JPS63278596A - Contact material for waste water treatment - Google Patents

Contact material for waste water treatment

Info

Publication number
JPS63278596A
JPS63278596A JP62113798A JP11379887A JPS63278596A JP S63278596 A JPS63278596 A JP S63278596A JP 62113798 A JP62113798 A JP 62113798A JP 11379887 A JP11379887 A JP 11379887A JP S63278596 A JPS63278596 A JP S63278596A
Authority
JP
Japan
Prior art keywords
contact material
film
plasticizer
powder
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62113798A
Other languages
Japanese (ja)
Inventor
Keiji Nagamatsu
永松 啓至
Kaname Iwasaki
岩崎 要
Masao Maida
毎田 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP62113798A priority Critical patent/JPS63278596A/en
Publication of JPS63278596A publication Critical patent/JPS63278596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To improve the treating function of the title material by coating a material obtained by mixing inorg. powder into the paste of a mixture of specified resin powder and a plasticizer on the surface of the base body made of hard vinyl chloride resin, and heating the material to obtain the contact material. CONSTITUTION:The paste consisting essentially of PVC powder and further mixed with a plasticizer (e.g., dioctyl phthalate, dioctyl adipate, etc.) and inorg. matter (e.g., calcium carbonate, silica, glass fiber, etc.) is coated on the surface of the base body consisting of hard vinyl chloride resin and prepared in the form of a plate, a sheet, a film, etc. The paste is then preheated at 60-100 deg.C to form a film on the base body, then heated at 100-230 deg.C, and baked. The initial growth rate of the microbe film is increased by the contact material thus obtained, and the deposition density is enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は接触材、一層詳しくは排水の生物化学的処理
に用いる排水処理用接触材に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a contact material, and more particularly to a contact material for wastewater treatment used in the biochemical treatment of wastewater.

(従来の技術) 従来、散水P床法、接触酸化法、回転円板法など排水の
生物化学的処理分野で用いられる接触材(充填材、微生
物保持体など)には、耐久性、耐薬品性に富み、腐蝕の
心配がなく、軽量で機械的強度に優れ、所望の形状に容
易に成形できるなど多くの優れた性質を有し、かつ廉価
であるという特徴に基づいて硬質塩化ビニル樹脂製の板
、シート、フィルムなどが多用されている。
(Conventional technology) Conventionally, contact materials (filling materials, microorganism retainers, etc.) used in the field of biochemical treatment of wastewater, such as the sprinkled P bed method, contact oxidation method, and rotating disk method, have durability and chemical resistance. Made of hard vinyl chloride resin, it has many excellent properties such as being highly durable, free from corrosion, lightweight, excellent mechanical strength, and can be easily molded into desired shapes, as well as being inexpensive. Boards, sheets, films, etc. are often used.

(発明が解決しようとする問題点) 排水の好気性処理で、BOD濃度の高い排水の場合や、
生物分解速度の速い排水の場合には、発生するバクテリ
ヤ、原生動物などの微生物は活性が大であり、接触材に
対する付着力も大きく、上記従来の硬質塩化ビニル樹脂
(以下、単に硬質P■Cと略記する)製の接触材の使用
で特に大きな問題はないが、BOD濃度の低い排水(B
OD約500ppm以下)や、化学工業排水、又は嫌気
性処理におけるメタン醗酵処理などの場合は、処理に関
与するバクテリアなどの微生物の増殖速度が遅いことや
微生物の付着活性力が弱いことなどにより、安定して効
率的な処理を行うことが難しく、また処理機能の立上り
が遅いなど、多くの問題点があった。
(Problems to be solved by the invention) In aerobic treatment of wastewater, in the case of wastewater with high BOD concentration,
In the case of wastewater with a high biodegradation rate, microorganisms such as bacteria and protozoa that are generated are highly active and have a strong adhesion to contact materials. There is no particular problem with the use of contact materials made of contact materials made of
(OD of approximately 500 ppm or less), chemical industrial wastewater, or methane fermentation treatment in anaerobic treatment, due to the slow growth rate of microorganisms such as bacteria involved in the treatment and the weak adhesion activity of microorganisms. There were many problems, such as difficulty in performing stable and efficient processing and slow start-up of processing functions.

