JPS6327723A - Piezoelectric matrix sensor and its preparation - Google Patents

Piezoelectric matrix sensor and its preparation

Info

Publication number
JPS6327723A
JPS6327723A JP17113186A JP17113186A JPS6327723A JP S6327723 A JPS6327723 A JP S6327723A JP 17113186 A JP17113186 A JP 17113186A JP 17113186 A JP17113186 A JP 17113186A JP S6327723 A JPS6327723 A JP S6327723A
Authority
JP
Japan
Prior art keywords
piezoelectric
film
electrode films
piezoelectric film
matrix sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17113186A
Other languages
Japanese (ja)
Inventor
Toshiya Ishikawa
敏也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP17113186A priority Critical patent/JPS6327723A/en
Publication of JPS6327723A publication Critical patent/JPS6327723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To obtain functions such as pressure sensation, contact sensation and slide sensation etc. by one sensor, by a method wherein strip like electrode films are provided to both surface of a piezoelectric film so as to cross to each other at a right angle and a position where pressure is applied is grasped by an X-Y coordinates system. CONSTITUTION:For example, when a body presses an insulating film 5, the pressing force thereof is transmitted to a piezoelectric film 1 through the insulating film to deform the piezoelectric film 1. Therefore, at the deformed part of the piezoelectric film 1, voltage having magnitude corresponding to the deformation quantity thereof is generated in a thickness direction and taken out through the electrode films 2, 3 respectively adhered to the front and back surfaces of the deformed part. Since each of the electrode films on the front surface side determines an X-coordinates position and each of the electrode films on the back surface side determines a Y-coordinates position by taking out voltage from both corresponding electrode films, two-dimensional pressure distribution can be detected.

Description

【発明の詳細な説明】 人、産業上の利用分野 本発明は、圧力分布を2次元的にとらえることが可能で
あシ、例えば産業用ロボットハンドに取多付けられる圧
電マトリックスセンサ及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Human and industrial fields of application The present invention provides a piezoelectric matrix sensor capable of two-dimensionally sensing pressure distribution, for example, a piezoelectric matrix sensor that can be attached to an industrial robot hand, and a method for manufacturing the same. It is related to.

B6発明の概要 本発明は、例えば産業用ロボットハンドに取υ付けられ
、圧力覚機能を備えたセンサにおいて、圧電体フィルム
の両面側に互に直交するように帯状の電極膜を設け、こ
の電極膜の配置を利用して圧力の加わった位置をx−y
座標系でとらえることによって、 圧力党、接触覚及びすべ9党等の各機能を1つのセンナ
で得られるようにしたものである。
B6 Summary of the Invention The present invention provides a sensor that is attached to, for example, an industrial robot hand and has a pressure sensing function. Use the membrane arrangement to locate the location where pressure is applied x-y
By using a coordinate system, each function such as pressure, touch, and all nine functions can be obtained with one senna.

また本発明のセンナの製造方法は、帯状の電極膜を設け
る場合に、例えばフォトレジスト法を利用して面状の電
極膜上にマスク材を形成し、次いでエツチングするとい
う手段を採用することによシ製造工程を容易にしたもの
である。
Furthermore, in the method of manufacturing senna of the present invention, when providing a strip-shaped electrode film, a method is adopted in which a mask material is formed on a planar electrode film using, for example, a photoresist method, and then etched. This simplifies the manufacturing process.

C1従来の技術 産業用ロボットは最近急ピッチで普及しておシ、その利
用分野については組立て、加工、製品検査、測定等多岐
に亘っている。このようなことからロボットに種々の感
覚機能、例えば接触覚機能。
C1 Conventional Technology Industrial robots have recently become popular at a rapid pace, and their applications span a wide variety of fields, including assembly, processing, product inspection, and measurement. For this reason, robots have various sensory functions, such as touch sensing functions.

圧力覚機能あるいはすベシ覚機能等を付与することが要
求されている。そこで従来では、例えばロボットハンド
に各感覚機能を果たす専用のセンナを取り付けていた。
It is required to provide a pressure sensing function or a surface sensing function. Conventionally, for example, a robot hand has been equipped with a dedicated sensor that performs each sensory function.

