive electrodes are opposed to both surfaces.

図においてa,b,cは夫々側面表面裏面図を
示す。各々の図に示すように、中央の駆動電極を
それぞれ左右の周辺電極に接続させた電極構成と
すれば左右の周辺電極がリード線引出し端子とし
て利用できる。また振動エネルギーが中央部に集
中しているため周辺電極にリード線を半田付けし
ても、周辺部を支持固定しても共振特性に影響を
与えない。
In the figures, a, b, and c indicate side, front, and back views, respectively. As shown in each figure, if the central drive electrode is connected to the left and right peripheral electrodes, the left and right peripheral electrodes can be used as lead wire extraction terminals. Furthermore, since the vibration energy is concentrated in the center, the resonance characteristics are not affected even if lead wires are soldered to the peripheral electrodes or the peripheral parts are supported and fixed.

次に圧電磁器矩形板にPbTiO3磁器を用いた場
合の実施例を示す。
Next, an example will be shown in which PbTiO 3 porcelain is used for the piezoelectric ceramic rectangular plate.

第7図における共振子の各寸法をそれぞれ、H
=1.05mm、l0=10mm、t=0.2mm、d=0.1mm、g=
0.3mm、l=3.35mmとしH1/Hを0.45、0.18、0.11
にかえて共振子について測定したアドミツタンス
特性を第8図に示す。
Each dimension of the resonator in Fig. 7 is H
= 1.05mm, l 0 = 10mm, t = 0.2mm, d = 0.1mm, g =
0.3mm, l=3.35mm, H 1 /H is 0.45, 0.18, 0.11
Instead, the admittance characteristics measured for the resonator are shown in FIG.

中央駆動電極の幅を従つてH1/Hを小さくし
てH1/Hを0.2程度以下にすると共振周波数近傍
での余計な振動が除去されシヤープできれいな共
振特性が得られることが示されている。
It has been shown that by reducing the width of the central drive electrode and therefore reducing H 1 /H to about 0.2 or less , unnecessary vibrations near the resonance frequency can be removed and sharp and clean resonance characteristics can be obtained. There is.

第7図に限らず第5図、第6図の構成でも同様
な特性を確認している。
Similar characteristics have been confirmed not only in the configuration shown in FIG. 7 but also in the configurations shown in FIGS. 5 and 6.

なおこの共振子と同じ周波数(約2MHz)を得
るためには従来の厚みすべり振動のエネルギーと
じ込めを利用して共振子を構成すると、板厚約
0.7mm板の直径20mm程度のかなり大きな寸法のも
のとなる。本実施例ではこのような従来のものに
比べて極めて小型になり、しかもその特性も優れ
ていることを明らかにしている。
In order to obtain the same frequency (approximately 2MHz) as this resonator, if the resonator is constructed using the energy confinement of conventional thickness-shear vibration, the plate thickness will be approximately
It is quite large, with a diameter of about 20mm on a 0.7mm plate. It has been clarified that the present example is extremely compact compared to such a conventional device, and also has superior characteristics.

上記実施例においては圧電磁器板の幅方向の中
心に対して対称に2個設けているが、第9図に示
すようにそれらの駆動電極の間に浮遊電極8を設
けてもよい。この浮遊電極8と両側の駆動電極2
および2′とのギヤツプの中心を同(c)図の如く幅
3次モードの幅方向の応力分布が0となる位置に
合わせれば幅3次モードの共振応答を抑圧すこと
ができる。
In the above embodiment, two drive electrodes are provided symmetrically with respect to the center of the piezoelectric ceramic plate in the width direction, but a floating electrode 8 may be provided between these drive electrodes as shown in FIG. This floating electrode 8 and the drive electrodes 2 on both sides
By aligning the center of the gap with 2' and 2' to a position where the stress distribution in the width direction of the 3rd width mode becomes 0, as shown in FIG. 2(c), the resonance response of the 3rd width mode can be suppressed.

第10図はこのようにして幅3次モードの共振
応答を抑圧した場合の実施例であり、幅3次モー
ドがほぼ完全に抑圧されていることを示してい
る。但し第10図でaは浮遊電極なし、bは浮遊
電極を設けた場合の特性である。
FIG. 10 shows an example in which the resonance response of the third-order width mode is suppressed in this manner, and shows that the third-order width mode is almost completely suppressed. However, in FIG. 10, a shows the characteristics without a floating electrode, and b shows the characteristics when a floating electrode is provided.

以上の実施例ではPbTiO3磁器板についてのみ
説明したが、圧電単結晶、PZTセラミツクでも
同様な効果が得られる。
In the above embodiments, only the PbTiO 3 porcelain plate was explained, but similar effects can be obtained with piezoelectric single crystals and PZT ceramics.

