JPS63276023A - Projection type liquid crystal display device - Google Patents

Projection type liquid crystal display device

Info

Publication number
JPS63276023A
JPS63276023A JP11056587A JP11056587A JPS63276023A JP S63276023 A JPS63276023 A JP S63276023A JP 11056587 A JP11056587 A JP 11056587A JP 11056587 A JP11056587 A JP 11056587A JP S63276023 A JPS63276023 A JP S63276023A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
light
glass substrate
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11056587A
Other languages
Japanese (ja)
Inventor
Kazuyuki Funahata
一行 舟幡
Keiji Nagae
慶治 長江
Yuji Mori
祐二 森
Kiyoshi Sato
清 佐藤
Tadahiko Hashimoto
橋本 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11056587A priority Critical patent/JPS63276023A/en
Publication of JPS63276023A publication Critical patent/JPS63276023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a contrast and a write speed by providing a means for making a temperature different between two pieces of glass substrates for constituting a liquid crystal element. CONSTITUTION:The titled device consists of a structure which inserts a liquid crystal 6 between two pieces of glass substrates 2, 8 of each different heat capacity, and on the glass substrate 2, a light absorbing film 3 of chromium and chromium oxide, and a liquid crystal oriented film 5 of an organic substance and SiO are provided. On the other hand, on the glass substrate 8 of a projected light side, the liquid crystal oriented film 5 of the organic substance and SiO, and a transparent electrode 7 of In2O3 are provided. The heat capacity of the glass substrate 8 of the projection side is larger by about 10 times than that of the glass substrate 2 of the laser light side, and also, the film thickness of a light reflecting film 4 of Al provided on the laser light absorbing film 3 is set to 400Angstrom , by which energy of a projected light is absorbed by the laser light absorbing film 3, and a temperature is made different between the glass substrate 2 of the laser light side and the glass substrate 8 of the projected light side. In such a way, the write time is shortened, and also, a write state that the light scattering property is strong is obtained, and the contrast is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶を用いた投射型の表示装置に係り、特に低
出力の半導体レーザを用いた装置に好適な液晶素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection type display device using a liquid crystal, and particularly to a liquid crystal element suitable for a device using a low-output semiconductor laser.

〔従来の技術〕[Conventional technology]

従来の液晶を用いた投射型の表示装置における液晶表示
素子については、テレビジョン学会技術報告(昭和61
年1月、0PT216、PPI〜6)において論じられ
ている。しかし、レーザ光を吸収する光吸収膜で積極的
に投射光を吸収し、光吸収膜を設けたガラス基板の霞度
を高め、対向ガラス基板との温度勾配を大きくすること
については特別配慮されていなかった。
Liquid crystal display elements in projection type display devices using conventional liquid crystals are described in the Technical Report of the Television Society (1986).
Discussed in January, 0PT216, PPI~6). However, special consideration must be given to actively absorbing the projected light with a light-absorbing film that absorbs laser light, increasing the haze of the glass substrate on which the light-absorbing film is provided, and increasing the temperature gradient with the opposing glass substrate. It wasn't.

第2図はスメクチック液晶を用いた従来の投射型液晶表
示装置における液晶素子を示す説明図である。同図に示
すように、2枚のガラス基板11゜19で液晶17を挟
んだ構造である。レーザ光の入射側ガラス基板にはポリ
イミドの断熱層12、酸化バナジウムフタロシアニンの
レーザ光吸収膜13、クロム及びアルミの光反射膜兼電
極14.5iOzの液晶ブロック膜15、SiOの液晶
配向膜16が設けられている。一方、投射光側のガラス
基板にはSiOの液晶配向膜16とITOの透明電極膜
18が設けられている。これら両方のガラス基板11.
19の外側には入射光の反射を抑える反射防止膜10.
20が施こされている。
FIG. 2 is an explanatory diagram showing a liquid crystal element in a conventional projection type liquid crystal display device using smectic liquid crystal. As shown in the figure, the structure is such that a liquid crystal 17 is sandwiched between two glass substrates 11°19. On the glass substrate on the laser beam incident side, there are a heat insulating layer 12 made of polyimide, a laser light absorption film 13 made of vanadium oxide phthalocyanine, a light reflection film/electrode made of chromium and aluminum, a liquid crystal block film 15 of 4.5 iOz, and a liquid crystal alignment film 16 made of SiO. It is provided. On the other hand, a liquid crystal alignment film 16 of SiO and a transparent electrode film 18 of ITO are provided on the glass substrate on the projection light side. Both of these glass substrates 11.
On the outside of 19, there is an anti-reflection film 10 that suppresses reflection of incident light.
20 have been applied.

