JPS63277578A - Production of sintered material having high density - Google Patents

Production of sintered material having high density

Info

Publication number
JPS63277578A
JPS63277578A JP62113036A JP11303687A JPS63277578A JP S63277578 A JPS63277578 A JP S63277578A JP 62113036 A JP62113036 A JP 62113036A JP 11303687 A JP11303687 A JP 11303687A JP S63277578 A JPS63277578 A JP S63277578A
Authority
JP
Japan
Prior art keywords
lubricant
raw material
powder
combustion
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62113036A
Other languages
Japanese (ja)
Other versions
JPH07106944B2 (en
Inventor
Seiji Adachi
成司 安達
Takahiro Wada
隆博 和田
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62113036A priority Critical patent/JPH07106944B2/en
Publication of JPS63277578A publication Critical patent/JPS63277578A/en
Publication of JPH07106944B2 publication Critical patent/JPH07106944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a sintered material having high density and high uniformity, in high production efficiency, using a pressurized self-combustion sintering process, by mixing raw material powder with a lubricant convertible to the same composition as the components of the raw material powder. CONSTITUTION:Raw materials (e.g. a mixture of metallic titanium powder and carbon black) necessary for the production of a sintered article by pressurized self-combustion sintering process are mixed with a lubricant (e.g. stearic acid) convertible to the same composition as one or more components of the raw material powder. The mixed powder is compression-molded to obtain a molded article having excellent uniformity by the action of the lubricant and heat-treated to convert the lubricant in the molded article into one or more raw material components. The obtained molded article is ignited under pressure to start the combustion reaction to effect the simultaneous synthesis and sintered by the heat generated by the combustion process to obtain the objective sintered article having high density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭化チタン、炭化チタン−アルミナ、炭化チ
タン−チタン等のセラミックス又はサーメットの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing ceramics or cermets such as titanium carbide, titanium carbide-alumina, and titanium carbide-titanium.

従来の技術 炭化チタン、硼化チタン等のセラミックスは一般に高融
点・高硬度を有し、過酷な条件下での使用に適している
。近年は、研摩材や工具のみならず構造材としても注目
されている。
Conventional Technology Ceramics such as titanium carbide and titanium boride generally have a high melting point and high hardness, and are suitable for use under harsh conditions. In recent years, it has attracted attention not only as an abrasive and a tool, but also as a structural material.

従来、これらのセラミックスを得るには原料粉末を成形
し1600〜2200  ℃ という高温で長時間焼成
する方法がとられてきた。この方法では多大なエネルギ
ーを消費するため、各種添加物を焼結助剤として添加し
、高密度化するのに必要な温度を下げるための努力がな
されている。最近、新しいセラミックスの焼結方法とし
て、金属と非金属元素(炭素や硼素等)の粉末を十分に
混合した後、成形し、高圧下で成形体の一部に点火して
反応を開始させ、反応は着火点がら全体に順次伝播し、
その反応が伝播する過程で炭化物や硼化物の合成と焼結
体の作製を同時に行う加圧自己燃焼焼結法(ハイ プレ
ッシャー セルフーコンバスションシンタリングメソッ
ド (旧gh Pressure SeIf−Comb
ustion Sintering Method) 
; HP CS法と略す)が提案されている。この方法
によれば、高純度のセラミックスが、省エネルギーのプ
ロセスで、かつ短時間に得ることができる。点火方法と
しては、フィラメントやあるいはレーザー光を用いて成
形体の一点を強熱するのが一般的である(P、D、ザビ
ツァノスアンドJ、R,モリスジュニア (P、口、 
Zavitsanos and J、R,Morris
Conventionally, in order to obtain these ceramics, a method has been used in which raw material powder is molded and fired at a high temperature of 1,600 to 2,200° C. for a long period of time. Since this method consumes a large amount of energy, efforts have been made to add various additives as sintering aids to lower the temperature required for densification. Recently, as a new method for sintering ceramics, powders of metal and nonmetallic elements (carbon, boron, etc.) are thoroughly mixed, then molded, and a part of the molded body is ignited under high pressure to start a reaction. The reaction propagates sequentially throughout the ignition point,
Pressure self-combustion sintering method (formerly known as gh Pressure SeIf-Comb) involves simultaneous synthesis of carbides and borides and production of sintered bodies during the propagation of the reaction.
Ustion Sintering Method)
; HPCS method) has been proposed. According to this method, high-purity ceramics can be obtained in an energy-saving process and in a short time. The ignition method is generally to ignite one point of the molded object using a filament or laser light (P, D, Zavitsanos and J, R, Morris Jr.
Zavitsanos and J, R, Morris
.