以上本発明について説明したが、圧電たて効果
型の幅たて振動の周波数上昇型エネルギー閉じ込
めを利用することにより共振子の寸法が著しく小
さくなり、MF帯(03〜3MHz)の低周波でもと
じ込め型共振子が適用可能となつた。本発明の共
振子はセラミツクフイルタ、セラミツク発振回路
共振子として有効でありその効果は顕著である。
As described above, the present invention has been described. By utilizing the frequency-increasing energy confinement of vertical vibration of the piezoelectric effect type, the dimensions of the resonator can be significantly reduced, and it can be closed even at low frequencies in the MF band (03 to 3MHz). Embedded resonators are now applicable. The resonator of the present invention is effective as a ceramic filter or a ceramic oscillation circuit resonator, and its effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は455kHzセラミツクフイルタに使用さ
れている従来のセラミツク共振子の斜視図、第2
図は従来のエネルギー閉じ込め型10.7MHz用セ
ラミツク共振子の斜視図、第3図は本発明を説明
するための幅たて振動用圧電板の斜視図、第4図
は第3図の電極幅を変化させたときの夫々の分散
特性を示す図、第5図乃至第7図は夫々本発明に
よる圧電共振子の実施例を示しaは側面図bは表
面図cは裏面図、第8図は第7図の駆動電極の幅
を変えたときのアドミツタンス特性、第9図は浮
遊電極を有する本発明の他の実施例を示す側面図
と平面図並に浮遊電極と駆動電極間のギヤツプの
位置と幅3次モードの幅方向の応力分布との関係
を示す図、第10図は浮遊電極を有する本発明と
有しない場合の本発明のアドミツタンス特性を示
す図を示す。 図において1…圧電磁器板、2,2′,7,
7′…駆動電極、3,3′,5,5′…周辺電極、
4,4′…リード引き出し線端子。
Figure 1 is a perspective view of a conventional ceramic resonator used in a 455kHz ceramic filter, Figure 2
The figure is a perspective view of a conventional energy-trapped ceramic resonator for 10.7MHz, Figure 3 is a perspective view of a piezoelectric plate for vertical vibration for explaining the present invention, and Figure 4 shows the electrode width of Figure 3. Figures 5 to 7 show examples of piezoelectric resonators according to the present invention, respectively, and a is a side view, b is a front view, c is a back view, and Figure 8 is a diagram showing the dispersion characteristics when changed. Figure 7 shows the admittance characteristics when the width of the drive electrode is changed, and Figure 9 shows a side view and a plan view of another embodiment of the present invention having a floating electrode, as well as the position of the gap between the floating electrode and the drive electrode. FIG. 10 is a diagram showing the admittance characteristics of the present invention with and without floating electrodes. In the figure, 1...piezoelectric ceramic plate, 2, 2', 7,
7'... Drive electrode, 3, 3', 5, 5'... Peripheral electrode,
4, 4'...Lead extension wire terminal.

Claims (1)

【特許請求の範囲】 1 幅方向に分極された圧電磁器矩形板の長さ方
向の中央部分をのぞいた周辺部に、全面あるいは
ほぼ全面に亘つて電極を施こし、中央部に長さ方
向と平行な1対のストリツプ状の駆動電極を形成
し、各々駆動電極を異なる側の周辺電極に夫々接
続し、その周辺電極の夫々をリード引き出し端子
とすることを特徴とした幅たて振動を利用した圧
電共振子。 2 同一面内の一対の駆動電極の幅方向の中間
に、一つ以上のストリツプ状浮遊電極を設けたこ
とを特徴とした特許請求の範囲第1項記載の幅た
て振動を利用した圧電共振子。
[Claims] 1. Electrodes are applied to the entire or almost the entire surface of a piezoelectric ceramic rectangular plate polarized in the width direction, except for the central portion in the length direction, and electrodes are applied to the center portion in the longitudinal direction. Utilizes vertical vibration characterized by forming a pair of parallel strip-shaped drive electrodes, connecting each drive electrode to peripheral electrodes on different sides, and using each of the peripheral electrodes as a lead extraction terminal. piezoelectric resonator. 2. Piezoelectric resonance utilizing vertical vibration according to claim 1, characterized in that one or more strip-shaped floating electrodes are provided in the widthwise middle of a pair of drive electrodes in the same plane. Child.
JP3696180A 1980-03-25 1980-03-25 Piezoresonator using width longitudinal oscillation Granted JPS56134818A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3696180A JPS56134818A (en) 1980-03-25 1980-03-25 Piezoresonator using width longitudinal oscillation
US06/241,738 US4356421A (en) 1980-03-25 1981-03-09 Piezoelectric resonators of an energy-trapping type of a width extensional vibratory mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3696180A JPS56134818A (en) 1980-03-25 1980-03-25 Piezoresonator using width longitudinal oscillation

Publications (2)

Publication Number Publication Date
JPS56134818A JPS56134818A (en) 1981-10-21
JPS6327888B2 true JPS6327888B2 (en) 1988-06-06

Family

ID=12484329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3696180A Granted JPS56134818A (en) 1980-03-25 1980-03-25 Piezoresonator using width longitudinal oscillation

Country Status (1)

Country Link
JP (1) JPS56134818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511202A (en) * 1981-12-29 1985-04-16 Fujitsu Limited Ceramic resonator and a ceramic filter using the same

Also Published As

Publication number Publication date
JPS56134818A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
JP3378775B2 (en) Piezoelectric resonator and frequency adjustment method thereof
US4356421A (en) Piezoelectric resonators of an energy-trapping type of a width extensional vibratory mode
JP4665282B2 (en) AT cut crystal unit
JP3271517B2 (en) Piezoelectric resonator and electronic component using the same
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2000269774A (en) Piezoelectric vibrator and piezoelectric resonance component
JP3894771B2 (en) Piezoelectric resonance device
JP3262076B2 (en) Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator, and communication device
JP3102869B2 (en) Structure of ultra-thin piezoelectric resonator
JPS6327888B2 (en)
JPS6327887B2 (en)
WO2002101923A1 (en) Piezoelectric vibrator and filter using the same
JPH104330A (en) Piezoelectric resonator and electronic component using it
JPS58131810A (en) Surface acoustic wave device
JP2738673B2 (en) Ceramic resonator
JPH0140529B2 (en)
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component
JPH0583079A (en) Piezoelectric element and its manufacture
JPS61199316A (en) Mechanical filter
JP3102872B2 (en) Ultra-thin piezoelectric vibrator
JPH05226962A (en) Oscillator
RU2066089C1 (en) Piezoelectric element
JPH05218788A (en) Piezoelectric resonator
JP2000341084A (en) Piezoelectric resonator
JPS5828768B2 (en) Crystal oscillator support device