D1発明が解決しようとする問題点 ところで作業スペースや設置条件を考慮すると、ロボッ
トはできるだけ小型かつ軽量であることが望ましい。し
かしながら従来のようにロボットに専用のセンナを取り
付けるよりにすると、ロボットの小型化、@量化が阻害
されるという問題があった。本発明はこのような背景の
もとになされたものであシ、小型で複数の機能をもった
センナを提供し、これによシ例えばロボットの小型化、
軽量化を図ろうとするものである。
D1 Problems to be Solved by the Invention Considering the work space and installation conditions, it is desirable that the robot be as small and lightweight as possible. However, if a dedicated sensor is attached to the robot as in the past, there is a problem in that it hinders the miniaturization and quantification of the robot. The present invention has been made against this background, and provides a compact sensor with multiple functions, which can be used to reduce the size of robots, for example.
This is an attempt to reduce weight.

E0問題点を解決するための手段 本発明の圧電マトリックスセンサは、圧電体フィルムの
表面知多数の帯状の電極膜を互に離間して並行状に設け
ると共に裏面に多数の帯状の電極膜を互に離間してかつ
表面側の電極膜に対して直交するよう並行状に設けて圧
電マ) IJソックスンサ本体を構成し、前記電極膜に
夫々リード部を接続続し、前記圧電マトリックスセンサ
本体の裏面側及び表面側に夫々絶縁基板及び弾性を有す
る絶縁被膜を貼着してなる。
Means for Solving the E0 Problem The piezoelectric matrix sensor of the present invention has a plurality of strip-shaped electrode films spaced apart from each other and arranged in parallel on the surface of the piezoelectric film, and a large number of strip-shaped electrode films arranged mutually on the back surface. The piezoelectric matrix sensors are arranged in parallel and spaced apart from each other and perpendicular to the electrode film on the front side to form an IJ sock sensor main body, and lead parts are connected to the electrode films respectively, and An insulating substrate and an elastic insulating coating are attached to the side and front sides, respectively.

本発明の製造方法は、マスキング及びエツチングを利用
して帯状のiii膜を形成する方法であシ、例えば圧電
体フィルムの両面に夫々その検出領域全面を覆うように
電極膜を設け、表面側及び裏面側の電極膜に互に直交す
るように多数の帯状のマスク材を例えばフォトレジスト
法によυ形成し、その後エツチング処理して上記の圧電
マトリックスセンサ本体を得ようとするものである。
The manufacturing method of the present invention is a method of forming a band-shaped III film using masking and etching. For example, an electrode film is provided on both sides of a piezoelectric film so as to cover the entire detection area, and The piezoelectric matrix sensor body is obtained by forming a large number of band-shaped mask materials perpendicularly to the electrode film on the back side by, for example, a photoresist method, and then performing an etching process.

21作 用 例えば物体が絶縁被膜を押圧すると、その押圧力が絶縁
被膜を介して圧電体フィルムに伝わ夛、圧電体フィルム
が変形する。このため圧電体フィルムの変形した部分に
おいてその変形量に応じた大きさの電圧が厚さ方向に発
生し、当該部分の表面及び裏面に夫々貼着された電極膜
を通じて前記電圧が取り出される。そして表面側の電極
膜の各々はX座標位置を決定し、裏面側の電極膜の各々
はY座標位置を決定するため、両方の対応する電極膜か
ら電圧を取り出すことによって2次元釣力圧力分布等を
検出できる。
21 Action For example, when an object presses an insulating coating, the pressing force is transmitted to the piezoelectric film through the insulating coating, causing the piezoelectric film to deform. Therefore, a voltage corresponding to the amount of deformation is generated in the thickness direction in the deformed portion of the piezoelectric film, and the voltage is extracted through the electrode films attached to the front and back surfaces of the portion, respectively. Each of the electrode films on the front side determines the X-coordinate position, and each of the electrode films on the back side determines the Y-coordinate position, so by extracting the voltage from both corresponding electrode films, the two-dimensional fishing force pressure is distributed. etc. can be detected.

