JPS63277873A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS63277873A
JPS63277873A JP10880787A JP10880787A JPS63277873A JP S63277873 A JPS63277873 A JP S63277873A JP 10880787 A JP10880787 A JP 10880787A JP 10880787 A JP10880787 A JP 10880787A JP S63277873 A JPS63277873 A JP S63277873A
Authority
JP
Japan
Prior art keywords
adhesive
active carbon
cooled
embedded
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10880787A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10880787A priority Critical patent/JPS63277873A/en
Publication of JPS63277873A publication Critical patent/JPS63277873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To cool active carbon grins enough by mixing a filler for improving heat conductivity in an adhesive applied to a cooled part in which the active carbon grains are embedded. CONSTITUTION:The surface of a cooled part 1 which is cooled to an extreme low temperature by means of coolant is coated with an adhesive 2 mixed with a filler for improving heat conductivity. Active carbon grains 3 are pushed thereon to be embedded therein. As time passes, the adhesive 2 is hardened and the active carbon grains 3 are fixed thereon. Consequently, the active carbon grains 3 which are embedded in the adhesive 2 whose heat conductivity has been improved are efficiently cooled and discharged after they adsorb gas molecules to be exhausted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は超高真空装置などに使用されるクライオポンプ
に係り、特に極低温に冷却された吸着材により気体を吸
着排気するようにしたクライオポンプに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cryopump used in ultra-high vacuum equipment, etc., and in particular to a cryopump that adsorbs and exhausts gas using an adsorbent cooled to an extremely low temperature. Regarding the cryopump.

(従来の技術) 第2図は従来のクライオポンプを示した概略図であり、
液体ヘリウムなどの冷媒液で極低温に冷却される冷却部
1に銅あるいはアルミニウムなどの熱伝導率の高い金属
より成る基板4がボルトなどで取付けられている。この
基板4の表面には吸着材として作用する小片状の活性炭
3がハンダ等で固着されている。この活性炭3と基板4
とは気体吸着パネル5を構成する。ふく射シールド6は
極低温の冷却部1と気体吸着パネル5とを取り囲み、室
温部からのふく射熱を低減するために液体窒素などで冷
却される。気体吸着パネル5の前方に配置されたシェブ
ロン形バッフル7はふく対重がほぼ1になるように黒化
処理され、ふく射シールド6の内部に排気すべき気体を
導くように作用する0以上の構成より成るクライオ吸着
ポンプは。
(Prior art) Figure 2 is a schematic diagram showing a conventional cryopump.
A substrate 4 made of a metal with high thermal conductivity such as copper or aluminum is attached with bolts or the like to a cooling unit 1 that is cooled to an extremely low temperature with a refrigerant such as liquid helium. On the surface of this substrate 4, small pieces of activated carbon 3, which act as an adsorbent, are fixed with solder or the like. This activated carbon 3 and substrate 4
constitutes the gas adsorption panel 5. The radiation shield 6 surrounds the extremely low temperature cooling part 1 and the gas adsorption panel 5, and is cooled with liquid nitrogen or the like to reduce radiation heat from the room temperature part. The chevron-shaped baffle 7 placed in front of the gas adsorption panel 5 is blackened so that the air to air weight is approximately 1, and has a structure of 0 or more that acts to guide the gas to be exhausted into the radiation shield 6. The cryo adsorption pump consists of:

真空容器8内に収納され、この真空容器8には補助真空
ポンプ9が接続されている。この補助真空ポンプとして
は、ターボ分子ポンプや油回転ポンプなとの機械式ポン
プが使用されている。
It is housed in a vacuum container 8, and an auxiliary vacuum pump 9 is connected to this vacuum container 8. As this auxiliary vacuum pump, a mechanical pump such as a turbo molecular pump or an oil rotary pump is used.

