JPS63276810A - Superconductive wire - Google Patents

Superconductive wire

Info

Publication number
JPS63276810A
JPS63276810A JP62109977A JP10997787A JPS63276810A JP S63276810 A JPS63276810 A JP S63276810A JP 62109977 A JP62109977 A JP 62109977A JP 10997787 A JP10997787 A JP 10997787A JP S63276810 A JPS63276810 A JP S63276810A
Authority
JP
Japan
Prior art keywords
superconducting
core
wire
superconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62109977A
Other languages
Japanese (ja)
Inventor
Shotaro Yoshida
昭太郎 吉田
Ryuichi Okiayu
置鮎 隆一
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Nozomi Natori
望 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62109977A priority Critical patent/JPS63276810A/en
Publication of JPS63276810A publication Critical patent/JPS63276810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent cracks from being generated at a superconductive layer part even if bending stress is exerted there and to make this wire thin by disposing a core made of super-plastic ceramic inside the superconductive layer part made of an oxide group superconductor. CONSTITUTION:A superconductive wire A is formed of the following parts: a core 1 made of super-plastic ceramic, a superconductive layer part 2 which covers this core 1 and is made of an oxide group superconductor, a coating layer 3, and a stabilized layer 4. The core 1 is composed of super-plastic ceramic such as partially stabilized zirconia which is stabilized by adding a prescribed second element into zirconia ceramic, and this core is very large in its bending strength and high in its tenacity. The superconductive layer part 2 is formed of an oxide group superconductor of either A-B-Cu-O system or A-B-Ox system. The superconductive layer part 2 is thus reinforced by the core 1, and hence rigidity of the wire itself can be enlarged.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は可撓性を向上させた超電導線に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a superconducting wire with improved flexibility.

「従来の技術」 近来、常電導状態から超電導状態に遷移する臨界温度(
T c)が液体窒素温度以上の高い値を示す酸化物系セ
ラミックスからなる超電導材料が種々発見されつつある
。この種の超電導材料は、従来の合金系超電導材料や金
属間化合物系超電導材料に比較して臨界温度が高く、よ
り有利な冷却条件で使用できるために、実用上極めて有
望な超電導材料とされている。
"Conventional technology" Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various superconducting materials made of oxide ceramics exhibiting a high value of Tc) higher than the liquid nitrogen temperature are being discovered. This type of superconducting material has a higher critical temperature than conventional alloy-based superconducting materials or intermetallic compound-based superconducting materials, and can be used under more favorable cooling conditions, so it is considered to be an extremely promising superconducting material in practical use. There is.

ところで、この種の超電導材料を用いて作製された従来
の超電導線の一構造例を第4図と第5図に示す。第4図
と第5図に示す超電導線Bは、ステンレス鋼等の非磁性
の良導体の金属材料からなる被覆管l!の内部に、酸化
物系のセラミック超電導材料からなる導体12を設けて
構成されている。
Incidentally, an example of the structure of a conventional superconducting wire manufactured using this type of superconducting material is shown in FIGS. 4 and 5. The superconducting wire B shown in FIGS. 4 and 5 is a cladding tube made of a non-magnetic, good conductor metal material such as stainless steel. A conductor 12 made of an oxide-based ceramic superconducting material is provided inside.

[発明が解決しようとする問題点] 前記超電導線Bは、従来の合金系あるいは金属間化合物
系の超電導線に比較して遥かに高い温度で超電導状態に
遷移する優れた超電導線であり、従来の超電導線に比較
して極めて有利な冷却条件で使用できるものである。と
ころが、前記構造の超電導線Bにあっては、超電導体製
の導体12が極めて脆いために可撓性に欠ける欠点があ
り、超電導線Bに曲げ応力が作用した場合、導体!2に
クラックを生じ易い問題がある。
[Problems to be Solved by the Invention] The superconducting wire B is an excellent superconducting wire that transitions to a superconducting state at a much higher temperature than conventional alloy-based or intermetallic compound-based superconducting wires. It can be used under extremely advantageous cooling conditions compared to other superconducting wires. However, the superconducting wire B having the above structure has the disadvantage that the conductor 12 made of the superconductor is extremely brittle and lacks flexibility, and when bending stress is applied to the superconducting wire B, the conductor 12 is extremely fragile. 2 has the problem of being prone to cracking.

