JPS6327798Y2 - - Google Patents

Info

Publication number
JPS6327798Y2
JPS6327798Y2 JP1984084347U JP8434784U JPS6327798Y2 JP S6327798 Y2 JPS6327798 Y2 JP S6327798Y2 JP 1984084347 U JP1984084347 U JP 1984084347U JP 8434784 U JP8434784 U JP 8434784U JP S6327798 Y2 JPS6327798 Y2 JP S6327798Y2
Authority
JP
Japan
Prior art keywords
fluid
right cylinder
duct
cylinder
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984084347U
Other languages
Japanese (ja)
Other versions
JPS61862U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8434784U priority Critical patent/JPS61862U/en
Publication of JPS61862U publication Critical patent/JPS61862U/en
Application granted granted Critical
Publication of JPS6327798Y2 publication Critical patent/JPS6327798Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案はサイクロン分離器において圧力損失が
少なく捕集効率のよい竪型のサイクロンに関する
ものである。 従来の竪型サイクロンは遠心力を利用して流体
中の粉粒体を分離捕集するものであり、セメント
原料の予熱装置等に多く用いられ、第1図、第2
図、第3図、第4図に示すような構造となつてい
る。第1図に示すものは、流体導入ダクト1がサ
イクロン直円筒2へ接線状に接続され、流体排出
ダクト3が直円筒2と同心円となつている。第2
図に示すものは、流体導入ダクト1が直円筒2へ
円周方向から接続され、流体排出ダクト3は直円
筒2と同心円になつている。第3図に示すもの
は、流体導入ダクト3が直円筒2に接線状に接続
されているものにおいて、流体排出ダクト3が直
円筒2に対して反流体導入ダクト1側に偏心して
いる。第4図に示すものは第1図に示すものにお
いて、流体導入ダクト1の内側壁と直円筒2の周
壁に接続する部分を、サイクロン軸心側へ湾曲ガ
イド4にて突出させている。これら第2図、第3
図、第4図のサイクロンはいずれも圧力損失の低
減をねらつたものであるが、第2図、第3図のサ
イクロンは圧力損失の低減が少なく、大きな効果
が望めなかつた。又、第4図のサイクロンは、圧
力損失の低減はかなり可能であるが、捕集効率が
低下するという欠点があつた。 これらの理由は、第2図、第3図のサイクロン
においては、導入ダクト1からの導入流体とサイ
クロン内の旋回流体との合流による圧損が大きい
こと、又、第4図のサイクロンは前述の合流によ
る圧損が湾曲ガイド4によつて大きく低減される
が、湾曲ガイド4の部分でサイクロンの周壁に移
動しきれなかつた粒径の小さい粉粒体が、排出流
体に同伴されて、排出ダクト3内に移行し、この
結果、捕集効率を低下させること等である。 本考案は以上のような従来の欠点を改善するた
めになされたものであつて、圧力損失が少なく、
捕集効率を一層高めたサイクロンを提供すること
を目的としたものである。 このために、本考案においては、流体中の粉粒
体を分離捕集し、流体を排出するサイクロン分離
器において、直円筒内径より小さい径の部分円筒
状の側壁を流体導入ダクトの内側壁に隣接させて
接続するとともに、同じ高さで直円筒内部へ突出
させて形成し、一方、流体排出ダクトは直円筒の
内部に円筒形として垂下しており、かつ、その円
筒を直円筒の軸心より反流体導入ダクト側に偏心
させて設けるとともに、前記部分円筒状の側壁の
流体導入ダクト内側壁への接続点と、前記流体排
出ダクトの円筒の外周壁とは離して位置させたサ
イクロン分離器とした。 なお、前記流体排出ダクトは2種類の半径の円
筒が流体導入ダクト側の一点で接した異径円筒を
組合せた形状の流体排出ダクトとすれば、一層効
果的である。 つぎに図面に示した実施例によつて、本考案を
詳細に説明する。 第5図及び第6図は本考案の1実施例を示した
ものである。このサイクロンにおいては、流体導
入ダクト1が直円筒部2に接線接続され、直円筒
2の内径より小さい径の部分円筒状の側壁5を流
体導入ダクト1の内側壁に隣接させて接続し、流
体導入ダクト1と同じ高さで直円筒2の内部へ突
出形成させ、一方、流体排出ダクト3は直円筒2
の直径の約2分の1の直径を有する円筒形状で、
直円筒2の軸心より反流体導入ダクト側の任意方
向(−50゜<θ<50゜)に偏心させている。そし
て、流体排出ダクト3は、第6図において破線部
で示すように直円筒2の内部に円筒形として垂下
している。また、第5図に示すように、前記部分
円筒状の側壁5の流体導入ダクト1の内側壁への
接続点Aと流体排出ダクト3の円筒の外周面は水
平面内において離して位置されている。偏心方向
は導入ダクト1の流体速度により最適な方向が決
定できる。又、部分円筒側壁5の径も導入ダクト
1の流体速度により起点Aから最適の径にて決定
される。7は直円筒2と流体排出ダクト3の前記
直円筒2内の垂下部との間に形成されるサイクロ
ン内の空間部、8は分離された粉体の排出部であ
る。なお、第5図に実線で示した部分円筒状の側
壁5は、第5図に2点鎖線で示したような形状に
することもできる。又、第7図および第8図は本
考案の他の実施例を示すもので、このサイクロン
は第5図のサイクロンとは流体排出ダクト部だけ
が違つているだけである。これにおいては、流体
排出ダクト6は平面図で2種類の半径の円筒6
a,6bが流体導入ダクト1側の1か所で接した
異径円筒連結型ダクトの形状であつて、直円筒2
の軸心より反流体導入ダクト1側の任意方向(−
50゜<θ<50゜)に偏心させている。直円筒2の上
に出ている円筒6aの外径は小さく、直円筒2の
内にある円筒6bの外径は大きく、両方の円筒6
a,6bは互いになめらかな形状で一体化されて
いて、流体排出ダクト6はブーツ状に形成されて
いる。偏心方向及び部分円筒側壁5の径は前述、
第5図のサイクロンと同様に決定する。なお、こ
の偏心量は、直円筒2の直径の例えば5〜10%程
度とした。 本考案は以上のように構成されており、直円筒
2と流体排出ダクト3,6の直円筒2内の垂下部
との間に形成されるサイクロン内の空間部7は次
第に狭小となる。このため、粉粒体を含む流体は
下方へ流れやすくなり、空気からなる流体より重
い粉粒体は旋回による遠心力によつて直円筒2の
周壁へ押されつつ、同時に下方へ強制的に降下を
促進され、部分円筒側壁5の部分に流れ込む粉粒
体量が減少する。その結果、排出流体に同伴する
粉粒体は減少し、サイクロンの捕集効率が向上す
る。また、部分円筒側壁5の流体導入ダクト1内
側壁への接続点Aと流体排出ダクト3の直円筒2
内の垂下部円筒の外周壁とは離して位置されるの
で、部分円筒状の側壁5の部分を旋回してきた粉
粒体が再び導入ダクト流に乗つて旋回するので、
軽い粒子や微粒子でもその流体排出ダクト3内へ
の移送、排出が防止され、捕集効率が向上する。
さらに、前記したように流体が下方へ押されるの
で、流体の旋回数が減少し、旋回下降後、旋回上
昇する時に生ずる流体摩擦が少なくなり、圧力損
失は低下する。又、旋回が下向きになることと、
部分円筒側壁5によつて旋回流と導入ダクト流と
の合流圧損が一層緩和され、これによる圧力損失
も低下する。一方、流体排出ダクト6のように径
を大きくすることによつて、この部分を通過する
流体の旋回力が弱められ、これによつても圧力損
失が低下する。
The present invention relates to a vertical cyclone with low pressure loss and high collection efficiency in a cyclone separator. Conventional vertical cyclones use centrifugal force to separate and collect particulate matter in fluids, and are often used in preheating devices for cement raw materials, as shown in Figures 1 and 2.
The structure is as shown in FIGS. 3, 3, and 4. In what is shown in FIG. 1, a fluid introduction duct 1 is tangentially connected to a cyclone right cylinder 2, and a fluid discharge duct 3 is concentric with the right cylinder 2. Second