Jr、)、セラミック エンジニアリングサイエンスプ
ロシーディング(Ceram、Eng、Sci、Pro
c、 > +4 、[7−8]、624(1983))
  。この他に成形体の外周をヒーターで囲い、周囲か
ら反応を伝播させる方法や成形体に直接通電する方法が
ある。(0,ヤマダ、Y、ミャモトアンドM、コイズミ
(0,Yamada、 Y、 Miyamoto an
d M。Koizuwi ) r アメリカンセラミッ
ク ソサイエティーブリテン(Am、Ceras、so
e、Bull、 ) 、64[2]319−2H198
5))自己燃焼反応の詳細な反応メカニズムについては
まだ解明されていないことが多く、国内外の各種研究機
関で研究が進められている。現象論的なデータの蓄積は
かなり行われており、燃焼モードに関する温度及び雰囲
気圧の効果等については研究者間の同意が得られている
。燃焼モードには定常モードと非定常モードとがあり、
前者の場合にのみ均一な焼結体が得られる。均一な焼結
体を作製するにはいかに定常モードで燃焼させるかが問
題となる。温度が高く、雰囲気圧が高いほど定常モード
で燃焼することが知られているが、燃焼モードは他の要
因にも影響をうけやす(温度、雰囲気圧だけで制御でき
るものではない。特に原料粉体の状態には非常に敏感で
ある。
Jr.), Ceramic Engineering Science Proceedings (Ceram, Eng, Sci, Pro
c, > +4, [7-8], 624 (1983))
. Other methods include a method in which the outer periphery of the molded body is surrounded by a heater and the reaction is propagated from the surroundings, and a method in which electricity is applied directly to the molded body. (0, Yamada, Y, Miyamoto and M, Koizumi (0, Yamada, Y, Miyamoto an
dM. Koizuwi) r American Ceramic Society Bulletin (Am, Ceras, so
e, Bull, ), 64[2]319-2H198
5)) The detailed reaction mechanism of the self-combustion reaction is still largely unknown, and research is underway at various research institutes in Japan and abroad. A considerable amount of phenomenological data has been accumulated, and researchers have agreed on the effects of temperature and atmospheric pressure on combustion modes. There are two combustion modes: steady mode and unsteady mode.
Only in the former case can a uniform sintered body be obtained. In order to produce a uniform sintered body, the problem is how to burn it in a steady mode. It is known that the higher the temperature and atmospheric pressure, the more combustion will occur in a steady mode, but the combustion mode is also susceptible to other factors (it cannot be controlled solely by temperature and atmospheric pressure. Very sensitive to body condition.

加圧自己燃焼反応によって緻密な焼結体を作製しようと
する場合、成形密度は重要なファクターである。R,W
、ライス等は、生成物の気孔率と自己燃焼反応前の原料
粉末の成形密度を調べ、成形密度が低すぎても高すぎて
も緻密な焼結体は得られず、それぞれの系に応じた最適
な成形密度が存在することを指摘している。(R,W、
ライス、G、Y、  リチャードソン、J、M、クネツ
、T、シュローター アンド W、J、マクドヌフ(R
,W、Rice、G、Y、Richardson、J、
M、Kunetz。
When attempting to produce a dense sintered body by pressurized self-combustion reaction, compaction density is an important factor. R,W
, Rice et al. investigated the porosity of the product and the compacting density of the raw material powder before the self-combustion reaction, and found that if the compacting density was too low or too high, a dense sintered body could not be obtained, and that depending on each system. It is pointed out that there is an optimal molding density. (R,W,
Rice, G. Y., Richardson, J. M., Kunez, T., Schroter & W. J., McDonough (R.
, W., Rice, G., Y., Richardson, J.
M.Kunetz.

