JPS63277577A - Production of sintered material having high toughness - Google Patents

Production of sintered material having high toughness

Info

Publication number
JPS63277577A
JPS63277577A JP62113031A JP11303187A JPS63277577A JP S63277577 A JPS63277577 A JP S63277577A JP 62113031 A JP62113031 A JP 62113031A JP 11303187 A JP11303187 A JP 11303187A JP S63277577 A JPS63277577 A JP S63277577A
Authority
JP
Japan
Prior art keywords
combustion
sintering
fibrous component
rod
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62113031A
Other languages
Japanese (ja)
Other versions
JPH07106943B2 (en
Inventor
Seiji Adachi
成司 安達
Takahiro Wada
隆博 和田
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62113031A priority Critical patent/JPH07106943B2/en
Publication of JPS63277577A publication Critical patent/JPS63277577A/en
Publication of JPH07106943B2 publication Critical patent/JPH07106943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a sintered material having high toughness, in a short time in high production efficiency, using a pressurized self-combustion sintering proc ess, by dispersing a rod like or fibrous component resistant to fusion and decom position by ignition reaction into the formed raw material. CONSTITUTION:Raw materials (e.g. a mixture of metallic titanium powder and carbon black) necessary for the production of a sintered article by pressu rized self-combustion sintering process are mixed with a rod like or fibrous component (e.g. silicon carbide whisker) resistant to fusion and decomposition in the combustion reaction. The mixture is molded to obtain a molded article containing dispersed rod-like or fibrous component. The molded article is ignited under pressure to start the combustion reaction to effect the simultaneous synthe sis and sintering by the heat generated by the combustion process to obtain the objective sintered article having high toughness. The energy of the produc tion process can be remarkably saved and the production time can be shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維で強靭性化した炭化チタン、炭化チタン
−アルミナ、炭化チタン−チタン等の複合セラミックス
又はサーメットの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing composite ceramics or cermets such as titanium carbide, titanium carbide-alumina, titanium carbide-titanium, etc., toughened with fibers.

従来の技術 炭化チタン等のセラミックスは一般に高融点・高硬度を
有し、過酷な条件下での使用に適している。これらのセ
ラミックスは一般に脆いという欠点を有しており、バル
クの材料としては用いられず、もっばら粉末あるいはコ
ーテイング膜の形で利用されてきた。しかし、これらの
セラミックスがバルクの材料として安定して使えること
になれば、材料の代替が各方面でおこりその代替は飛躍
的な省エネルギー効果を生むと考えられる。さらには、
宇宙開発に代表される新しい産業分野の発展が加速する
ことは間違えない。近年、セラミックスの脆性改善は以
前にも増して重要なテーマとしてクローズアップされて
きている。
Conventional Technology Ceramics such as titanium carbide generally have a high melting point and high hardness, making them suitable for use under harsh conditions. These ceramics generally have the disadvantage of being brittle, and therefore have not been used as bulk materials, but have mostly been used in the form of powders or coatings. However, if these ceramics can be stably used as bulk materials, material substitution will occur in various fields, and such substitution will lead to dramatic energy savings. Furthermore,
There is no doubt that the development of new industrial fields, such as space exploration, will accelerate. In recent years, improving the brittleness of ceramics has become more important than ever.

セラミックスを強靭性化するのに有効な方法に、繊維又
はウィスカーとの複合化がある。従来、繊維又はウィス
カーを分散した炭化チタン、硼化チタン等のセラミック
スを製造するには原料粉末と繊維又はウィスカーを十分
混合した後、成形し 1600〜2200  ℃ とい
う高温で長時間焼成する方法がとられてきた。しかし、
これらのセラミックスは難焼結性であり、この方法によ
る焼結体の作製では多大なエネルギーを消費する。その
ため、各種添加物を焼結助剤として添加し、高密度化す
るのに必要な温度を下げるための努力がなされている。
An effective method for toughening ceramics is to combine them with fibers or whiskers. Conventionally, in order to produce ceramics such as titanium carbide and titanium boride in which fibers or whiskers are dispersed, the method is to thoroughly mix the raw material powder and fibers or whiskers, then mold and sinter at a high temperature of 1,600 to 2,200 degrees Celsius for a long time. I've been exposed to it. but,
These ceramics are difficult to sinter, and producing a sintered body by this method consumes a large amount of energy. Therefore, efforts are being made to add various additives as sintering aids to lower the temperature required for densification.