In the figure, a fluid introduction duct 1 is connected to a right cylinder 2 from the circumferential direction, and a fluid discharge duct 3 is concentric with the right cylinder 2. In the case shown in FIG. 3, the fluid introduction duct 3 is tangentially connected to the right cylinder 2, and the fluid discharge duct 3 is eccentric to the side opposite to the fluid introduction duct 1 with respect to the right cylinder 2. The one shown in FIG. 4 is the same as that shown in FIG. 1, but the part connecting the inner wall of the fluid introduction duct 1 and the peripheral wall of the right cylinder 2 is made to protrude toward the cyclone axis side by a curved guide 4. These figures 2 and 3
The cyclones shown in Figs. 2 and 4 are all aimed at reducing pressure loss, but the cyclones shown in Figs. 2 and 3 reduce pressure loss so little that no great effect could be expected. Further, although the cyclone shown in FIG. 4 can considerably reduce pressure loss, it has the drawback of decreasing collection efficiency. The reason for these is that in the cyclones shown in Figures 2 and 3, there is a large pressure drop due to the confluence of the fluid introduced from the introduction duct 1 and the swirling fluid in the cyclone, and the cyclone in Figure 4 is The curved guide 4 greatly reduces the pressure loss caused by the cyclone, but small powder particles that cannot be completely moved to the peripheral wall of the cyclone at the curved guide 4 are carried along with the discharge fluid and are discharged into the discharge duct 3. , and as a result, the collection efficiency is reduced. The present invention was made to improve the above-mentioned conventional drawbacks, and has a low pressure loss.
The purpose is to provide a cyclone with even higher collection efficiency. For this purpose, in the present invention, in a cyclone separator that separates and collects powder particles in a fluid and discharges the fluid, a partially cylindrical side wall with a diameter smaller than the inner diameter of the right cylinder is attached to the inner wall of the fluid introduction duct. The fluid discharge duct is connected adjacently and protrudes into the inside of the right cylinder at the same height, while the fluid discharge duct is cylindrically shaped and hangs down inside the right cylinder, and the cylinder is connected to the axis of the right cylinder. a cyclone separator provided eccentrically on the side opposite to the fluid introduction duct, and located away from the connection point of the partially cylindrical side wall to the inner wall of the fluid introduction duct and the cylindrical outer peripheral wall of the fluid discharge duct; And so. It is to be noted that it is more effective if the fluid discharge duct has a shape that combines cylinders with different diameters in which cylinders with two different radii touch at one point on the fluid introduction duct side. Next, the present invention will be explained in detail with reference to embodiments shown in the drawings. FIGS. 5 and 6 show one embodiment of the present invention. In this cyclone, a fluid introduction duct 1 is tangentially connected to a right cylindrical portion 2, a partially cylindrical side wall 5 having a smaller diameter than the inner diameter of the right cylinder 2 is connected adjacent to the inner wall of the fluid introduction duct 1, and the fluid The fluid discharge duct 3 is formed to protrude into the right cylinder 2 at the same height as the introduction duct 1.
It has a cylindrical shape with a diameter of about half of the diameter of