T、5chroeter  and Wl、Mc口on
ough) 、プロシーディンゲス オン io  t
h  アニュアル コンファレンス オン コンポジッ
ト アンド アドバンスドセラミックマテリアルズ(P
roceedings of theloth Ann
ual Conference on Conposi
tes and Advanced Ceramic 
Materials) 、I)、737−750、アメ
リカンセラミック ソサイエティー(The Amer
icanCeraIIic 5ociety)  (1
986) )従って、高密度の焼結体を得るには成形密
度を制御する必要もある。
T, 5chroeter and Wl, Mc mouth on
(ough), proceedings on io t
h Annual Conference on Composite and Advanced Ceramic Materials (P
roceedings of theloth Ann
ual Conference on Composi
tes and Advanced Ceramic
Materials), I), 737-750, American Ceramic Society (The Amer
icanCeraIIIic 5ociety) (1
(986)) Therefore, in order to obtain a high-density sintered body, it is also necessary to control the compacting density.

発明が解決しようとする問題点 原料粉末を加圧成型すると成形体中に圧力分布が生じ均
一な成形体が得られない。このため当然のことながら、
この成形体中の密度の不均一性は得られる焼結体の不均
一性の原因となる。又、微視的な成形密度の不均一性は
非定常モード燃焼の原因となる得る。一般に粉末冶金に
おいては、均一な成形体を得るために加圧成形の際に潤
滑剤を用いることが行われている。しかし、加圧自己燃
焼反応においては、これらの潤滑剤は非定常モード燃焼
の原因となり、しかもこの潤滑剤は燃焼後も生成物中に
不純物としてとりこまれてしまう。
Problems to be Solved by the Invention When raw material powder is pressure-molded, pressure distribution occurs in the compact, making it impossible to obtain a uniform compact. For this reason, naturally,
This non-uniform density in the molded body causes non-uniformity in the obtained sintered body. Also, microscopic non-uniformity in compact density can cause unsteady mode combustion. Generally, in powder metallurgy, a lubricant is used during pressure molding in order to obtain a uniform molded body. However, in the pressurized self-combustion reaction, these lubricants cause unsteady mode combustion, and moreover, the lubricants are incorporated into the products as impurities even after combustion.

本発明は、これらの問題点を解決するものである。The present invention solves these problems.

問題点を解決するための手段 化合物生成に伴う発熱を利用して焼結体を製造する方法
において、加熱処理によって原料粉末の成分のうちの一
つ以上と同一の組成に転換し得る潤滑剤を前記原料粉末
中に混入し、その混合粉末を加圧成形し、加熱処理によ
って成形体中の前記潤滑剤を原料成分の一つ以上に転換
した後、加圧下でその成形体に点火して燃焼反応を開始
させ、その燃焼過程の結果発生する熱によって合成同時
焼結を行う。
Means for Solving the Problems In a method of producing a sintered body using heat generated by compound formation, a lubricant that can be converted into the same composition as one or more of the components of the raw material powder by heat treatment is used. The lubricant is mixed into the raw material powder, the mixed powder is pressure-molded, the lubricant in the molded body is converted into one or more of the raw material components by heat treatment, and then the molded body is ignited under pressure to burn. The reaction is initiated and the heat generated as a result of the combustion process performs synthesis and simultaneous sintering.

作用 原料粉末に潤滑剤を混合するので、加圧成形プロセスを
スムーズに行うことができ、当然得られる成形体の各部
の均一性も非常に高(なる。しかも、この成形体中の潤
滑剤は加圧自己燃焼反応を行う前の加熱処理によって原
料成分の一つ以上に転換されるので、定常モードの燃焼
を妨害することもない。従って、このような製造法によ
って得られる焼結体は、各部の密度の不均一性はほとん
どな(、シかも非常に高密度となる。また、当然のこと
ながら不純物含有量も少ない。
Since a lubricant is mixed with the working raw material powder, the pressure molding process can be carried out smoothly, and of course the uniformity of each part of the molded product obtained is very high.Moreover, the lubricant in this molded product is Since it is converted into one or more of the raw material components by heat treatment before carrying out the pressurized self-combustion reaction, it does not interfere with the steady mode combustion.Therefore, the sintered body obtained by such a manufacturing method is There is almost no non-uniformity in the density of each part, and the density is very high.In addition, the content of impurities is naturally low.

実施例 実施例1 チタンと炭素の粉末から炭化チタンの製造を試みた。Example Example 1 An attempt was made to produce titanium carbide from titanium and carbon powder.