最近、新しいセラミックスの焼結方法として、金属と非
金属元素(炭素や硼素等)の粉末を十分に混合した後、
成形し、高圧下で成形体の一部に点火して反応を開始さ
せ、反応は着火点から全体に順次伝播し、その反応が伝
播する過程で炭化物や硼化物の合成と焼結体の作製を同
時に行う加圧自己燃焼焼結法(ハイ プレッシャー セ
ルフーコンパスションシンタリングメソッド (Hig
h Pressure Self−Combustio
n Sintering Method) ;HPC8
法と略す)が提案されている。この方法によれば、高純
度のセラミックスが、省エネルギーのプロセスで、かつ
短時間に得ることができる。
Recently, as a new method for sintering ceramics, after thoroughly mixing powders of metal and nonmetallic elements (carbon, boron, etc.),
After molding, a part of the molded body is ignited under high pressure to start a reaction, and the reaction propagates sequentially throughout the body from the ignition point, and as the reaction propagates, carbides and borides are synthesized and a sintered body is produced. Simultaneous pressurized self-combustion sintering method (High pressure self-combustion sintering method)
h Pressure Self-Combustio
n Sintering Method) ;HPC8
Act) has been proposed. According to this method, high-purity ceramics can be obtained in an energy-saving process and in a short time.

発明が解決しようとする問題点 原料粉末と繊維又はウィスカーの混合物を焼結する従来
の繊維強化セラミックスの製造方法では、緻密な焼結体
を作製するために比較的多量の焼結助剤の添加が必要で
あり、そのため焼結体の粒界における結合力が低下して
、クラックは粒界を伝播しやす(なり、繊維又はウィス
カーを分散した効果が十分に得られないことが問題であ
った。
Problems to be Solved by the Invention In the conventional manufacturing method of fiber-reinforced ceramics in which a mixture of raw material powder and fibers or whiskers is sintered, a relatively large amount of sintering aid is added in order to produce a dense sintered body. As a result, the bonding strength at the grain boundaries of the sintered body decreases, making it easier for cracks to propagate through the grain boundaries (this causes the problem that the effect of dispersing fibers or whiskers cannot be sufficiently obtained) .

問題点を解決するための手段 化合物生成に伴う発熱を利用して焼結体を製造する方法
において、燃焼反応時に融解あるいは分解をいずれも起
こさない柱状又は繊維状の成分を原料成形体中に分散さ
せ、前記成形体に加圧下で点火し燃焼反応を開始させ、
その燃焼過程の結果発生する熱によって合成と同時に焼
結を行う。
Means to Solve the Problems In a method of manufacturing sintered bodies using the heat generated by compound formation, columnar or fibrous components that do not melt or decompose during combustion reactions are dispersed in the raw material molded body. and ignite the molded body under pressure to start a combustion reaction,
The heat generated as a result of the combustion process performs sintering at the same time as synthesis.

作用 化合物生成の反応過程で、原料成形体中に分散させた柱
状又は繊維状の成分は、周囲の自己発熱反応によって生
成した高温溶融状態にある化合物によって取り囲まれる
。原料成形体中に分散させた柱状又は繊維状の成分は発
熱しないので、高温溶融状態にある化合物はその柱状又
は繊維状の成分に熱を奪われ固化する。その際に、繊維
成分が結晶粒を貫通した構造が実現される。柱状又は繊
維状の成分の融点又は分解点が燃焼反応によって到達す
る最高温度より低い場合、燃焼反応中に柱状又は繊維状
の成分が完全に溶解あるいは分解してしまい柱状又は繊
維状の構造を保たないことがあるので、柱状又は繊維状
の成分の融点又は分解点は燃焼反応によって到達する最
高温度より高くなければならない。
During the reaction process for producing the active compound, the columnar or fibrous components dispersed in the raw material molded body are surrounded by the compound in a high-temperature molten state produced by the surrounding self-heating reaction. Since the columnar or fibrous components dispersed in the raw material molded body do not generate heat, the compound in a high temperature molten state is solidified by absorbing heat from the columnar or fibrous components. At this time, a structure in which the fiber component penetrates through the crystal grains is realized. If the melting point or decomposition point of the columnar or fibrous component is lower than the maximum temperature reached by the combustion reaction, the columnar or fibrous component will completely dissolve or decompose during the combustion reaction and the columnar or fibrous structure will remain intact. The melting point or decomposition point of the columnar or fibrous component must be higher than the highest temperature reached by the combustion reaction, since the combustion reaction may not occur.