It is eccentric from the axis of the right cylinder 2 in an arbitrary direction (-50°<θ<50°) on the side opposite to the fluid introduction duct. The fluid discharge duct 3 hangs down inside the right cylinder 2 in a cylindrical shape, as shown by the broken line in FIG. Further, as shown in FIG. 5, the connection point A of the partially cylindrical side wall 5 to the inner wall of the fluid introduction duct 1 and the cylindrical outer peripheral surface of the fluid discharge duct 3 are located apart in a horizontal plane. . The optimum eccentric direction can be determined depending on the fluid velocity of the introduction duct 1. Further, the diameter of the partial cylindrical side wall 5 is also determined at an optimum diameter from the starting point A depending on the fluid velocity of the introduction duct 1. 7 is a space inside the cyclone formed between the right cylinder 2 and the hanging part of the fluid discharge duct 3 in the right cylinder 2, and 8 is a discharge part for the separated powder. Note that the partially cylindrical side wall 5 shown by the solid line in FIG. 5 can also be shaped as shown by the two-dot chain line in FIG. 7 and 8 show another embodiment of the present invention, this cyclone differing from the cyclone of FIG. 5 only in the fluid discharge duct section. In this, the fluid discharge duct 6 is a cylinder 6 with two different radii in plan view.
a and 6b are in the shape of a cylindrical connection type duct with different diameters in contact at one place on the fluid introduction duct 1 side, and the right cylindrical 2
Any direction on the anti-fluid introduction duct 1 side (-
It is eccentrically set to 50° < θ < 50°). The outer diameter of the cylinder 6a protruding above the right cylinder 2 is small, and the outer diameter of the cylinder 6b inside the right cylinder 2 is large.
a and 6b are integrally formed with each other in a smooth shape, and the fluid discharge duct 6 is formed into a boot shape. The eccentric direction and the diameter of the partial cylindrical side wall 5 are as described above.
Determination is made in the same manner as for the cyclone in Figure 5. In addition, this amount of eccentricity was set to about 5 to 10% of the diameter of the right cylinder 2, for example. The present invention is constructed as described above, and the space 7 in the cyclone formed between the right cylinder 2 and the hanging parts of the fluid discharge ducts 3 and 6 in the right cylinder 2 becomes gradually narrower. For this reason, the fluid containing powder and granules easily flows downward, and the powder and granules, which are heavier than the fluid made of air, are pushed toward the peripheral wall of the right cylinder 2 by the centrifugal force caused by swirling, and at the same time are forced to descend downward. The amount of powder flowing into the part of the partial cylindrical side wall 5 is reduced. As a result, the amount of powder accompanying the discharged fluid is reduced, and the collection efficiency of the cyclone is improved. In addition, the connection point A of the partial cylindrical side wall 5 to the inner wall of the fluid introduction duct 1 and the right cylinder 2 of the fluid discharge duct 3
Since it is located apart from the outer circumferential wall of the inner hanging part cylinder, the powder and granules that have swirled around the partially cylindrical side wall 5 will ride the introduction duct flow again and swirl.
Even light particles and fine particles are prevented from being transferred into and discharged into the fluid discharge duct 3, improving collection efficiency.
Furthermore, since the fluid is pushed downward as described above, the number of turns of the fluid is reduced, and the fluid friction that occurs when the fluid turns up after turning down is reduced, and the pressure loss is reduced. Also, the turning will be downward,
The partially cylindrical side wall 5 further alleviates the pressure loss caused by the convergence of the swirling flow and the introducing duct flow, and the resulting pressure loss is also reduced. On the other hand, by increasing the diameter of the fluid discharge duct 6, the swirling force of the fluid passing through this portion is weakened, and this also reduces pressure loss.