G、実施例 第1図は本発明の実施例に係る圧電マ) IJラックス
ンサを示す縦断側面図であシ、この実施例では、例えば
方形状に成形した厚さ9〜3oμmog5゜モードの圧
電体フィルム1を用いている。g55モードの圧電体フ
ィルム1とは、変形方向と電圧発生方向とが同一であシ
、例えば厚さ方向に圧力を加えるとその方向に電圧を生
じるものである。そして第2図及び第3図に示すように
前記圧電体フィルム1の表面に多数の帯状の電極膜(X
方向の電極膜)2を互に離間して並行状に設けると共に
、裏面に多数の帯状の電極膜(Y方向の電極膜)3を互
に離間してかつ前記電極膜2に対して直交するように並
行状に設けることによって圧電マトリックスセンサ本体
4を構成する。
G. Embodiment FIG. 1 is a vertical cross-sectional side view showing an IJ rack sensor according to an embodiment of the present invention. Film 1 is used. In the g55 mode piezoelectric film 1, the direction of deformation and the direction of voltage generation are the same; for example, when pressure is applied in the thickness direction, voltage is generated in that direction. As shown in FIGS. 2 and 3, a large number of strip-shaped electrode films (X
In addition, a large number of strip-shaped electrode films (electrode films in the Y direction) 3 are provided on the back surface, spaced apart from each other and perpendicular to the electrode films 2. The piezoelectric matrix sensor main body 4 is constructed by providing the piezoelectric matrix sensor body 4 in parallel.

ここで電極膜2,3を夫々圧電体フィルム1の両面に設
けるための好ましい方法について述べると、先ず圧電体
フィルム1の両面に夫々例えばその検出領域全頁を覆う
ように電極膜を蒸着によシ形成する。その後圧電体フィ
ルム1の表面側の電極膜に多数の帯状のマスク材を例え
ばフォトレジスト法によシ等間隔に並行状に設けると共
に、裏面側の電極膜に多数の帯状のマスク材を前記マス
ク材と直交するように同様にして設ける。次いで前記表
面側及び裏面側の電極膜をエツチングして露出部分を取
り除き、マスク材を取り去って第2図、第3図に示すよ
うなセンサ本体4を得る。
Here, to describe a preferred method for providing the electrode films 2 and 3 on both sides of the piezoelectric film 1, first, electrode films are deposited on both sides of the piezoelectric film 1, for example, so as to cover all pages of the detection area. form. Thereafter, a large number of strip-shaped masking materials are provided in parallel at equal intervals on the electrode film on the front side of the piezoelectric film 1 by, for example, a photoresist method, and a large number of strip-shaped masking materials are provided on the electrode film on the back surface side of the mask. Provided in the same manner so as to be perpendicular to the material. Next, the exposed portions of the electrode films on the front and back sides are etched, and the mask material is removed to obtain the sensor body 4 as shown in FIGS. 2 and 3.

こうして得られたセンサ本体4の表面側に、弾性を有す
る絶縁被膜5例えばシリコンゴムシートを貼着すると共
に、裏面側に絶縁基板6例えば表面側と同様にシリコン
ゴムシートを貼着し、更に前記電極膜2.3の夫々に導
電性接着剤等によシリード部としてのリード線71+7
2を取り付けることによって圧電マトリックスセンサを
構成する。この圧電マトリックスセンサは、例えば第1
図に示すようにロボットハンドRの表面に固定される。
An elastic insulating coating 5, for example, a silicone rubber sheet, is attached to the front side of the sensor body 4 obtained in this way, and an insulating substrate 6, for example, a silicone rubber sheet, is attached to the back side in the same way as the front side, and furthermore, the above-mentioned Lead wires 71+7 as serial lead parts are attached to each of the electrode films 2.3 using a conductive adhesive or the like.
2 constitutes a piezoelectric matrix sensor. This piezoelectric matrix sensor, for example,
As shown in the figure, it is fixed to the surface of the robot hand R.

なお絶縁被膜5や絶縁基板6としては、弗素ゴムシート
あるいはビニールシート等の絶縁部材を用いることもで
きる。
Note that as the insulating coating 5 and the insulating substrate 6, an insulating member such as a fluororubber sheet or a vinyl sheet can also be used.