・1(問題点を解決するための手段) 本発明は上記のような、従来の微生物の付着、生育に関
する問題点を解決し、硬質PvCの有する優れた性質を
失うことがなく、また表面に無機物質により形成される
微細な凹凸により、微生物との接触効率を向上させて、
これを低濃度BOD排水を始めとする通常微生物増殖速
度の遅い、かつ微生物の付着活性力の低い排水の処理に
用いて、付着活性力を向上させ、効率よく安定して排水
処理を達成し得る排水処理用接触材(以下、単に接触材
と略記する)を提供することを目的とするものである。
・1 (Means for solving the problems) The present invention solves the conventional problems related to the adhesion and growth of microorganisms as described above, without losing the excellent properties of hard PvC, and without losing the excellent properties of hard PvC. The fine irregularities formed by inorganic substances improve contact efficiency with microorganisms,
This can be used to treat wastewater such as low-concentration BOD wastewater, which normally has a slow microbial growth rate and low microbial adhesion activity, to improve the adhesion activity and achieve efficient and stable wastewater treatment. The object of the present invention is to provide a contact material for wastewater treatment (hereinafter simply abbreviated as contact material).

かかる目的を達成する本発明の要旨とするところは、硬
質PVCからなる基体の表面に、塩化ビニル樹脂粉末と
可塑剤とを混合してなるペーストに対して該可塑剤に不
溶な無機物質を添加したものを塗布して加熱し、成膜し
てなる接触材に存する。
The gist of the present invention to achieve such an object is to add an inorganic substance insoluble in the plasticizer to a paste made by mixing vinyl chloride resin powder and a plasticizer on the surface of a substrate made of hard PVC. The contact material consists of a film formed by coating and heating the contact material.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の基体となる硬質PVCは板状、シート状、フィ
ルム状、棒状、塊状、チップ状など各種の形状をなして
いてもよい。
The rigid PVC that serves as the base of the present invention may have various shapes such as a plate, a sheet, a film, a rod, a lump, and a chip.

そして板状、シート状、フィルム状をなすものは、単純
な平坦状のものの他、波板状をなしていてもよく、その
他凹凸部を有するものなど従来、微生物保持体として知
られている種々のW、雑な表面形態をなすものであって
もよい、 また棒状の基体も凹部、凸部を有するなどの
表面構造をなしていてもよい。
In addition to simple flat shapes, the plate-like, sheet-like, and film-like materials may be corrugated, or have uneven parts, and various other types known conventionally as microbial carriers. The W may have a rough surface configuration, and the rod-shaped base may also have a surface structure such as having concave portions or convex portions.

本発明の接触材は、上述のような硬質PVCからなる基
体の表面に、塩化ビニル樹脂(以下、単にPvCと略記
する)の粉末(乳化重合によって得られるものが好まし
いが、懸濁重合体であってもよい)と可塑剤(更に安定
剤を加えてもよい)とを混合してなるペーストに、この
可塑剤に溶解しない無機物質を加え、充分均一に混合し
なものを塗布する。
The contact material of the present invention is a powder of vinyl chloride resin (hereinafter simply abbreviated as PvC) (preferably obtained by emulsion polymerization, but a suspension polymer) on the surface of a substrate made of hard PVC as described above. An inorganic substance that does not dissolve in the plasticizer is added to a paste made by mixing a plasticizer (which may be present) and a plasticizer (a stabilizer may also be added), and the mixture is sufficiently uniformly applied.

次いで、なお粘稠な状態にある塗布層は加熱して硬質P
vC基体の表面に60〜100℃で膜化(固形膜化)し
てのち100〜230℃で焼付けを行うか、或いは膜化
と同時に焼付けることもできる。
Next, the coating layer, which is still in a viscous state, is heated to form a hard P.
It is possible to form a film (form a solid film) onto the surface of the vC substrate at 60 to 100°C and then bake it at 100 to 230°C, or to bake simultaneously with film formation.