【表】 第1表は第1図、第3図、第4図に示した従来
型サイクロンと第5図に示した本考案型サイクロ
ンの性能の比較を行つたものである。従来は捕集
効率と圧力損失は相反する特性をもつとされてい
たが、本考案のサイクロンによれば、第1表から
もわかるように、捕集効率の向上と圧力損失の低
減の両方を同時にはかることができる。 このように、本考案は実用新案登録請求の範囲
に記載したような構成にしたので、従来のものよ
り優れており、捕集効率の向上と圧力損失の低減
の両方を同時にはかることができ、多大の効果を
あげることができる。
[Table] Table 1 compares the performance of the conventional cyclone shown in Figs. 1, 3, and 4 and the cyclone of the present invention shown in Fig. 5. Conventionally, collection efficiency and pressure loss were considered to have contradictory characteristics, but according to the cyclone of this invention, as can be seen from Table 1, it is possible to improve both collection efficiency and reduce pressure loss. Can be measured at the same time. As described above, since the present invention has the structure described in the claims for utility model registration, it is superior to conventional ones, and can simultaneously improve collection efficiency and reduce pressure loss. It can have a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ本考案に類した従来
のサイクロンを例示する平面図、第5,6図は本
考案の1実施例を示すもので、第5図は平面図、
第6図は左側面図、第7,8図は本考案の他の実
施例を示すもので、第7図は平面図、第8図は左
側面図である。 1……流体導入ダクト、2……直円筒、3,6
……流体排出ダクト、4……湾曲ガイド、5……
部分円筒側壁、6a,6b……円筒、7……狭小
部、8……粉体排出部。
Figures 1 to 4 are plan views illustrating conventional cyclones similar to the present invention, Figures 5 and 6 show one embodiment of the present invention, and Figure 5 is a plan view;
FIG. 6 is a left side view, and FIGS. 7 and 8 show other embodiments of the present invention. FIG. 7 is a plan view, and FIG. 8 is a left side view. 1...Fluid introduction duct, 2...Right cylinder, 3, 6
...Fluid discharge duct, 4...Curved guide, 5...
Partial cylinder side wall, 6a, 6b... cylinder, 7... narrow part, 8... powder discharge part.