ここで用いられている半導体レーザの波長は830nm
、投射光源はハロゲンランプを使用している。
The wavelength of the semiconductor laser used here is 830 nm.
, a halogen lamp is used as the projection light source.

この液晶素子の構成で断熱層12を設けているのは、レ
ーザ光吸収膜で発生した熱を液晶17に効率よく伝播す
るためである。これは、同図に示すようにレーザ光吸収
膜13がガラス基板11に接しているので、レーザ光吸
収膜13で発生した熱が液晶17に伝播するよりもガラ
ス基板11に流出する方が大きく、熱効率が悪いためで
ある。
The reason why the heat insulating layer 12 is provided in this structure of the liquid crystal element is to efficiently propagate the heat generated in the laser light absorption film to the liquid crystal 17. This is because the laser light absorption film 13 is in contact with the glass substrate 11 as shown in the figure, so the heat generated in the laser light absorption film 13 flows out to the glass substrate 11 more than it propagates to the liquid crystal 17. This is due to poor thermal efficiency.

したがった、ガラス基板11への熱の流出を防止するた
めに断熱Wj12を設けた構造になっていた。
Therefore, in order to prevent heat from flowing to the glass substrate 11, the structure was such that a heat insulator Wj12 was provided.

しかし、このような液晶素子の構造では膜形成プロセス
が複雑になるとともに、レーザ光照射するまでは光吸収
膜が設けられているガラス基板11と透明電極膜が設け
られているガラス基板19間に温度勾配はついていない
。このため、比較的大きな光量が必要になるとともに、
光吸収膜側ガラス基板11と透明電極側ガラス基板19
間に温度勾配がないので光散乱性の弱い書込み状態とな
りコントラストの低い表示画像になってしまうという欠
点を有していた。
However, with such a structure of a liquid crystal element, the film formation process becomes complicated, and until the laser beam irradiation, there is a gap between the glass substrate 11 on which the light absorption film is provided and the glass substrate 19 on which the transparent electrode film is provided. There is no temperature gradient. For this reason, a relatively large amount of light is required, and
Glass substrate 11 on the light absorption film side and glass substrate 19 on the transparent electrode side
Since there is no temperature gradient between them, a writing state with weak light scattering occurs, resulting in a displayed image with low contrast.

また、ポリイミド等有機剤による薄膜上に光吸収膜や光
反射膜を形成することは、膜形成プロセスが複雑になる
ためプロセス上の問題や有機薄膜と金属膜との膨張率の
関係から有機薄膜にクラックが発生するなど問題が多い
In addition, forming a light-absorbing film or a light-reflecting film on a thin film made of an organic agent such as polyimide complicates the film formation process, and there are problems with the process and the relationship between the expansion coefficients of organic thin films and metal films. There are many problems such as cracks occurring.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は小パワーの半導体レーザ光による光散乱
性の強い書込み状態を高速で形成する液晶素子構造につ
いて配慮がされておらず、コントラストと書込み速度が
低いという問題があった。
The above-mentioned conventional technology does not take into account the structure of a liquid crystal element that forms a written state with strong light scattering property at a high speed using a semiconductor laser beam of low power, and has the problem of low contrast and writing speed.

本発明の目的はコントラストと書込み速度を向上するこ
とにある。
The purpose of the invention is to improve contrast and writing speed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、レーザ光吸収膜上に設けた光反射膜の膜厚
を最適化することにより、レーザ光吸収膜で投射光を吸
収するとともに光反射膜の熱容量を小さくすることで低
出力の半導体レーザでも大出力のレーザを用いたと同様
の光散乱性組織が得られ、高コントラストで高速書込み
が達成できる。
The above objective is to optimize the film thickness of the light reflection film provided on the laser light absorption film, thereby absorbing the projected light with the laser light absorption film and reducing the heat capacity of the light reflection film. A light-scattering structure similar to that obtained using a high-output laser can be obtained using a laser, and high-speed writing with high contrast can be achieved.