また硬質PvC基体が平坦な板、シート、フィルムであ
って、最終的に波板状、その他凹凸を有する形状のもの
としたいときは、上記の加熱焼付は処理後に成形しても
よい。
Further, when the hard PvC substrate is a flat plate, sheet, or film, and it is desired to finally have a corrugated plate shape or other uneven shape, the above heat baking may be performed after the processing.

また硬質PVC基体が平坦な板、シート、フィルムであ
る場合、PvC粉末を主体とし、可塑剤及び無機物質を
添加した上記ペーストを塗布し、次いで先ず60〜10
0°Cで予備加熱して基体の表面に膜化し、これを例え
ば真空成形法によって所望の形状に成形する際に、10
0〜230℃で再加熱して焼付けを行ってもよい、 或
いは、基体にペーストを塗布した後、直ちに加熱成形し
つつ膜化と焼付けとを同時に行ってもよい。
When the rigid PVC substrate is a flat plate, sheet, or film, the above-mentioned paste containing PvC powder as a main ingredient and a plasticizer and an inorganic substance is applied, and then the 60-100
When preheating at 0°C to form a film on the surface of the substrate and molding it into a desired shape by vacuum forming, for example, 10
Baking may be performed by reheating at 0 to 230° C. Alternatively, after applying the paste to the substrate, film formation and baking may be performed simultaneously while immediately heating and forming.

以上のような方法によって製造される本発明の接触材は
、その表面に形成された焼付は膜面に微細な凹凸が形成
され、表面積が著しく増大するものである。
In the contact material of the present invention manufactured by the method described above, the baking formed on the surface of the contact material forms fine irregularities on the film surface, and the surface area increases significantly.

そして本発明接触材の基体は、通常硬質PVCと言われ
る例えば可塑剤添加部数が約10重量%以下のものであ
ればよい。
The base of the contact material of the present invention may be made of generally hard PVC, for example, in which the amount of plasticizer added is about 10% by weight or less.

基体に塗布するペースト中のPVC粉末は、主として乳
化重合によって得られるものが好ましく、平均重合度8
00〜2.000のもので、粒度は極力細かなものがよ
く、通常平均粒径20〜60μのものが好ましい。
The PVC powder in the paste applied to the substrate is preferably obtained mainly by emulsion polymerization, and has an average polymerization degree of 8.
00 to 2.000, and the particle size is preferably as fine as possible, and the average particle size is usually preferably 20 to 60 μm.

かかるPvC粉末と可塑剤との混合割合は通常PVC粉
末100重量部(以下、重量部は部と略記する)に対し
て可塑剤30〜100部の範囲がよい。
The mixing ratio of such PvC powder and plasticizer is usually preferably in the range of 30 to 100 parts of plasticizer per 100 parts by weight of PVC powder (hereinafter, "parts by weight" is abbreviated as parts).

この可塑剤としてはジオクチルフタレート、ジオクチル
アジペート、トリクレジルホスフェートなと、通常Pv
Cに対して使用される可塑剤が用いられる。
Examples of this plasticizer include dioctyl phthalate, dioctyl adipate, and tricresyl phosphate.
The plasticizer used for C is used.

また、PVC粉末に対し、上記のような可塑剤のほか、
安定剤を配合してもよい。 かかる安定剤としては、可
塑剤に可溶性の液状のものが好ましく、また固体粉末状
の安定剤は、予め可塑剤に分散して使用できる。
In addition to the above plasticizers, PVC powder
A stabilizer may be added. Such a stabilizer is preferably a liquid stabilizer that is soluble in a plasticizer, and a solid powder stabilizer can be used by being dispersed in a plasticizer in advance.

安定剤の例としては、塩基性亜リン酸鉛、二塩基性硫酸
鉛または上記酸のカルシウム塩、バリウム塩などが挙げ
られる。
Examples of stabilizers include basic lead phosphite, dibasic lead sulfate or calcium salts, barium salts of the above acids, and the like.

次にこれらのペーストに配合する無機物質について説明
する。
Next, the inorganic substances added to these pastes will be explained.