Claims (1)

【実用新案登録請求の範囲】 (1) 流体中の粉粒体を分離捕集し、流体を排出す
るサイクロン分離器において、直円筒内径より
小さい径の部分円筒状の側壁を流体導入ダクト
の内側壁に隣接させて接続するとともに、同じ
高さで直円筒内部へ突出させて形成し、一方、
流体排出ダクトは直円筒の内部に円筒形として
垂下しており、かつ、その円筒を直円筒の軸心
より反流体導入ダクト側に偏心させて設けると
ともに、前記部分円筒状の側壁の流体導入ダク
ト内側壁への接続点と、前記流体排出ダクトの
円筒の外周壁とは離して位置させたことを特徴
とするサイクロン分離器。 (2) 前記流体排出ダクトは2種類の半径の円筒が
流体導入ダクト側の一点で接した異径円筒を組
合せた形状の流体排出ダクトとしたことを特徴
とする実用新案登録請求の範囲第1項記載のサ
イクロン分離器。
[Claims for Utility Model Registration] (1) In a cyclone separator that separates and collects particulate matter in a fluid and discharges the fluid, a partially cylindrical side wall with a diameter smaller than the inner diameter of a right cylinder is installed inside a fluid introduction duct. It is connected adjacent to the wall and protrudes into the inside of the right cylinder at the same height, while
The fluid discharge duct is cylindrical and hangs inside the right cylinder, and the cylinder is provided eccentrically to the side opposite to the fluid introduction duct from the axis of the right cylinder. A cyclone separator, characterized in that a connection point to an inner wall and an outer circumferential wall of the cylinder of the fluid discharge duct are located apart from each other. (2) Utility model registration claim 1, characterized in that the fluid discharge duct is a combination of cylinders with different diameters in which cylinders with two different radii touch at one point on the fluid introduction duct side. Cyclone separator as described in section.
JP8434784U 1984-06-08 1984-06-08 cyclone separator Granted JPS61862U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8434784U JPS61862U (en) 1984-06-08 1984-06-08 cyclone separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8434784U JPS61862U (en) 1984-06-08 1984-06-08 cyclone separator

Publications (2)

Publication Number Publication Date
JPS61862U JPS61862U (en) 1986-01-07
JPS6327798Y2 true JPS6327798Y2 (en) 1988-07-27

Family

ID=30633785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8434784U Granted JPS61862U (en) 1984-06-08 1984-06-08 cyclone separator

Country Status (1)

Country Link
JP (1) JPS61862U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338923Y2 (en) * 1985-07-02 1988-10-13
JPH024579U (en) * 1988-06-24 1990-01-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823658B2 (en) * 1975-04-16 1983-05-17 ソニー株式会社 Trucking Seigiyosouchi

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823658U (en) * 1981-08-04 1983-02-15 船橋化成株式会社 Portable cyclone device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823658B2 (en) * 1975-04-16 1983-05-17 ソニー株式会社 Trucking Seigiyosouchi

Also Published As

Publication number Publication date
JPS61862U (en) 1986-01-07

Similar Documents

Publication Publication Date Title
JPH0122024B2 (en)
US4344538A (en) Cyclone separator with influent guide blade
CA2308410A1 (en) Cyclone separator
CA2342354A1 (en) Cyclone
US20020112998A1 (en) Hydro cyclone with elongate inlet
JPH0135700B2 (en)
JPS6327798Y2 (en)
JPS6256792B2 (en)
EP1028812B1 (en) Cyclone separator
JPH02115056A (en) Eddy current pipe separator
JPS59222244A (en) Cyclone
WO2022047728A1 (en) Cyclonic separation apparatus and cleaning device
JPH0236624Y2 (en)
JPH06154659A (en) Low pressure loss cyclone
JPS5851949Y2 (en) Cyclone separator with inlet guide vanes
JPS6256791B2 (en)
JPH0245506B2 (en) ENSHINSHUJINKI
CN217527868U (en) Diffusion type cyclone separator
JPH0227899Y2 (en)
JPS6230568A (en) Cyclone separator
JPS6157065B2 (en)
CN110605190A (en) Spiral-flow type gas-liquid separation device
JPS604607Y2 (en) Gas-liquid separator
SU874207A1 (en) Cyclone separator
JPS62294456A (en) Cyclone separator