予め補助真空ポンプ9により真空断熱のために真空容器
8内を真空状態とした後、冷却部1に液体ヘリウム等の
冷媒液を供給して冷却部1と気体吸着パネル5とを極低
温に冷却し、被排気ガス分子を吸着材即ち活性炭3が吸
着し排気する。
After the vacuum container 8 is brought into a vacuum state in advance for vacuum insulation using the auxiliary vacuum pump 9, a refrigerant liquid such as liquid helium is supplied to the cooling unit 1 to cool the cooling unit 1 and the gas adsorption panel 5 to an extremely low temperature. Then, the adsorbent, that is, the activated carbon 3 adsorbs and exhausts the gas molecules to be exhausted.

(発明が解決しようとする問題点) 上述のようなりライオポンプにおいては、冷却部が平面
である場合は基板も平面となるが曲面の場合だと基板も
これに合せ曲面としなければならない、接触面積が小さ
いと基板が充分に冷却されず活性炭の冷却も不十分とな
り排気能力が低下するからである。そのため基板の加工
が難しくコストアップの原因となる。
(Problems to be Solved by the Invention) As mentioned above, in the Lyopump, if the cooling part is flat, the substrate is also flat, but if it is curved, the substrate must also be curved to match this, resulting in a large contact area. This is because if is small, the substrate will not be cooled sufficiently and the activated carbon will not be cooled enough, resulting in a decrease in exhaust capacity. Therefore, processing of the substrate is difficult and causes an increase in cost.

そこで本発明の目的は、基板の形状によらず活性炭粒の
十分な冷却の得られるクライオポンプを提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cryopump that can sufficiently cool activated carbon particles regardless of the shape of the substrate.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この目的を達成するために本発明においては、基板を用
いずに直接、冷却部に塗る接着剤に熱伝導率を高める充
てん材を混入する。この接着剤の上から活性炭粒を押し
て埋め込んだ構成とする。
(Means for Solving the Problems) In order to achieve this object, in the present invention, a filler that increases thermal conductivity is mixed into the adhesive that is applied directly to the cooling section without using a substrate. Activated carbon particles are pressed and embedded on top of this adhesive.

(作 用) 冷却部に塗られる接着剤には充てん材が混入しであるた
め熱伝導率が高く、活性炭粒は接着剤を介し効率よく冷
却され被排気ガス分子を吸着し排気する。
(Function) The adhesive applied to the cooling section has a high thermal conductivity because it contains a filler, and the activated carbon particles are efficiently cooled through the adhesive, adsorbing and exhausting gas molecules to be exhausted.

(実施例) 以下に本発明によるクライオポンプの一実施例について
第1図をもとに説明する。第1図において1は液体ヘリ
ウムなどの冷媒液で極低温に冷却される冷却部である。
(Example) An example of a cryopump according to the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 1 denotes a cooling section that is cooled to an extremely low temperature using a refrigerant liquid such as liquid helium.

この表面に熱伝導率を高めるために充てん材として例え
ば銅粉などを混入した例えば常温硬化形エポキシ樹脂な
どの接着剤2を塗る。この上から活性炭粒3を押しなが
ら埋め込む0時間の経過とともに接着剤2は硬化し活性
炭粒3は固着される。
An adhesive 2 such as a room-temperature curing epoxy resin mixed with, for example, copper powder as a filler is applied to this surface in order to increase thermal conductivity. The activated carbon particles 3 are pressed and embedded from above, and as time passes, the adhesive 2 hardens and the activated carbon particles 3 are fixed.