無機物質としては、上記可塑剤に溶解しない無機物質で
あって、炭酸カルシウム、珪藻土、シリカ、雲母、ガラ
ス短繊維、ガラス粉末、アスベスト、金属粉(鉄粉、ア
ルミナ粉末、銅粉)などのほか、強磁性体粉末が好適に
用いられる。
Examples of inorganic substances include inorganic substances that do not dissolve in the above plasticizers, such as calcium carbonate, diatomaceous earth, silica, mica, short glass fibers, glass powder, asbestos, metal powders (iron powder, alumina powder, copper powder), etc. , ferromagnetic powder is preferably used.

該強磁性体の種類としては、バリウム、ストロンチウム
とフェライトとの混合物の夫々バリウム系、ストロンチ
ウム系などがあり、またマンガン、亜鈴とフェライトと
の混合物の夫々マンガン系、亜鉛系などがある。 また
この他サマリウムとコバルトとの混合系の希土類強磁性
体がある。
Examples of the ferromagnetic material include barium, a mixture of strontium and ferrite, such as barium-based and strontium-based, and manganese, a mixture of dumbbell and ferrite, including manganese-based and zinc-based, respectively. In addition, there is a rare earth ferromagnetic material that is a mixture of samarium and cobalt.

上記これらの無機物質の粒径は1〜500μ範囲が好ま
しく、この配合量はペースト100部に対し、5〜50
部が好ましい、 5部以下では、表面凹凸が少ないので
、微生物の保持性が乏しく、また逆に50部を超えると
膜形成ののち、該膜の物性を低下させる虞れがあり不経
済である。
The particle size of these inorganic substances is preferably in the range of 1 to 500 μm, and the blending amount is 5 to 50 μm per 100 parts of paste.
If the amount is less than 5 parts, the surface roughness will be small, resulting in poor retention of microorganisms, and if it exceeds 50 parts, the physical properties of the film may deteriorate after film formation, which is uneconomical. .

以上の割合で無機物質をPVC粉末及び可塑剤(更に安
定剤を加えてもよい)よりなるペーストに配合し、よく
混和する。
The inorganic substance is blended into a paste consisting of PVC powder and a plasticizer (a stabilizer may be further added) in the above ratio and mixed well.

該混合物を硬質PVC基体の表面に塗布するには、基体
が例えば平坦な板、シート、フィルムであればバーコー
タ、ロールコータなど通常用いられる方法によって行う
In order to apply the mixture to the surface of a rigid PVC substrate, for example, if the substrate is a flat plate, sheet, or film, a commonly used method such as a bar coater or a roll coater may be used.

また基体が板、シート、フィルムに予め凹凸模様が付与
されたもの、又は棒状、チップ状の場合は浸漬法、その
他適宜の方法によって行う。
In addition, when the substrate is a plate, sheet, film with an uneven pattern provided in advance, or in the shape of a rod or chip, the dipping method or other appropriate method is used.

塗布層の厚さは通常500μ以下が好ましい。The thickness of the coating layer is usually preferably 500 μm or less.

500μを超える厚さでも有効であるが不経済である。Thicknesses exceeding 500 μm are also effective, but uneconomical.

塗布後の加熱による膜化は、前記した通り通常の硬質P
vCの軟化点付近60乃至100℃であり、焼付けは1
00〜230″Cで行う。
As mentioned above, film formation by heating after coating is done using ordinary hard P.
The temperature is 60 to 100℃ near the softening point of vC, and the baking temperature is 1
Perform at 00 to 230″C.

以上のようにして得られる本発明の接触材は後述するよ
うな優れた効果を有し、排水の生物化学的処理に極めて
有効に使用されるが、水処理分野における水質改善、環
境改善のみならず、広くバイオテクノロジー分野におい
て、効率的なバイオリアクターを提供するものである。
The contact material of the present invention obtained as described above has excellent effects as described below and can be used extremely effectively for biochemical treatment of wastewater. First, it provides an efficient bioreactor widely used in the biotechnology field.