〔作用〕[Effect]

レーザ光吸収膜で投射光を吸収するとともに光反射膜の
熱容量を小さくすることにより、透明電極が設けられた
ガラス基板の温度よりレーザ光吸収膜側ガラス基板温度
が高くなり、透明電極側ガラス基板とレーザ光側ガラス
基板間に温度勾配がつき、低出力の半導体レーザ光でも
光吸収膜で発生した熱を効率よく液晶に伝播でき、しか
も、液晶に伝播した熱を短時間に放出できる。
By absorbing the projected light with the laser light absorption film and reducing the heat capacity of the light reflection film, the temperature of the glass substrate on the laser light absorption film side becomes higher than the temperature of the glass substrate on which the transparent electrode is provided, and the glass substrate on the transparent electrode side A temperature gradient is created between the glass substrate and the glass substrate on the laser beam side, and even with low-power semiconductor laser light, the heat generated in the light absorption film can be efficiently propagated to the liquid crystal, and the heat propagated to the liquid crystal can be released in a short time.

また、予め透明電極側ガラス基板とレーザ光吸収膜側ガ
ラス基板間に温度勾配がついているため、液晶に伝播し
た熱を透明電極側ガラス基板に短時間で流出することが
可能になり、光散乱性の強い書込み状態が得られる。す
なわち、高速書込みでしかも高コントラストの表示画像
が得られる。
In addition, since there is a temperature gradient between the glass substrate on the transparent electrode side and the glass substrate on the laser light absorption film side, it is possible for the heat propagated to the liquid crystal to flow out to the glass substrate on the transparent electrode side in a short time, which causes light scattering. A writing state with strong characteristics can be obtained. In other words, a high-contrast display image can be obtained with high-speed writing.

〔実施例〕〔Example〕

以下、本発明を実施例につき詳述する。 Hereinafter, the present invention will be explained in detail with reference to examples.

第3図は本発明マルチカラー投射型液晶表示装置の一実
施例を示す説明図である。同図において、21は投射光
源であり、クセノンランプのように分光分布曲線が可視
光の波長領域で、太陽光とほぼ同様な連続スペクトルを
もったものが適当である。投射光源21より放Mされた
投射光は、熱線カットフィルタ22により紫外の波長域
及び熱線である近赤外から赤外の波長域の成分を除去し
、コンデンサ・レンズ23で平行光にする。この平行光
となった投射光は、偏光ビーム・スプリッタ24でS偏
光成分とP偏光成分に分割し、S偏光成分のみを液晶素
子25側に反射し、P偏光成分は透過する。したがって
、入射投射光の1/2の光量のS偏光成分のみが入74
波長板を通って、円偏光に変換されて液晶素子25に照
射される。
FIG. 3 is an explanatory diagram showing an embodiment of the multi-color projection type liquid crystal display device of the present invention. In the figure, reference numeral 21 denotes a projection light source, which is suitably a xenon lamp whose spectral distribution curve is in the wavelength range of visible light and has a continuous spectrum almost similar to that of sunlight. The projection light emitted from the projection light source 21 is filtered by a heat ray cut filter 22 to remove components in the ultraviolet wavelength range and heat rays in the near-infrared to infrared wavelength range, and converted into parallel light by the condenser lens 23. This parallel projected light is split into an S-polarized light component and a P-polarized light component by a polarizing beam splitter 24, and only the S-polarized light component is reflected toward the liquid crystal element 25, while the P-polarized light component is transmitted. Therefore, only the S-polarized light component with an amount of 1/2 of the incident projection light enters.
The light passes through the wave plate, is converted into circularly polarized light, and is irradiated onto the liquid crystal element 25.

この照射光はレーザ26、変調器27、偏向器28、液
晶駆動回路29により、上記液晶素子25に画像情報が
書込まれ、そのパターンを液晶素子内に設けたアルミ反
射膜により反射し、再度入74波長板35を通過する際
に、円偏光からP偏光に変換される。このP偏光成分と
なった投射光は、はとんど損失なく偏光ビーム・スプリ
ッタ24を透過し、投射レンズ3o及び色フィルタ31
により、色づけ拡大されてスクリーン32にカラー画像
を表示する。
Image information is written into the liquid crystal element 25 by this irradiation light by the laser 26, modulator 27, deflector 28, and liquid crystal drive circuit 29, and the pattern is reflected by the aluminum reflective film provided in the liquid crystal element, and then again. When passing through the input 74-wavelength plate 35, the circularly polarized light is converted into P-polarized light. The projected light, which has become a P-polarized component, passes through the polarizing beam splitter 24 with almost no loss, and passes through the projection lens 3o and the color filter 31.
As a result, a color image is displayed on the screen 32 after being colored and enlarged.