本発明は、前記問題に鑑みてなされたもので、曲げ応力
が作用した場合であっても、超電導体製の超電導層部分
にクラックを生じないとともに、細線化が可能な構造の
超電導線を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a superconducting wire having a structure in which cracks do not occur in the superconducting layer portion made of a superconductor even when bending stress is applied, and the wire can be thinned. The purpose is to

「問題点を解決するための手段」 第1の発明は、前記問題点を解決するために、酸化物系
超電導体からなる超電導層部と、この超電導層部の内部
に設けられた超塑性セラミックスからなる芯体とを具備
してなるものである。
"Means for Solving the Problems" In order to solve the above problems, the first invention provides a superconducting layer section made of an oxide-based superconductor, and a superplastic ceramic provided inside the superconducting layer section. A core body consisting of.

第2の発明は、前記問題点を解決するために、酸化物系
超電導体からなる超電導層部と、この超電導層部の内部
に設けられた超塑性セラミックスからなる芯体と、前記
超電導層部の外方に設けられた良導電性金属材料からな
る安定化層を具備してなるものである。
In order to solve the above-mentioned problems, a second invention provides a superconducting layer section made of an oxide-based superconductor, a core made of superplastic ceramic provided inside this superconducting layer section, and a superconducting layer section made of a superconducting layer section. A stabilizing layer made of a highly conductive metal material is provided on the outside of the conductive material.

「作用」 曲げ強度と靭性が高い超塑性セラミックス製の芯体を超
電導体製の超電導層部の内側に配することによって剛性
を向上させて曲げ応力に対抗できる構造とする。また、
超塑性セラミックス製の芯体の外面には超電導体を薄膜
状にコーティングすることが可能であり、このコーティ
ングの実施によって細径の芯体の外面に超電導体からな
る導体を形成可能となるために、この種の超電導線の細
線化が可能となる。
``Operation'' A core made of superplastic ceramics with high bending strength and toughness is placed inside the superconducting layer made of superconductor to improve rigidity and create a structure that can resist bending stress. Also,
It is possible to coat the outer surface of a core made of superplastic ceramics with a superconductor in the form of a thin film, and by applying this coating it is possible to form a conductor made of superconductor on the outer surface of a thin core. , it becomes possible to thin this type of superconducting wire.

「実施例」 第1図と第2図は、本発明の一実施例の超電導線を示す
もので、本実施例の超電導線Aは、超塑性セラミックス
からなる芯体1と、この芯体1を覆って設けられた酸化
物系超電導体からなる筒状の超電導層部2と、この超電
導層部2を覆って設けられた被覆層3と、この被覆層3
を覆って設けられた安定化1m4とから構成されている
``Example'' FIGS. 1 and 2 show a superconducting wire according to an example of the present invention. The superconducting wire A of this example includes a core 1 made of superplastic ceramics, and a core 1 made of superplastic ceramics. a cylindrical superconducting layer portion 2 made of an oxide-based superconductor provided covering the superconducting layer portion 2; a covering layer 3 provided covering the superconducting layer portion 2;
It consists of 1 m4 of stabilization provided over the

前記芯体lは、ZrOで示されるジルコニアセラミック
スにMgOやY、03等の第2元素を添加することによ
り安定化された部分安定化ジルコニア等の超塑性セラミ
ックスから構成されたもので、曲げ強度が極めて大きく
、シかも、靭性の高いものである。
The core 1 is made of superplastic ceramic such as partially stabilized zirconia, which is stabilized by adding a second element such as MgO, Y, or 03 to zirconia ceramic represented by ZrO, and has a high bending strength. It is extremely large and has high toughness.

前記超電導層部2は、A −B−Cu−0系(ただし、
AはLa、Ce、Y 、Sc、Yb等の周期律表nIa
族元素のIN以上を示し、BはSr、Ba等のアルカリ
土類金属元素の1種以上を示す)の酸化物系の超電導体
から、または、B aP bI3 io s、S r 
T i O* 1n aT io s、(Sr、Ba)
Ties、(Ca、 S r)T iOsなどのA −
B −Ox型の酸化物系の超電導体から形成されている
The superconducting layer portion 2 is made of A-B-Cu-0 system (however,
A is the periodic table nIa of La, Ce, Y, Sc, Yb, etc.
from an oxide-based superconductor of group elements IN or higher, where B represents one or more alkaline earth metal elements such as Sr and Ba, or BaP bI3 io s, S r
T i O* 1n aT io s, (Sr, Ba)
A − such as Ties, (Ca, S r) TiOs
It is formed from a B-Ox type oxide superconductor.