粒径 10  u@ の金属チタン粉末とアセチレンを
原料とするカーボンブラックとを 1.0  :  0
.9 のモル比で混合し、さらにこの混合粉末を 10
0零として l  wt、$ のステアリン酸を加え乾
式で1時間混合した。 100  MPa の圧力で一
軸加圧成形を行い、直径25 +ua高さ10 amの
成形体を作製した。成形体をそのままの加圧状態で、真
空中600℃で5時間加熱した。室温にもどした後、ア
ルゴン雰囲気(1気圧)とし、試料下部にもうけたタン
グステンヒーターに通電することによって成形体に点火
し燃焼反応を開始させた。得られた焼結体は、粉末X線
回折の結果によると炭化チタンの単−相からなり、アル
キメデス法により測定した密度は理論密度の97.1z
であった。焼結体各部の破断面を走査型電子顕微鏡を用
いて観察したところ、どこも同様な微構造が観察され、
焼結体全体が極めて均一性の高いことが確認できた。
Titanium metal powder with a particle size of 10 u@ and carbon black made from acetylene were mixed in a ratio of 1.0:0.
.. This mixed powder is mixed at a molar ratio of 9 and 10
1 wt, $ stearic acid was added to the mixture to make it zero, and the mixture was dry mixed for 1 hour. Uniaxial pressure molding was performed at a pressure of 100 MPa to produce a molded body with a diameter of 25 + ua and a height of 10 am. The molded body was heated in a vacuum at 600° C. for 5 hours while it was still under pressure. After the temperature was returned to room temperature, an argon atmosphere (1 atm) was created, and a tungsten heater provided at the bottom of the sample was energized to ignite the compact and start a combustion reaction. According to the results of powder X-ray diffraction, the obtained sintered body consists of a single phase of titanium carbide, and the density measured by the Archimedes method is 97.1z of the theoretical density.
Met. When the fractured surfaces of each part of the sintered body were observed using a scanning electron microscope, similar microstructures were observed everywhere.
It was confirmed that the entire sintered body had extremely high uniformity.

実施例2 チタンと炭素の粉末から炭化チタン−チタンサーメット
の製造を試みた。
Example 2 An attempt was made to manufacture titanium carbide-titanium cermet from powders of titanium and carbon.

粒径 lOμ−の金属チタン粉末とアセチレンを原料と
するカーボンブラックとを 1.0  、 0.6 の
モル比で乾式混合した。次に、この混合粉末を100零
として1 wt、零のパラフィンを加え乾式で1 時間
混合した。100 MPa の圧力で一軸加圧成型を行
い、実施例1と同様の成形体を作製した。
Metallic titanium powder with a particle size of 10 μ- and carbon black made from acetylene were dry mixed at a molar ratio of 1.0 and 0.6. Next, this mixed powder was adjusted to 100%, and 1wt of paraffin was added to the mixture and mixed dry for 1 hour. Uniaxial pressure molding was performed at a pressure of 100 MPa to produce a molded body similar to that in Example 1.

成形体をそのままの加圧状態で、アルゴン雰囲気中 5
00℃ で 10  時間加熱し、室温にもどした後、
実施例1と同様に成形体に点火し燃焼反応を開始させた
。得られた焼結体は炭化チタン−チタンの二相からなり
、他の副成分は認められなかった。密度は理論密度の9
9.0 *と非常に高(、均一性も高かった。
In an argon atmosphere with the molded body under pressure as it is 5
After heating at 00℃ for 10 hours and returning to room temperature,
In the same manner as in Example 1, the molded body was ignited to initiate a combustion reaction. The obtained sintered body consisted of two phases of titanium carbide and titanium, and no other subcomponents were observed. The density is 9 of the theoretical density
9.0*, which is very high (and the uniformity was also high.

実施例3 アルミニウムと酸化チタンと炭素の粉末からアルミナ−
炭化チタン複合セラミックスの製造を試みた。
Example 3 Alumina made from aluminum, titanium oxide, and carbon powder
An attempt was made to manufacture titanium carbide composite ceramics.

粒径10μ−の金属アルミニウム粉末と粒径l。Metallic aluminum powder with particle size 10 μ- and particle size l.