さらに、加圧自己燃焼焼結法によると、通常の焼結法と
比較して極端に少ない焼結助剤であるいは焼結助剤無添
加で緻密な焼結体が得られるので、粒界の結合力が強く
なり、強靭性化のみならず高強度化をも達成でき、はな
はだ好都合である。
Furthermore, according to the pressurized self-combustion sintering method, a dense sintered body can be obtained with an extremely small amount of sintering aid or without the addition of a sintering aid compared to normal sintering methods. The bond strength becomes stronger, and not only toughness but also high strength can be achieved, which is extremely advantageous.

実施例 実施例1 炭化ケイ素ウィスカーで強化した炭化チタンの製造を試
みた。
Examples Example 1 An attempt was made to produce titanium carbide reinforced with silicon carbide whiskers.

粒径10  u■の金属チタン粉末とアセチレンを原料
とするカーボンブラックとを1.0  :  0.9 
のモル比で混合し、さらにその混合粉末を 100  
$として炭化ケイ素ウィスカーを10 wt、$ を湿
式で20  時間混合した。100 MPa  の圧力
で一軸加圧し直径25 mm 高さ lO■の成型体を
作製した。成形体をそのままの加圧状態で、アルゴン雰
囲気(1気圧)中 200  ℃ で2 時間保持した
後、試料下部にもうけたタングステンフィラメントに通
電することによって成形体に点火し燃焼反応を開始させ
た。
Metallic titanium powder with a particle size of 10 μ■ and carbon black made from acetylene were mixed in a ratio of 1.0:0.9.
The mixed powder is further mixed at a molar ratio of 100
10 wt of silicon carbide whiskers were wet-mixed for 20 hours. A molded body with a diameter of 25 mm and a height of 10 cm was produced by applying uniaxial pressure at a pressure of 100 MPa. After the molded body was maintained under pressure at 200° C. for 2 hours in an argon atmosphere (1 atm), the molded body was ignited and a combustion reaction was started by applying electricity to the tungsten filament provided at the bottom of the sample.

得られた焼結体のアルキメデス法により測定した密度は
理論密度の96.8 零であった。破断面を走査型電子
顕微鏡で観察したところ添加した炭化ケイ素ウィスカー
がマトリックスである炭化チタンの結晶粒を貫通してい
る構造を有していることが確認できた。インデンテーシ
ョン法により求めた破壊靭性値は6.9 MPaJa+
であった。
The density of the obtained sintered body measured by the Archimedes method was 96.8 zero, which is the theoretical density. When the fracture surface was observed with a scanning electron microscope, it was confirmed that the added silicon carbide whiskers had a structure in which they penetrated the crystal grains of titanium carbide that was the matrix. The fracture toughness value determined by the indentation method is 6.9 MPaJa+
Met.

実施例2 炭化ケイ素ウィスカーで強化した炭化チタン−アルミナ
複合セラミックスの製造を試みた。
Example 2 An attempt was made to produce a titanium carbide-alumina composite ceramic reinforced with silicon carbide whiskers.