実施例1 乳化重合によって得られた平均重合度1,700、平均
粒径40μのPvC粉末100部に対し、ジオクチルフ
タレート60部の可塑剤を加えてなるペーストに、平均
粒径10μの鉄粉20部の無機物質を加えて充分混和し
、これを硬質PVCシート(厚さ0.25mm)の表面
に約30μの厚さに塗布した後、150℃で真空成形を
行なって凹凸模様に成形すると同時に、硬質PvCシー
ト表面に膜化と焼付けを行ない、得られた本発明品をA
とする。
Example 1 20 parts of iron powder with an average particle size of 10μ is added to a paste made by adding 60 parts of a plasticizer of dioctyl phthalate to 100 parts of PvC powder with an average degree of polymerization of 1,700 and an average particle size of 40μ obtained by emulsion polymerization. After adding an inorganic substance and mixing thoroughly, this was applied to the surface of a hard PVC sheet (thickness 0.25 mm) to a thickness of about 30μ, and then vacuum formed at 150℃ to form an uneven pattern. , film formation and baking were performed on the surface of the hard PvC sheet, and the obtained product of the present invention was designated as A.
shall be.

また乳化重合によって得られた平均重合度1゜700、
平均粒径50μのpvc粉末100部に対し、ジオクチ
ルフタレート60部からなるペーストに、粒径的100
μのサマリウム・コバルト強磁性体粉末20部を加えて
充分混和し、これを硬質pvcシート(厚さ0.25m
m>の表面に約30μの厚さに塗布した後、150℃で
真空成形を行なって凹凸模様に成形すると同時に1、硬
質PvCシート表面に膜化と焼付けを行ない、得られた
本発明品をBとする。
In addition, the average degree of polymerization obtained by emulsion polymerization is 1°700,
A paste consisting of 60 parts of dioctyl phthalate was added to 100 parts of PVC powder with an average particle size of 50μ.
Add 20 parts of samarium-cobalt ferromagnetic powder of μ and mix thoroughly.
m> to a thickness of about 30 μm, vacuum forming was performed at 150°C to form an uneven pattern. 1. At the same time, film formation and baking were performed on the surface of the hard PvC sheet, and the obtained product of the present invention was Let it be B.

かくして得られた本発明の接触材と比較するなめ、塗布
膜を形成しない硬質PVCシート(厚さ0.25mm)
基体に同様な凹凸模様に成形したものを製造し、これを
比較例Cとした。
A hard PVC sheet (thickness 0.25 mm) that does not form a coating film for comparison with the contact material of the present invention thus obtained.
A substrate having a similar uneven pattern was manufactured and designated as Comparative Example C.

上記これら接触材について、硝化菌培養槽において、硝
化菌を主とする微生物付着試験を行なった。
Regarding these contact materials, a microbial adhesion test mainly consisting of nitrifying bacteria was conducted in a nitrifying bacteria culture tank.

被処理水としては塩化アンモニウムを主とした人工排水
を用い、窒素濃度を200ppmに調製した。
Artificial wastewater containing mainly ammonium chloride was used as the water to be treated, and the nitrogen concentration was adjusted to 200 ppm.

培養条件は、上記人工排水を20℃、PH7〜8に調整
しておき、試験方法としては、処理槽の下部に硝化菌培
養のため、通常の波板平行板の充填材を入れて馴致を行
ない、硝化菌が充填材に充分に増殖付着し、処理性能も
安定した状態のところで、上記本発明の接触材A、B及
び比較例Cの接触材を処理槽の上部に浸漬し、浸漬後1
5日目と30日目に接触材を引き上げ、それぞれ1分後
に各接触材の硝化菌の微生物保持量(湿重量)を測定し
た。
The culture conditions were as follows: the above artificial wastewater was adjusted to 20°C and pH 7 to 8, and the test method was to place a regular corrugated parallel plate filler in the bottom of the treatment tank to cultivate nitrifying bacteria. When the nitrifying bacteria have sufficiently proliferated and adhered to the filler and the treatment performance is stable, the contact materials A and B of the present invention and the contact material of Comparative Example C are immersed in the upper part of the treatment tank, and after immersion. 1
The contact materials were pulled up on the 5th and 30th days, and the microbial amount (wet weight) of nitrifying bacteria retained on each contact material was measured 1 minute later.

その結果を第1図の図表に示す。The results are shown in the diagram of FIG.