2μmの酸化チタン(Ti02 )とアセチレンを原料
とするカーボンブラックとを4.0  :  3.0 
 :  2.7のモル比で混合した。次に、この混合粉
末を100零 として l wt、$ のステアリン酸
アルミニウムを加え乾式で1 時間混合した。80 M
Pa の圧力で一軸加圧成型を行い、実施例1の場合と
同様の成形体を作製した。その成形体を実施例1の場合
と同様のプロセスで処理し、同様の条件で点火した。得
られた焼結体はアルミナと炭化チタンの二相からなり、
他の副成分は認められなかった。密度は理論密度の97
.0 零と非常に高(、均一性も高かった。
2 μm titanium oxide (Ti02) and carbon black made from acetylene in a ratio of 4.0:3.0
: Mixed at a molar ratio of 2.7. Next, this mixed powder was adjusted to 100%, and 1 wt.$ of aluminum stearate was added and mixed in a dry manner for 1 hour. 80M
Uniaxial pressure molding was performed at a pressure of Pa to produce a molded product similar to that in Example 1. The compact was treated in the same process as in Example 1 and ignited under the same conditions. The obtained sintered body consists of two phases of alumina and titanium carbide,
No other accessory ingredients were observed. The density is the theoretical density of 97
.. 0, which is very high (and the uniformity was also high.

比較例1 チタンと炭素の粉末から炭化チタンの製造を試みた。Comparative example 1 An attempt was made to produce titanium carbide from titanium and carbon powder.

粒径 lOμ−の金属チタン粉末とアセチレンを原料と
するカーボンブラックとを1.0  :  0.9 の
モル比で混合した。100  MPa の圧力で一軸加
圧成型を行い、実施例1の場合と同様の成形体を作製し
た。その成形体を実施例1の場合と同様のプロセスで処
理し、同様の条件で点火した。得られた焼結体は、粉末
X線回折の結果によると炭化チタンの単−相からなり、
形状及び重量から求めた密度は理論密度の84.72と
低(、微構造にかなりの不均一がみられた。
Metallic titanium powder with a particle size of 1Oμ- and carbon black made from acetylene were mixed at a molar ratio of 1.0:0.9. Uniaxial pressure molding was performed at a pressure of 100 MPa to produce a molded body similar to that in Example 1. The compact was treated in the same process as in Example 1 and ignited under the same conditions. According to the results of powder X-ray diffraction, the obtained sintered body consists of a single phase of titanium carbide.
The density determined from the shape and weight was as low as the theoretical density of 84.72 (considerable non-uniformity was observed in the microstructure).

比較例2 チタンと炭素の粉末から炭化チタンの製造を試みた。Comparative example 2 An attempt was made to produce titanium carbide from titanium and carbon powder.

粒径10μ−の金属チタン粉末と粒径42 nmの炭素
粉末とを1.0  :  0.9 のモル比で混合し、
さらにこの混合粉末を100 $ として1 wt、$
 のステアリン酸を加え乾式で1時間混合した。100
MPa  の圧力で一軸加圧成型を行い、実施例1の場
合と同様の成形体を作製した。その成形体を実施例1の
場合と同様のプロセスで処理し、同様の条件で点火した
。得られた焼結体は、粉末X線回折の結果によると炭化
チタンの単−相からなり、形状及び重量から求めた密度
は理論密度の73.0 零であった。
Metallic titanium powder with a particle size of 10 μ- and carbon powder with a particle size of 42 nm are mixed at a molar ratio of 1.0:0.9,
Further, assuming that this mixed powder is 100 $, 1 wt, $
of stearic acid was added and dry mixed for 1 hour. 100
Uniaxial pressure molding was performed at a pressure of MPa to produce a molded body similar to that in Example 1. The compact was treated in the same process as in Example 1 and ignited under the same conditions. According to the results of powder X-ray diffraction, the obtained sintered body consisted of a single phase of titanium carbide, and the density determined from the shape and weight was the theoretical density of 73.0 zero.

発明の効果 本発明によれば、加熱処理によって原料成分の一つ以上
に転換しつる潤滑剤を用いて成形するので、得られる成
形体の均一性は非常に高くなる。
Effects of the Invention According to the present invention, since one or more of the raw material components are converted by heat treatment and molded using a lubricant, the uniformity of the obtained molded product is extremely high.