粒径10μmの金属アルミニウム粉末と粒径1゜2μ閾
の酸化チタン(Ti02 )とアセチレンを原料とする
カーボンブラックとを、4.0 : 3.0 : 2.
7のモル比で配合し、エタノール中で湿式混合し、さら
にその混合粉末を 100  零  として炭化ケイ素
ウィスカーを to  wt、$ 湿式混合した。実施
例1の場合と同様にして成型体を作製し、加熱処理を行
い、成形体に点火した。
Metal aluminum powder with a particle size of 10 μm, titanium oxide (Ti02) with a particle size of 1° to 2 μm, and carbon black made from acetylene were mixed in a ratio of 4.0:3.0:2.
The mixed powder was blended at a molar ratio of 7 and wet-mixed in ethanol, and then silicon carbide whiskers were wet-mixed to make the mixed powder 100%. A molded body was produced in the same manner as in Example 1, heat treated, and ignited.

得られた焼結体のアルキメデス法により測定した密度は
理論密度の97.5 零であった。破断面を走査型電子
顕微鏡で観察したところ添加した炭化ケイ素ウィスカー
がマトリックスである炭化チタン及びアルミナの結晶粒
を貫通している構造を有していることが確認できた。イ
ンデンテーション法により求めた破壊靭性値は9.3 
MPaJmであった。
The density of the obtained sintered body measured by the Archimedes method was 97.5 zero, which is the theoretical density. When the fracture surface was observed with a scanning electron microscope, it was confirmed that the added silicon carbide whiskers had a structure in which they penetrated the matrix of titanium carbide and alumina crystal grains. Fracture toughness value determined by indentation method is 9.3
It was MPaJm.

実施例3 炭化ケイ素ウィスカーで強化した炭化チタンとチタンか
ら成るサーメットの製造を試みた。
Example 3 An attempt was made to produce a cermet made of titanium carbide and titanium reinforced with silicon carbide whiskers.

粒径 lOμ国 の金属チタン粉末とアセチレンを原料
とするカーボンブラック 1.0  F  0.90モ
ル比で混合し、さらにその混合粉末を100零  とし
て粒径lOμ−の金属チタン粉末3Q wt、L炭化ケ
イ素ウィスカーを 10  wt、* 湿式混合した。
A metallic titanium powder with a particle size of 10 μ is mixed with carbon black made from acetylene at a molar ratio of 1.0 F and 0.90, and then the mixed powder is set as 100 zero, and a metallic titanium powder with a particle size of 10 μ is 3Q wt, L carbonized. 10 wt of silicon whiskers *wet mixed.

実施例1の場合と同様にして成型体を作製し、加熱処理
を行い、成形体に点火した。
A molded body was produced in the same manner as in Example 1, heat treated, and ignited.

得られた焼結体のアルキメデス法により測定した密度は
理論密度の99零以上であった。破断面を走査型電子顕
微鏡で観察したところ添加した炭化ケイ素ウィスカーが
マトリックスである炭化チタンの結晶粒を貫通している
構造を有していることが確認できた。また、金属チタン
は炭化チタン及び炭化ケイ素ウィスカーをよく濡らして
いた。
The density of the obtained sintered body measured by the Archimedes method was 99 zero or more of the theoretical density. When the fracture surface was observed with a scanning electron microscope, it was confirmed that the added silicon carbide whiskers had a structure in which they penetrated the crystal grains of titanium carbide that was the matrix. In addition, metallic titanium well wetted titanium carbide and silicon carbide whiskers.

インデンテーション法により求めた破壊靭性値は7.8
 MPaJmであった。
Fracture toughness value determined by indentation method is 7.8
It was MPaJm.

発明の効果 本発明によれば、化合物生成に伴う発熱を利用して繊維
又はウィスカーで強化した焼結体を製造するため、製造
プロセスは非常に省エネルギーでかつ非常に短い時間で
終了し、生産効率は極めて高いものとなる。しかも、本
発明によって製造される焼結体は、柱状又は繊維状の成
分が焼結体を構成する他の成分の結晶粒を貫通している
構造を有し、さらに粒界に多量の焼結助剤が存在するこ
ともないので、粒界部分が強度的に特に弱いということ
がなく、非常に高い靭性を示す。
Effects of the Invention According to the present invention, since a sintered body reinforced with fibers or whiskers is manufactured using the heat generated by compound generation, the manufacturing process is very energy-saving and can be completed in a very short time, resulting in high production efficiency. will be extremely high. Moreover, the sintered body manufactured by the present invention has a structure in which the columnar or fibrous components penetrate through the crystal grains of other components constituting the sintered body, and furthermore, a large amount of sinter is present at the grain boundaries. Since there is no auxiliary agent present, the grain boundary portions are not particularly weak in terms of strength and exhibit extremely high toughness.