第1図において、縦軸は硝化菌の微生物保持量(湿重i
g/rrr) 、横軸は浸漬日数(日)であり、図中A
、Bは上記の本発明実施例であり、Cは比較例の接触材
の各々の硝化菌の微生物保持量を示す曲線である。
In Figure 1, the vertical axis is the microbial retention amount of nitrifying bacteria (wet weight i
g/rrr), the horizontal axis is the number of immersion days (days), and A in the figure
, B is the above-mentioned example of the present invention, and C is a curve showing the microbial retention amount of nitrifying bacteria for each of the contact materials of the comparative example.

この結果から、本発明の接触材は比較例のものに比べ硝
化菌の微生物保持量が極めて多いことが明らかである。
From this result, it is clear that the contact material of the present invention retains an extremely large amount of nitrifying bacteria compared to the contact material of the comparative example.

実施例2 メタン生成菌培養槽に上記実施例1のA、B及び比較例
Cで用いたと同じ接触材を浸漬し、メタン生成菌を主と
する微生物付着試験を行った。
Example 2 The same contact material used in Example 1 A and B and Comparative Example C was immersed in a methanogen culture tank, and a microorganism adhesion test mainly consisting of methanogens was conducted.

被処理水は、酢酸をBOD5.OOOppmになるよう
に調製した人工排水を用い、培養条件は上記人工排水を
水温30℃、PH7〜8に調整しておき、処理槽にメタ
ン生成菌培養のため、前記同様の通常の充填材を入れて
馴致を行ない、メタン生成菌が、この充填材に充分に増
殖付着し、処理性能も安定した状態のところで、上記実
施例1で用いた本発明の接触材及び比較例の接触材を浸
漬し、以下実施例1と同様に試験を行ない、メタン生成
菌微生物の付着性を測定した。
The water to be treated contains acetic acid with a BOD of 5. Using artificial wastewater prepared to have OOO ppm, the culture conditions were adjusted to water temperature of 30°C and pH of 7 to 8, and the same usual filling material as above was added to the treatment tank for culturing methane-producing bacteria. The contact material of the present invention used in Example 1 and the contact material of the comparative example used in Example 1 were immersed when the methane-producing bacteria had sufficiently proliferated and adhered to the filler and the treatment performance was stable. Then, a test was conducted in the same manner as in Example 1 to measure the adhesion of methanogenic microorganisms.

その結果を第2図の図表に示す。The results are shown in the diagram in Figure 2.

第2図において、縦軸はメタン生成菌の微生物保持量(
湿重量g/rr?) 、横軸は浸漬日数(日)であり、
図中A、Bは本発明実施例、Cは比較例の接触材の各々
のメタン生成菌の微生物保持量を示す曲線である。
In Figure 2, the vertical axis is the microbial retention amount of methanogens (
Wet weight g/rr? ), the horizontal axis is the number of immersion days (days),
In the figure, A and B are curves showing the amount of microbial methanogens retained in the contact material of the example of the present invention, and C is the contact material of the comparative example.

この結果から、本発明の接触材は比較例のものに比べ、
メタン生成菌の微生物保持量が極めて多いことが明らか
である。
From this result, the contact material of the present invention has a lower
It is clear that the microbial retention of methanogens is extremely high.

(発明の効果) 本発明の接触材は下記の効果を奏する。(Effect of the invention) The contact material of the present invention has the following effects.

(1)微生物膜の初期生育速度が速い。(1) The initial growth rate of the microbial film is fast.

(2)微生物膜の付着密度が高い。(2) High adhesion density of microbial film.

(3)微生物膜の付着力が強く、安定している。(3) The microbial film has strong and stable adhesion.

(4)微生物膜が活性に富んでいる。(4) The microbial membrane is highly active.