第4図は本発明の他の実施例を示す平面図であシ、この
実施例では、前記X方向の電極膜2に夫々対応するリー
ド部としての引き出し電極81と前記Y方向の電極膜3
に夫々対応するリード部としての引き出し電極82とが
予めプリントされた絶縁基板8を用い、この絶縁基板8
の中央部にセンサ本体4を一体的に固定して、電極膜2
,3に夫々対応する引き出し電極81+82を導電性接
着剤等の接続部材91+92によシ接続し、更に絶縁基
板8及びセンサ本体4の全面に絶縁樹脂をコーティング
して絶縁被膜を形成することによって圧電マトリックス
センサを構成している。
FIG. 4 is a plan view showing another embodiment of the present invention. In this embodiment, lead electrodes 81 as lead portions corresponding to the electrode films 2 in the X direction and electrode films 3 in the Y direction are shown in FIG.
An insulating substrate 8 is used, on which lead electrodes 82 as lead portions corresponding to the insulating substrates 8 are printed in advance.
The sensor body 4 is integrally fixed in the center of the electrode film 2.
, 3, respectively, are connected to connecting members 91+92 such as conductive adhesive, and furthermore, the entire surfaces of the insulating substrate 8 and sensor body 4 are coated with insulating resin to form an insulating film, thereby producing piezoelectricity. It constitutes a matrix sensor.

また本発明では、圧電体フィルム1としては、変形方向
と電圧発生方向とが90度異なる例えば第5図に示すよ
りなg31モードのものを用いてもよく、この場合には
第6図に示すように変形方向が対角線方向になるように
例えば方形状に成形し、既に述べた実施例と同様にして
電極膜2,3を圧電体フィルム1の互に隣接する側縁に
並行して延びるように設け、更に電極膜2,3に夫々リ
ード線71+72を接続し、センサ本体の表面及び裏面
に夫々絶縁被膜及び絶縁基板を設けることにより圧電マ
トリックスセンサ本体を構成する。この実施例のように
変形方向と電圧発生方向とが異なるモードの圧電体フィ
ルム1を使用する場合には、絶縁基板として弾性材を用
いることが好ましく、このようにすれば第7図に示すよ
うに圧電体フィルム1の厚さ方向に力が加わった場合そ
の対角線方向【変形しやすくなるため、その変形量に対
応する電圧が取り出しやすい。
Further, in the present invention, the piezoelectric film 1 may be of a g31 mode as shown in FIG. 5, for example, where the deformation direction and the voltage generation direction are different by 90 degrees, and in this case, The piezoelectric film 1 is formed into a rectangular shape, for example, so that the deformation direction is diagonal, and the electrode films 2 and 3 are formed so as to extend parallel to mutually adjacent side edges of the piezoelectric film 1 in the same manner as in the previously described embodiments. A piezoelectric matrix sensor body is constructed by further connecting lead wires 71 and 72 to the electrode films 2 and 3, respectively, and providing an insulating coating and an insulating substrate on the front and back surfaces of the sensor body, respectively. When using the piezoelectric film 1 in which the deformation direction and the voltage generation direction are different modes as in this embodiment, it is preferable to use an elastic material as the insulating substrate. When a force is applied to the piezoelectric film 1 in the thickness direction, the piezoelectric film 1 is easily deformed in its diagonal direction, so it is easy to extract the voltage corresponding to the amount of deformation.

次に上述のようにして得られた圧電マトリックスセンサ
の作用及びその適用例について述べる。
Next, the operation of the piezoelectric matrix sensor obtained as described above and its application examples will be described.