一方、前記被覆層3は、ステンレス調等の強度の高い非
磁性の耐熱金属から形成されていて、超電導層部2を構
成する酸化物系の超電導セラミックを焼成するために施
す後述の加熱処理に耐えるものである。また、安定化層
4は、銅などの良導電性金属材料からなるもので、超電
導体製の超電導層部2が何等かの原因で常電導状聾に遷
移した場合に、電流を流す導体となって超電導線を安定
化するためのものである。
On the other hand, the coating layer 3 is made of a high-strength, non-magnetic, heat-resistant metal such as stainless steel, and is suitable for the heat treatment described below for firing the oxide-based superconducting ceramic constituting the superconducting layer portion 2. It is something that can be endured. Further, the stabilizing layer 4 is made of a highly conductive metal material such as copper, and serves as a conductor through which current flows when the superconducting layer portion 2 made of a superconductor transitions to a normal conductive state for some reason. This is to stabilize the superconducting wire.

前記構造の超電導線Aにあっては、芯体lの直径が例え
ば0.5mm程度に、超電導層部2の外径が例えば1m
m程度に、被覆層3の肉厚が例えば0゜11程度に、安
定化層4の肉厚が例えば0.1〜0.51程度に形成さ
れる。
In the superconducting wire A having the above structure, the diameter of the core l is, for example, about 0.5 mm, and the outer diameter of the superconducting layer portion 2 is, for example, 1 m.
The thickness of the covering layer 3 is, for example, about 0.11 mm, and the thickness of the stabilizing layer 4 is, for example, about 0.1 to 0.51 mm.

次に前記超電導線Aの製造方法の一例について説明する
Next, an example of a method for manufacturing the superconducting wire A will be described.

超電導線Aを製造するには、10〜3(Jam程度の直
径のステンレスパイプの内部に、部分安定化ジルコニア
等の超塑性セラミックスからなる芯体lを挿入し、ステ
ンレスパイプと芯体lとの間に酸化物系超電導材料の原
料粉末を充填する。
To manufacture superconducting wire A, a core l made of superplastic ceramics such as partially stabilized zirconia is inserted into a stainless steel pipe with a diameter of about 10 to 3 (Jam), and the stainless steel pipe and core l are connected. A raw material powder of an oxide-based superconducting material is filled in between.

この原料粉末は、A −B −Cu−0系の超電導セラ
ミック製材を製造する場合、A元素の化合物粉末(酸化
物粉末、塩化物粉末、炭酸塩粉末等)とB元素の化合物
粉末と酸化銅粉末の混合粉末を用いるか、あるいは、超
電導体を粉砕して形成した超電導粉末、更には、前記混
合粉末と超電導粉末の混合粉末を用いる。
When producing A-B-Cu-0 series superconducting ceramic material, this raw material powder is composed of compound powder of element A (oxide powder, chloride powder, carbonate powder, etc.), compound powder of element B, and copper oxide. A mixed powder of powders is used, a superconducting powder formed by pulverizing a superconductor, or a mixed powder of the above mixed powder and superconducting powder is used.

次に前記原料粉末を充填したステンレスバイブを700
〜1100℃に1〜300時間程度加熱して原料粉末ど
うしを反応させ、芯体1とステンレスパイプの間に超電
導体を生成させて導体を形成する。この後に全体に縮径
加工を施し、芯体1と被覆層3の間に超電導体からなる
超電導層部2を備えた直径II程度の線材を得る。この
後に被覆PJ3の外面に銅層を被せて超電導体線材Aを
得る。
Next, the stainless steel vibrator filled with the raw material powder was
The raw material powders are heated to ~1100° C. for about 1 to 300 hours to react with each other, and a superconductor is generated between the core body 1 and the stainless steel pipe to form a conductor. Thereafter, the entire wire is subjected to diameter reduction processing to obtain a wire having a diameter of approximately II, which is provided with a superconducting layer portion 2 made of a superconductor between the core body 1 and the coating layer 3. Thereafter, the outer surface of the covering PJ3 is covered with a copper layer to obtain a superconductor wire A.