次に本実施例の作用について説明する。接着剤2として
の常温硬化形エポキシ樹脂に熱伝導率を高める目的で混
入された銅粉の効果により熱伝導率は混入しない時に比
べ約7倍高くなる(エポキシ樹脂40%、銅粉60%)
、このため接着剤2に埋め込まれた活性炭粒3は効率よ
く冷却され被排気ガス分子を吸着し排気する。
Next, the operation of this embodiment will be explained. Due to the effect of copper powder mixed into the cold-curing epoxy resin as adhesive 2 for the purpose of increasing thermal conductivity, the thermal conductivity is approximately 7 times higher than when it is not mixed (40% epoxy resin, 60% copper powder).
Therefore, the activated carbon particles 3 embedded in the adhesive 2 are efficiently cooled, adsorb and exhaust gas molecules to be exhausted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば接着剤に銅粉などの
充てん材を混入するので熱伝導率が高まり、活性炭を効
率良く冷却することができ、冷却不十分による排気能力
の低下ということがなく、しかも基板を用いないので安
価となる。
As explained above, according to the present invention, since a filler such as copper powder is mixed into the adhesive, the thermal conductivity is increased, and the activated carbon can be efficiently cooled, thereby preventing a decrease in exhaust capacity due to insufficient cooling. Furthermore, since no substrate is used, the cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のクライオポンプの要部断面
図、第2図は従来のクライオポンプの構造図である。 1・・・冷却部     2・・・充てん材人接着剤3
・・・活性炭粒    4・・・基板5・・・気体吸着
パネル 6・・・ふく射シールド7・・・シェブロン形
バッフル 8・・・真空容器    9・・・補助真空ポンプ代理
人 弁理士  則 近 憲 佑 同     第子丸   健 第1図 第2図
FIG. 1 is a sectional view of essential parts of a cryopump according to an embodiment of the present invention, and FIG. 2 is a structural diagram of a conventional cryopump. 1...Cooling section 2...Filling material adhesive 3
... Activated carbon grains 4 ... Substrate 5 ... Gas adsorption panel 6 ... Radiation shield 7 ... Chevron-shaped baffle 8 ... Vacuum container 9 ... Auxiliary vacuum pump agent Patent attorney Nori Chika Yudo Ken Daishimaru Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 冷却部に熱伝導率を高める充てん材を混入した接着剤を
塗布し、その上から活性炭粒を埋め込んだことを特徴と
するクライオポンプ。
A cryopump characterized by coating the cooling part with adhesive mixed with a filler that increases thermal conductivity, and embedding activated carbon particles on top of the adhesive.
JP10880787A 1987-05-06 1987-05-06 Cryopump Pending JPS63277873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880787A JPS63277873A (en) 1987-05-06 1987-05-06 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10880787A JPS63277873A (en) 1987-05-06 1987-05-06 Cryopump

Publications (1)

Publication Number Publication Date
JPS63277873A true JPS63277873A (en) 1988-11-15

Family

ID=14493982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880787A Pending JPS63277873A (en) 1987-05-06 1987-05-06 Cryopump

Country Status (1)

Country Link
JP (1) JPS63277873A (en)

Similar Documents

Publication Publication Date Title
EP0496711B1 (en) A device for the removal of hydrogen from a vacuum enclosure at cryogenic temperatures and especially high energy particle accelerators
US4474036A (en) Infra-red radiation detectors
CA1070130A (en) Cryopumping method and apparatus
EP0517430B1 (en) Plasma based soldering
CN109225119A (en) A kind of preparation method of zirconium kind nonevaporable getter
Murase et al. Development of new concept in-vessel cryo-sorption pump for LHD closed helical divertor
JPS63277873A (en) Cryopump
US4717551A (en) Titanium-based alloy used as a gettering material
EP0381631A2 (en) Getter materials for the vacuum insulation of liquid hydrogen storage vessels or transport lines
JPH01208583A (en) Cryopump
JPS6157473B2 (en)
CN100541672C (en) The cryostat that is used for hyperconductive cable of the stratum reticulare that comprises absorbent is equipped with
US3372531A (en) Vacuum device
CN101273445B (en) Atmosphere controlled joint device, method and electronic device
JPS61229979A (en) Exhaust surface of cryo-adsorptive pump
JPS6138179A (en) Cryo-pump
JPS62258176A (en) Cryopump
JPH10115286A (en) Selective gas exhaust method
CN106224202A (en) A kind of non-evaporable adsorption pump utilizing electrical heating to activate
JPS59229070A (en) Manufacture of adsorptive plate of an adsorption pump using ultra-low temperature liquid as coolant
JPS60249678A (en) Cryopump
Mazza et al. Nonevaporable Getters: Properties and Applications
JPH0249977A (en) Vacuum device
JP2002048868A (en) Energy dispersion type x-ray detector and its vacuum evacuating method
JPS62131982A (en) Cryopump