先ず第8図に示すように圧電マトリックスセンサ9人の
X方向の電極膜2及びY方向の電極膜3の交点(センナ
本体4を上から見た場合の交点)の各々における圧電体
フィルム10両面間の電圧を増幅するよう、リード線7
1及びリード線72の夫々を入力側に切換器9Bl  
を備えたアンプ9B2の入力側に接続し、アンプ9Bの
出力端をA/D変換器9Cを介してマイクロコンピュー
タ9Dに接続する。今、表面に圧電マトリックスセンサ
を取り付けたロボットハンドが物体を掴んだとすると、
物体からの押圧力が絶縁被膜5を介して圧電体フィルム
1に伝わ)、押圧力を受けた部分が変形する。圧電体フ
ィルム1の変形した部分においてはその変形量に対応し
た電圧が厚さ方向に1.即ちこの変形部分の両側の電極
膜2,3間に発生し、この発生電圧がアンプ9B2及び
A/D変換器9Cヲ通シてマイクロコンピュータ9Dに
入力される。
First, as shown in FIG. 8, both sides of the piezoelectric film 10 are located at each intersection of the electrode film 2 in the X direction and the electrode film 3 in the Y direction (the intersection when the sensor body 4 is viewed from above) of the nine piezoelectric matrix sensors. Lead wire 7 to amplify the voltage between
1 and lead wire 72 to the input side.
The output terminal of the amplifier 9B is connected to the microcomputer 9D via the A/D converter 9C. Now, suppose a robot hand with a piezoelectric matrix sensor attached to its surface grasps an object.
The pressing force from the object is transmitted to the piezoelectric film 1 via the insulating coating 5), and the portion receiving the pressing force is deformed. In the deformed portion of the piezoelectric film 1, a voltage corresponding to the amount of deformation is applied in the thickness direction to 1. That is, a voltage is generated between the electrode films 2 and 3 on both sides of this deformed portion, and this generated voltage is input to the microcomputer 9D through the amplifier 9B2 and the A/D converter 9C.

XおよびY方向の各複数の夫々の電極のリード部71お
よび72  とアンプ9B2の接続を、アンプ9B2の
入力側に設けた切換器9Blによって切換えて、Xおよ
びY方向電極の各交点における発生電圧を順次スキャニ
ング(Scanning ) してマイクロコンピュー
タ9Dに取υ込むとともに記憶せしめて、マイクロコン
ピュータ9Dにてこの入力信号をマトリックス状の情報
として処理するととによシ、センサ上の圧力分布をx−
ymmでとらえることができる。この場合圧力の大きさ
を電圧の大きさとして2軸にとれば、接触物体の形状を
立体座標によシ認識できる。
The connection between the lead portions 71 and 72 of each of the plurality of electrodes in the X and Y directions and the amplifier 9B2 is switched by a switch 9Bl provided on the input side of the amplifier 9B2, and the voltage generated at each intersection of the electrodes in the X and Y directions is changed. The input signals are sequentially scanned and input into and stored in the microcomputer 9D, and the microcomputer 9D processes this input signal as matrix information.
It can be captured in ymm. In this case, if the magnitude of pressure is taken as the magnitude of voltage on two axes, the shape of the contact object can be recognized using three-dimensional coordinates.

また電圧の大きさを変位量として取り出すと、二次元圧
力覚センサとして利用できる。更に電圧の大きさにしき
い値を設ければ、平面上のどの位置に他の物体が接触し
ているか把握できるから、二次元接触覚センサとして利
用できる。
Furthermore, if the magnitude of the voltage is extracted as the amount of displacement, it can be used as a two-dimensional pressure sensor. Furthermore, if a threshold value is set for the magnitude of the voltage, it is possible to determine which position on the plane another object is in contact with, so it can be used as a two-dimensional touch sensor.

そしてまた圧力の加えられた位置を座標上の点としてと
らえ、その点の位置を一定の時間間隔でサンプリングし
て時間と座標の関係を不めれは、圧力の加えられた位置
がどの方間へどの位のスピードでどこまで移動したか把
握できるから、二次元すベシ覚センサとして利用できる
。なお従来のすべυ覚センサは一定方向のすべυしか検
出でき々かったが、本発明のセンサをすベシ覚センサと
して適用した場合には二次元的なすべυのデータが得ら
れるため、従来のセンサに比べて有効なものである。
Then, by considering the position where the pressure was applied as a point on the coordinates, and by sampling the position of that point at regular time intervals to determine the relationship between time and coordinates, we can determine in which direction the position where the pressure was applied is It can be used as a two-dimensional motion sensor because it can determine how far and at what speed it has moved. It should be noted that the conventional sliding υ sensor could only detect the sliding υ in a certain direction, but when the sensor of the present invention is applied as a sliding sensor, two-dimensional data of the sliding υ can be obtained. This sensor is more effective than other sensors.