Claims (2)

【特許請求の範囲】[Claims] (1)化合物生成に伴う発熱を利用して焼結体を製造す
る方法において、燃焼反応時に融解あるいは分解をいず
れも起こさない柱状又は繊維状の成分を原料成形体中に
分散させ、前記成形体に加圧下で点火して燃焼反応を開
始させ、その燃焼過程の結果発生する熱によって合成と
同時に焼結を行う強靭性焼結体の製造方法。
(1) In a method for manufacturing a sintered body using heat generated by compound formation, a columnar or fibrous component that does not melt or decompose during a combustion reaction is dispersed in a raw material molded body, and the molded body is A method for producing tough sintered bodies in which a combustion reaction is initiated by igniting the substance under pressure, and the heat generated as a result of the combustion process is used to synthesize and sinter at the same time.
(2)柱状又は繊維状の成分が炭化ケイ素ウィスカーで
ある特許請求の範囲第1項記載の強靭性焼結体の製造方
法。
(2) The method for producing a tough sintered body according to claim 1, wherein the columnar or fibrous component is a silicon carbide whisker.
JP62113031A 1987-05-08 1987-05-08 Manufacturing method of toughness sintered body Expired - Lifetime JPH07106943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113031A JPH07106943B2 (en) 1987-05-08 1987-05-08 Manufacturing method of toughness sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113031A JPH07106943B2 (en) 1987-05-08 1987-05-08 Manufacturing method of toughness sintered body

Publications (2)

Publication Number Publication Date
JPS63277577A true JPS63277577A (en) 1988-11-15
JPH07106943B2 JPH07106943B2 (en) 1995-11-15

Family

ID=14601719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113031A Expired - Lifetime JPH07106943B2 (en) 1987-05-08 1987-05-08 Manufacturing method of toughness sintered body

Country Status (1)

Country Link
JP (1) JPH07106943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714833B2 (en) * 1988-04-13 1995-02-22 クラウセン,ニルス Ceramic molded body manufactured by powder method and manufacturing method thereof
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714833B2 (en) * 1988-04-13 1995-02-22 クラウセン,ニルス Ceramic molded body manufactured by powder method and manufacturing method thereof
JP2012503193A (en) * 2008-09-18 2012-02-02 コミッサリア ア レネルジ アトミック エ オ エネルジ オルターネイティブ Nuclear fuel cladding with high thermal conductivity and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07106943B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4891338A (en) Production of metal carbide articles
US4906295A (en) Dispersed reinforced ceramics
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
US5034355A (en) Tough silicon carbide composite material containing fibrous boride
JP2736380B2 (en) Method for producing silicon carbide material and raw material composition
JPH06172026A (en) Sintered compact of zirconia-based complex ceramic and its production
US5139720A (en) Method of producing sintered ceramic material
WO1986005480A1 (en) High density reinforced ceramic bodies and method of making same
Haggerty et al. Reaction‐Based Processing Methods for Ceramics and Composites
US5401694A (en) Production of metal carbide articles
JP6436905B2 (en) Boron carbide ceramics and manufacturing method thereof
JPS63277577A (en) Production of sintered material having high toughness
Graziani et al. Production and characteristics of B4C/TiB2 composites
US5254509A (en) Production of metal carbide articles
US5082807A (en) Production of metal carbide articles
JP2538340B2 (en) Method for manufacturing ceramics sintered body
JP2001048653A (en) Titanium boride sintered body obtained by adding silicon nitride as sintering aid and its production
JP2696138B2 (en) Composite material and method for producing the same
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
KR950007175B1 (en) Al2o3-tic powder process of self-propagating high temperature synthesis
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
KR930004555B1 (en) Al2o3 composite ceramic articles and methods of making same
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
Bengisu et al. Densification and mechanical properties of shock-treated alumina and its composites
JPH0610115B2 (en) Manufacturing method of composite ceramics