しかも、その成形体中の潤滑剤は加圧自己燃焼反応を行
う前の加熱処理によって原料成分の一つ以上に転換され
るので、燃焼反応は定常モードとなり、得られる焼結体
は高密度で極めて均一性が高いものとなる。従って、本
発明の製造法による高密度焼結体は、各種基板や工具用
の材料として極めて適したものである。
Moreover, since the lubricant in the compact is converted into one or more of the raw material components by heat treatment before the pressurized self-combustion reaction, the combustion reaction becomes a steady mode, and the resulting sintered compact has a high density. This results in extremely high uniformity. Therefore, the high-density sintered body manufactured by the manufacturing method of the present invention is extremely suitable as a material for various substrates and tools.

Claims (2)

【特許請求の範囲】[Claims] (1)化合物生成に伴う発熱を利用して焼結体を製造す
る方法において、加熱処理によって原料粉末の成分のう
ちの一つ以上と同一の組成に転換し得る潤滑剤を前記原
料粉末中に混入し、その混合粉末を加圧成形し、加熱処
理によって成形体中の前記潤滑剤を原料成分の一つ以上
に転換した後、加圧下でその成形体に点火して燃焼反応
を開始させ、その燃焼過程の結果発生する熱によって合
成同時焼結を行う高密度焼結体の製造方法。
(1) In a method of manufacturing a sintered body using heat generated by compound formation, a lubricant that can be converted into the same composition as one or more of the components of the raw material powder by heat treatment is added to the raw material powder. the mixed powder is pressed and molded, the lubricant in the molded body is converted into one or more of the raw material components by heat treatment, and then the molded body is ignited under pressure to initiate a combustion reaction; A method for producing high-density sintered bodies that performs simultaneous synthesis and sintering using the heat generated as a result of the combustion process.
(2)潤滑剤がパラフィン、パラフィン系化合物あるい
はパラフィン系化合物の塩である特許請求の範囲第1項
記載の高密度焼結体の製造方法。
(2) The method for producing a high-density sintered body according to claim 1, wherein the lubricant is paraffin, a paraffin compound, or a salt of a paraffin compound.
JP62113036A 1987-05-08 1987-05-08 High-density sintered body manufacturing method Expired - Lifetime JPH07106944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113036A JPH07106944B2 (en) 1987-05-08 1987-05-08 High-density sintered body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113036A JPH07106944B2 (en) 1987-05-08 1987-05-08 High-density sintered body manufacturing method

Publications (2)

Publication Number Publication Date
JPS63277578A true JPS63277578A (en) 1988-11-15
JPH07106944B2 JPH07106944B2 (en) 1995-11-15

Family

ID=14601852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113036A Expired - Lifetime JPH07106944B2 (en) 1987-05-08 1987-05-08 High-density sintered body manufacturing method

Country Status (1)

Country Link
JP (1) JPH07106944B2 (en)

Also Published As

Publication number Publication date
JPH07106944B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
Merzhanov History and recent developments in SHS
JPH11515054A (en) Single-step synthesis and densification of ceramic-ceramic and ceramic-metal composites
US5139720A (en) Method of producing sintered ceramic material
US5720910A (en) Process for the production of dense boron carbide and transition metal carbides
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
Kijima et al. Sintering of ultrafine SiC powders prepared by plasma CVD
JPS6131358A (en) Silicon nitride sintered body for cutting tool and manufacture
CN109231990A (en) A kind of preparation method of tungsten carbide-diamond composite
Russias et al. Hot pressed titanium nitride obtained from SHS starting powders: Influence of a pre-sintering heat-treatment of the starting powders on the densification process
JPS63277578A (en) Production of sintered material having high density
JP2538340B2 (en) Method for manufacturing ceramics sintered body
US6300265B1 (en) Molybdenum disilicide composites
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
RU2816616C1 (en) Method of producing hot-pressed silicon carbide ceramics
KR950007175B1 (en) Al2o3-tic powder process of self-propagating high temperature synthesis
JPH0235705B2 (en)
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JP2628668B2 (en) Cubic boron nitride sintered body
JPH01215761A (en) Production of silicon nitride sintered form
JPS6385048A (en) Manufacture of composite sintered body comprising carbide and more than two kinds of oxides
JPS63277577A (en) Production of sintered material having high toughness
JPH0633178B2 (en) Method for producing non-oxide sintered body
JP3245698B2 (en) Method for producing oxycarbide-based sintered body
KR930004555B1 (en) Al2o3 composite ceramic articles and methods of making same
JPH075368B2 (en) Method for producing composite sintered body composed of titanium carbide and oxide