(5)成形と同時に塗膜の焼付けができ、基体の表面に
凹凸が形成される。
(5) The coating film can be baked simultaneously with molding, and unevenness is formed on the surface of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、硝化菌の微生物保持量を表わす図表であり、
また第2図は、メタン生成菌の微生物保持量を表わす図
表である。 図中、A及びBは本発明の実施例の接触材
の微生物保持量を示す曲線であり、Cは比較例の接触材
の微生物保持量を示す曲線である。 特許出願人       三菱樹脂株式会社溶@p錬−
一】)←
Figure 1 is a chart showing the amount of microorganisms retained by nitrifying bacteria.
Further, FIG. 2 is a chart showing the amount of microorganisms retained in methane-producing bacteria. In the figure, A and B are curves showing the amount of microorganisms retained in the contact material of the example of the present invention, and C is a curve showing the amount of microorganisms retained in the contact material of the comparative example. Patent applicant: Mitsubishi Plastics Co., Ltd.
1])←

Claims (1)

【特許請求の範囲】[Claims] 硬質塩化ビニル樹脂からなる基体の表面に、塩化ビニル
樹脂粉末と可塑剤とを混合してなるペーストに対して該
可塑剤に不溶な無機物質を添加したものを塗布して加熱
し、成膜してなる排水処理用接触材。
A paste made by mixing vinyl chloride resin powder and a plasticizer with an inorganic substance insoluble in the plasticizer is applied onto the surface of a substrate made of hard vinyl chloride resin and heated to form a film. Contact material for wastewater treatment.
JP62113798A 1987-05-11 1987-05-11 Contact material for waste water treatment Pending JPS63278596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113798A JPS63278596A (en) 1987-05-11 1987-05-11 Contact material for waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113798A JPS63278596A (en) 1987-05-11 1987-05-11 Contact material for waste water treatment

Publications (1)

Publication Number Publication Date
JPS63278596A true JPS63278596A (en) 1988-11-16

Family

ID=14621345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113798A Pending JPS63278596A (en) 1987-05-11 1987-05-11 Contact material for waste water treatment

Country Status (1)

Country Link
JP (1) JPS63278596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159986A (en) * 2000-11-27 2002-06-04 Hitachi Chem Co Ltd Carrier having inorganic particle stuck on the surface firmly for carrying microbe, sewage purifying tank and method or manufacturing the carrier for carrying microbe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335247A (en) * 1976-09-13 1978-04-01 Kohkoku Chem Ind Filtering material for treating sewage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335247A (en) * 1976-09-13 1978-04-01 Kohkoku Chem Ind Filtering material for treating sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159986A (en) * 2000-11-27 2002-06-04 Hitachi Chem Co Ltd Carrier having inorganic particle stuck on the surface firmly for carrying microbe, sewage purifying tank and method or manufacturing the carrier for carrying microbe

Similar Documents

Publication Publication Date Title
CN106186284A (en) Microbe carrier
KR101403179B1 (en) Surface treated steel sheet and manufacturing method thereof
US4287305A (en) Microorganism immobilization
JPS63278596A (en) Contact material for waste water treatment
US6528577B2 (en) Aqueous polyurethane gel, process for producing the same, and use thereof
CN106189565B (en) One's own physical property coating and its application and one's own physical property floating stuffing and preparation method thereof
JPH0912717A (en) Antibacterial agent, antibacterial resin and antibacterial coating material
JPS6023875B2 (en) Biofilm-attached filler for wastewater treatment
JPS61197095A (en) Microbe carrier
US4999297A (en) Culture of cells
JPS63202382A (en) Immobilized microorganism group
JPS63224795A (en) Carrier for microorganism
JPH0632825B2 (en) Wastewater treatment equipment
CN112760266B (en) Bacillus preparation for hydraulic concrete and preparation method and application thereof
CN108676425A (en) A kind of wood furniture nanometer silicon hybridization hydrophobic coating
EP0612791B1 (en) Porous polymer material and method of obtaining it
JPS6227096A (en) Microorganism holding body
CN1772397A (en) Coating method using synthetic resin including nano-silver powder via ultrasonic waves
CN110452901A (en) A kind of immobilization biological reaction filter plate and its preparation method and application
JP4573391B2 (en) Hydrous gel, its production method and its use
JP2006175311A (en) Carrier for holding microorganism
CN113149211B (en) High-mechanical-strength magnetic MBBR filler and preparation method thereof
TWI329128B (en) Bio-film and method for immobilizing microorganism
JPS6186997A (en) Microorganism holder for treating waste water
CN114873741B (en) Denitrification slow-release carbon source material and preparation method and application thereof