以上述べたような適用例の他に本発明のセンナは、圧電
体フィルムの大面積化が可能なことから、梁等の構造体
の全体を覆うようにセンナを貼シ付けて歪ゲージと同様
な用途に使うことができる。
In addition to the above-mentioned application examples, the senna of the present invention can be applied to a large area of piezoelectric film, so the senna can be pasted to cover the entire structure such as a beam, similar to a strain gauge. It can be used for various purposes.

この場合従来の歪ゲージよりもきめ細かく分割した要素
の変位の情報を得ることができるため、複雑な形状の構
造体についても、有限要素法によシシュミレートした結
果とセンサによる情報とを比較することが可能になる。
In this case, it is possible to obtain displacement information of elements that are more finely divided than with conventional strain gauges, so even for structures with complex shapes, it is possible to compare the results simulated using the finite element method with the information obtained from the sensor. becomes possible.

H6発明の効果 以上のように本発明は、圧電体フィルムの両面側に互に
直交するよう帯状の電極膜を設けているため、圧力の加
わった位置をX−Y座標系でとらえることができると共
にその圧力の大きさを検出することができるから、例え
ば電極膜からの電気信号をコンピュータで処理すること
によって、既に述べたように圧力覚センサ、接触覚セン
サあるいはすベシ覚センサ等の種々のセンサとして利用
でき、この結果1つのセンサであシながら多種の機能を
果たすことができる。また本発明の製造方法によれば各
帯状の電極膜の幅や電極膜間のスリット幅を容易に微細
化できるので、高精度の圧電マドIJツクスセンサを高
い生産性で容易に製造することができる。そして圧電体
フィルムは厚さが例えば約lOμmと薄いのでセンサ全
体の厚さを他めて薄くすることができる。このように薄
くできることと多種の機能を果たせるということから、
本発明のセンサをロボットに取り付けるようにすれば、
ロボットに要求される感覚機能を溝足しながらロボット
の小型化、軽量化を図ることができる。更にロボットの
感覚用センサのみならず、上述のように歪ゲージと同様
な用途等にも用いることができ、しかも優れた機能を備
えていることから、多岐の分野に亘って有効なセンサと
して利用できる。
H6 Effects of the Invention As described above, in the present invention, since band-shaped electrode films are provided on both sides of the piezoelectric film so as to be perpendicular to each other, the position where pressure is applied can be captured in the X-Y coordinate system. For example, by processing the electrical signals from the electrode membrane with a computer, various types of pressure sensors, contact sensors, surface sensors, etc. can be detected. It can be used as a sensor, and as a result, one sensor can perform various functions. Furthermore, according to the manufacturing method of the present invention, the width of each strip-shaped electrode film and the width of the slit between the electrode films can be easily miniaturized, making it possible to easily manufacture a high-precision piezoelectric magnetic head IJ sensor with high productivity. . Since the piezoelectric film is thin, for example, about 10 μm, the overall thickness of the sensor can be made thinner. Because it can be made thin and can perform a variety of functions,
If the sensor of the present invention is attached to a robot,
It is possible to make the robot smaller and lighter while providing the sensory functions required of the robot. Furthermore, it can be used not only as a sensory sensor for robots, but also for purposes similar to strain gauges as mentioned above, and because it has excellent functions, it can be used as an effective sensor in a wide variety of fields. can.