また、前記超電導体線材Aを製造するには、以下に記述
する方法を採用しても良い。 即ち、直径0.5m++
程度の超塑性セラミック製の芯体の外面にCVDやプラ
ズマ溶射などの方法を用いて超電導セラミック製の薄膜
状の超電導層部を形成し、更にその外面にプラズマ溶射
やディップフォーミング法を用いて銅からなる安定化層
を形成して超電導線を製造する。なお、この製造方法に
よれば、超塑性セラミックス製の芯体の外面に超電導体
をコーティングできるために、薄膜状の超電導体からな
る超電導層部を形成することができ、細径の超電導線を
製造することができる。
Moreover, in order to manufacture the superconductor wire A, the method described below may be adopted. That is, diameter 0.5m++
A thin film-like superconducting layer made of superconducting ceramic is formed on the outer surface of a core made of superplastic ceramic using a method such as CVD or plasma spraying, and copper is further formed on the outer surface using plasma spraying or dip forming. A superconducting wire is manufactured by forming a stabilizing layer consisting of: In addition, according to this manufacturing method, since the outer surface of the core made of superplastic ceramics can be coated with a superconductor, a superconducting layer made of a thin film-like superconductor can be formed, and a small diameter superconducting wire can be formed. can be manufactured.

前記構成の超電導線Aは、超塑性セラミックスから芯体
1を慴成し、芯体2で超電導層部2を補強しているため
に、線材自体の剛性が第3図と第4図に示す従来の金属
被覆型超電導線に比較して大きくなっている。このため
導体2は曲げ応力に対抗することができるよう1ζなり
、導体2にクラックを生じるおそれを少なくすることが
できる。
In the superconducting wire A having the above structure, the core 1 is made of superplastic ceramics, and the superconducting layer portion 2 is reinforced by the core 2, so that the rigidity of the wire itself is as shown in FIGS. 3 and 4. It is larger than conventional metal-coated superconducting wire. Therefore, the conductor 2 becomes 1ζ so that it can resist bending stress, and the risk of cracks occurring in the conductor 2 can be reduced.

第3図は第2の発明の超電導線を示すもので、第3図に
支援す超電導線A゛は、第1図に示す超電導線Aの被覆
層3を省略した構造である。
FIG. 3 shows a superconducting wire according to the second invention, and the superconducting wire A' shown in FIG. 3 has a structure in which the coating layer 3 of the superconducting wire A shown in FIG. 1 is omitted.

このような構造の超電導線A′にあっても前記超電導l
QAと同等の効Vを得ることができる。
Even in the superconducting wire A' having such a structure, the superconducting l
It is possible to obtain an effect V equivalent to that of QA.

ところで、本実施例の超電導線Aを多数本集合して外被
の内部に挿入して縮径し、マルヂストランド化すること
もできる。
By the way, a large number of superconducting wires A of this embodiment can be assembled and inserted into the inside of the outer sheath to reduce the diameter and form a multi-strand.