そして本発明のセンナの製造工程において、マスキング
及びエツチングを利用して圧電体フィルムの両面に電極
膜を設けるようにすれば、容易かつ確実に帯状の電極膜
を有する圧電マトリックスセンサ本体を形成することが
できる。
In the manufacturing process of the senna of the present invention, if masking and etching are used to provide electrode films on both sides of the piezoelectric film, a piezoelectric matrix sensor body having a band-shaped electrode film can be easily and reliably formed. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧電マトリックスセンサの実施例を示
す縦断側面図、第2図及び第3図は夫々圧電マ) IJ
ラックスンサ本体を示す一部拡大断面図及び外観図、第
4図は本発明の圧電マトリックスセンサの他の実施例を
示す平面図、第5図はg51モードの圧電体フィルムを
示す説明図、第6図は第5図の圧電体フィルムを使用し
た本発明の圧電マトリックスセンサの実施例を示す一部
平面図、第7図は第6図に示した圧電マトリックスセン
サの変形状態を示す側面図、第8図は本発明の適用例を
示すブロック図である。 1・・・圧電体フィルム、2,3・・・電極膜、4・・
・圧電マトリックスセンサ本体、5・・・絶縁被膜、6
・・・絶縁基板、71y72 ・・・リード線。
FIG. 1 is a longitudinal sectional side view showing an embodiment of the piezoelectric matrix sensor of the present invention, and FIGS. 2 and 3 are piezoelectric matrix sensors, respectively.
FIG. 4 is a plan view showing another embodiment of the piezoelectric matrix sensor of the present invention; FIG. 5 is an explanatory view showing a piezoelectric film in g51 mode; FIG. The figure is a partial plan view showing an embodiment of the piezoelectric matrix sensor of the present invention using the piezoelectric film shown in FIG. 5, FIG. 7 is a side view showing a deformed state of the piezoelectric matrix sensor shown in FIG. FIG. 8 is a block diagram showing an example of application of the present invention. 1... Piezoelectric film, 2, 3... Electrode film, 4...
・Piezoelectric matrix sensor body, 5... Insulating coating, 6
...Insulating board, 71y72 ...Lead wire.

Claims (2)

【特許請求の範囲】[Claims] (1)圧電体フィルムの表面に多数の帯状の電極膜を互
に離間して並行状に設けると共に裏面に多数の帯状の電
極膜を互に離間してかつ表面側の電極膜に対して直交す
るよう並行状に設けて圧電マトリックスセンサ本体を構
成し、前記電極膜に夫々リード部を接続し、前記圧電マ
トリックスセンサ本体の裏面側及び表面側に夫々絶縁基
板及び弾性を有する絶縁被膜を貼着してなることを特徴
とする圧電マトリックスセンサ。
(1) A large number of strip-shaped electrode films are provided on the surface of the piezoelectric film in parallel and spaced from each other, and a large number of strip-shaped electrode films are provided on the back surface of the piezoelectric film, spaced apart from each other and perpendicular to the electrode film on the front surface. are arranged in parallel to form a piezoelectric matrix sensor main body, a lead portion is connected to each of the electrode films, and an insulating substrate and an elastic insulating coating are attached to the back and front sides of the piezoelectric matrix sensor main body, respectively. A piezoelectric matrix sensor characterized by:
(2)圧電体フィルムの表面にその検出領域全面を覆う
ように電極膜を設け、更にこの電極膜上に多数の帯状の
マスク材を互に離間して並行状に設け、前記電極膜の露
出部分をエッチングにより除去した後マスク材を取り除
いてこれに覆われていた部分を残すと共に、圧電体フィ
ルムの裏面にその検出領域全面を覆うように電極膜を設
け、更にこの電極膜上に多数の帯状のマスク材を互に離
間してかつ表面側のマスク材に対して直交するよう並行
状に設け、当該電極膜の露出部分をエッチングにより除
去した後マスク材を取り除いてこれに覆われていた部分
を残すことによつて圧電マトリックスセンサ本体を得、
次いで残つている電極膜に夫々リード部を接続し、前記
圧電マトリックスセンサ本体の裏面側及び表面側に夫々
絶縁基板及び弾性を有する絶縁被膜を貼着することを特
徴とする圧電マトリックスセンサの製造方法。
(2) An electrode film is provided on the surface of the piezoelectric film so as to cover the entire detection area, and a large number of strip-shaped mask materials are provided in parallel at intervals on this electrode film, and the electrode film is exposed. After removing the portion by etching, the mask material is removed and the portion covered by this is left, and an electrode film is provided on the back side of the piezoelectric film so as to cover the entire detection area, and a large number of electrodes are placed on this electrode film. Strip-shaped mask materials were provided in parallel to each other at a distance from each other and perpendicular to the mask material on the front side, and the exposed portion of the electrode film was removed by etching, and then the mask material was removed and covered by this. Obtain the piezoelectric matrix sensor body by leaving the part,
A method for manufacturing a piezoelectric matrix sensor, comprising: connecting lead portions to each of the remaining electrode films, and pasting an insulating substrate and an elastic insulating coating on the back side and front side of the piezoelectric matrix sensor body, respectively. .
JP17113186A 1986-07-21 1986-07-21 Piezoelectric matrix sensor and its preparation Pending JPS6327723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17113186A JPS6327723A (en) 1986-07-21 1986-07-21 Piezoelectric matrix sensor and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17113186A JPS6327723A (en) 1986-07-21 1986-07-21 Piezoelectric matrix sensor and its preparation