「発明の効果」 以上説明したように本発明の超電導線は、超塑性セラミ
ックスからなる芯体と非磁性良導体からなる安定化層の
間に酸化物系の超電導体からなる超電導層部を設けた構
造であり、超電導体からなる脆い超電導層部の中心を高
剛性で靭性も高い超塑性セラミックスで補強した構造の
ために、超電導体の外周を金属製の被覆層で覆った従来
構造の超電導線に比較して剛性が高く、曲げ応力に強い
とともに、超電導層部にクラックを生じるおそれが少な
い。また、超塑性セラミックスからなる芯体の表面に超
電導セラミック層をコーティングするならば、細径の芯
体の外面に超電導体の超電導層部を形成することが可能
となり、超電導線の細線化が可能になる効果がある。
"Effects of the Invention" As explained above, the superconducting wire of the present invention has a superconducting layer made of an oxide-based superconductor between the core made of superplastic ceramics and the stabilizing layer made of a nonmagnetic good conductor. This is a superconducting wire with a conventional structure in which the outer periphery of the superconductor is covered with a metal coating layer, because the center of the brittle superconducting layer made of superconductor is reinforced with superplastic ceramics that have high rigidity and toughness. It has higher rigidity and better resistance to bending stress than the superconducting layer, and there is less risk of cracking in the superconducting layer. In addition, if a superconducting ceramic layer is coated on the surface of a core made of superplastic ceramics, it becomes possible to form a superconducting layer of a superconductor on the outer surface of a small-diameter core, making it possible to make superconducting wires thinner. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は、本発明の一実施例を示すもので、第
1図は横断面図、第2図は縦断面図、第3図は他の本発
明の一実施例を示す横断面図、第4図と第5図は従来の
超電導線を示すもので、第4図は横断面図、第5図は縦
断面図である。 A 、A’・・・・・・超電導線、 1・・・・・・芯体、  2・・・・・・超電導層部、
3・・・・・・絶縁被覆層、 4・・・・・・安定化層
Figures 1 and 2 show one embodiment of the present invention; Figure 1 is a cross-sectional view, Figure 2 is a longitudinal sectional view, and Figure 3 is another embodiment of the present invention. 4 and 5 show conventional superconducting wires, FIG. 4 is a cross-sectional view, and FIG. 5 is a vertical cross-sectional view. A, A'... superconducting wire, 1... core, 2... superconducting layer part,
3...Insulating coating layer, 4...Stabilizing layer.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物系超電導体からなる超電導層部と、この超
電導層部の内部に設けられた超塑性セラミックスからな
る芯体を具備してなることを特徴とする超電導線。
(1) A superconducting wire comprising a superconducting layer made of an oxide superconductor and a core made of superplastic ceramic provided inside the superconducting layer.
(2)酸化物系超電導体からなる超電導層部と、この超
電導層部の内部に設けられた超塑性セラミックスからな
る芯体と、前記超電導層部の外方に設けられた良導電性
金属材料からなる安定化層を具備してなることを特徴と
する超電導線。
(2) A superconducting layer made of an oxide superconductor, a core made of superplastic ceramics provided inside this superconducting layer, and a highly conductive metal material provided outside of the superconducting layer. A superconducting wire characterized by comprising a stabilizing layer consisting of.
JP62109977A 1987-05-06 1987-05-06 Superconductive wire Pending JPS63276810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109977A JPS63276810A (en) 1987-05-06 1987-05-06 Superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109977A JPS63276810A (en) 1987-05-06 1987-05-06 Superconductive wire

Publications (1)

Publication Number Publication Date
JPS63276810A true JPS63276810A (en) 1988-11-15

Family

ID=14523950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109977A Pending JPS63276810A (en) 1987-05-06 1987-05-06 Superconductive wire

Country Status (1)

Country Link
JP (1) JPS63276810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
EP0377294A2 (en) * 1989-01-03 1990-07-11 General Atomics Stress controlling superconductor wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
EP0377294A2 (en) * 1989-01-03 1990-07-11 General Atomics Stress controlling superconductor wire
EP0377294A3 (en) * 1989-01-03 1991-11-27 General Atomics Stress controlling superconductor wire

Similar Documents

Publication Publication Date Title
CA1286551C (en) Method of producing superconducting wire
JPH03138820A (en) Manufacture of oxide superconductor
JPS63276810A (en) Superconductive wire
DE3915403A1 (en) High-temperature superconductor in wire or strip form, based on a superconducting ceramic of the class (La, Ba, Sr)2CuO4 or of the class (Y, RE)Ba2Cu3O6.5+y, with RE = rare earth and 0 < y < 1, and a mechanical support and a normal conductor
US6536097B1 (en) Method of preparing and handling oxide superconducting wire
JPS63284720A (en) Superconducting wire
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP2585366B2 (en) Oxide superconducting wire
JPS63310510A (en) Superconductive wire
JPS63271816A (en) Superconductive wire
JPH0382105A (en) Manufacture of oxide superconducting coil
JPH0653037A (en) Oxide superconductor current lead
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JPS63241826A (en) Manufacture of superconducting wire
JP3928304B2 (en) Manufacturing method of oxide superconducting wire
JPS63274017A (en) Superconductive wire material
JP3160620B2 (en) REINFORCED SUPERCONDUCTING MATERIAL AND ITS MANUFACTURING METHOD
JPH01321605A (en) Manufacture of oxide ceramic superconductor coil
JPH07141929A (en) Oxide superconductor and its manufacture
JPH0322313A (en) Manufacture of superconducting oxide-coated wire
JPS63292517A (en) Compound ceramic superconductor
JPH09134625A (en) Manufacture of insulated superconducting wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH01175116A (en) Oxide superconducting wire