Publications (1)

Publication Number Publication Date
JPS6327723A true JPS6327723A (en) 1988-02-05

Family

ID=15917555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17113186A Pending JPS6327723A (en) 1986-07-21 1986-07-21 Piezoelectric matrix sensor and its preparation

Country Status (1)

Country Link
JP (1) JPS6327723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331335A (en) * 1990-08-29 1992-11-19 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Multiple/repetition measured value signal processor
JP2005250629A (en) * 2004-03-02 2005-09-15 Nec Corp Print seal input device
WO2018128050A1 (en) * 2017-01-05 2018-07-12 株式会社スタートトゥデイ Body weight measuring device and body weight measuring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331335A (en) * 1990-08-29 1992-11-19 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh Multiple/repetition measured value signal processor
JP2005250629A (en) * 2004-03-02 2005-09-15 Nec Corp Print seal input device
WO2018128050A1 (en) * 2017-01-05 2018-07-12 株式会社スタートトゥデイ Body weight measuring device and body weight measuring system
JP2018108309A (en) * 2017-01-05 2018-07-12 株式会社スタートトゥデイ Body measurement device and body measurement system
CN110139578A (en) * 2017-01-05 2019-08-16 创想商业有限公司 Body measurement device and body measure system
CN110139578B (en) * 2017-01-05 2022-06-07 创想商业有限公司 Body measurement device and body measurement system
IL267270B1 (en) * 2017-01-05 2023-06-01 Zozo Inc Body weight measuring device and body weight measuring system
IL267270B2 (en) * 2017-01-05 2023-10-01 Zozo Inc Body weight measuring device and body weight measuring system

Similar Documents

Publication Publication Date Title
JPH0531540Y2 (en)
EP0465231B1 (en) Surface area contact pressure transducer
US5220136A (en) Contact touchscreen with an improved insulated spacer arrangement
US4933660A (en) Touch sensor with touch pressure capability
CN101515214B (en) Input device
TWI269999B (en) Wiring structure of touch panel
EP0256799A2 (en) Tactile sensor device
US20050219230A1 (en) Touch panel input device
EP0685817A1 (en) Force sensitive transducer for use in a computer keyboard
JPS6358121A (en) Multifunctional matrix sensor
JPS6327723A (en) Piezoelectric matrix sensor and its preparation
JPH0648027U (en) Transmissive coordinate detector
CN213455509U (en) Sensor and electronic device
JP5633349B2 (en) Sensor device and sensor device array
JP2566782Y2 (en) Resistive touch panel
CN112146684A (en) Sensor, electronic device and manufacturing method of sensor
JPS5933089Y2 (en) Structure of tablet input device
CN112259674A (en) Piezoelectric element, method for manufacturing piezoelectric element, piezoelectric sensor, and audio reading material
JPH02291901A (en) Tactile array sensor
JPS5917680A (en) Input device of coordinate
JPS6035769B2 (en) switch matrix device
CN115574986A (en) Flexible array pressure sensor and preparation method thereof
JPH0445058Y2 (en)
JPS5887675A (en) Coordinate input device
JPS6327722A (en) Pyroelectric matrix sensor and its preparation