このマルチカラー投射型液晶表示装置に用いた本発明の
ポイントとなる液晶素子の構造を第1図に示す。同図に
示すように、熱容量の異なる2枚のガラス基板2,8で
液晶6を挟んだ構造である。
FIG. 1 shows the structure of a liquid crystal element used in this multicolor projection type liquid crystal display device, which is the key point of the present invention. As shown in the figure, the structure is such that a liquid crystal 6 is sandwiched between two glass substrates 2 and 8 having different heat capacities.

ガラス基板2にはクロム(900人)及び酸化クロム8
50人の光吸収膜3、本発明のポイントとなるAlの光
反射膜4、有機物及びSiOの液晶配向膜5が設けられ
ている。ここで、Alの光反射膜4の膜厚の下限値は、
光反射特性により決定  ′され、膜厚の厚いものの特
性に比較し、反射特性の低下がおきない膜厚は400人
である。
Glass substrate 2 contains chromium (900) and chromium oxide 8
A light absorption film 3 of 50 layers, a light reflection film 4 of Al, which is the key point of the present invention, and a liquid crystal alignment film 5 of organic matter and SiO are provided. Here, the lower limit of the film thickness of the Al light reflection film 4 is:
It is determined by the light reflection characteristics, and compared to the characteristics of a thicker film, the thickness at which the reflection characteristics do not deteriorate is 400.

一方、投射光側のガラス基板8には有機物及びSiOの
液晶配向膜5.Inz○3の透明電極7が設けられてい
る。
On the other hand, on the glass substrate 8 on the projection light side, there is a liquid crystal alignment film 5 made of organic matter and SiO. A transparent electrode 7 made of Inz○3 is provided.

これらのガラス基板2,8の外側には、入射光の反射を
抑える反射防止[1,9を施こしている。
On the outside of these glass substrates 2 and 8, antireflection [1 and 9] is applied to suppress reflection of incident light.

本実施例で用いたガラス基板の材質はソーダガラス、B
K−7で、その厚さは3+nm、0.5mmである。ま
た、本実施に用いた半導体レーザの波長は830nm、
投射光源はキセノンランプである。
The material of the glass substrate used in this example was soda glass, B
K-7, its thickness is 3+nm, 0.5mm. In addition, the wavelength of the semiconductor laser used in this implementation was 830 nm,
The projection light source is a xenon lamp.

本実施例の液晶素子では、レーザ光側のガラス基板に対
し投射側のガラス基板の熱容量は約10倍大きい。しか
も、レーザ光吸収膜上に設けるAnの光反射膜の膜厚は
一般的には1000人程度であるが、本実施例では熱解
析とレーザ光吸収膜を含んだAl光反射値の反射特性か
ら400人とした。このような膜構成にしたことにより
、投射光のエネルギーをレーザ光吸収膜で吸収し、レー
ザ光側のガラス基板と投射光側のガラス基板の間で、温
度差をつけることができる。
In the liquid crystal element of this example, the heat capacity of the glass substrate on the projection side is about 10 times larger than that of the glass substrate on the laser beam side. Moreover, the thickness of the An light reflection film provided on the laser light absorption film is generally about 1000, but in this example, thermal analysis and reflection characteristics of the Al light reflection value including the laser light absorption film were performed. 400 people. With such a film configuration, the energy of the projected light can be absorbed by the laser light absorption film, and a temperature difference can be created between the glass substrate on the laser light side and the glass substrate on the projection light side.

すなわち、投射光側ガラス基板よりレーザ光側ガラス基
板の温度が高くなり、レーザ光吸収膜で発生した熱が液
晶に効率よく伝播し、かつ、液晶層に加えられた熱が短
時間で投射光側ガラス基板に引き抜ける。このことによ
り、書込み時間が短くなり、しかも、光散乱性の強い書
込み状態が得られコントラストが向上する。
In other words, the temperature of the glass substrate on the laser beam side is higher than that of the glass substrate on the projection light side, the heat generated in the laser light absorption film is efficiently propagated to the liquid crystal, and the heat applied to the liquid crystal layer is quickly absorbed by the projection light. It can be pulled out to the side glass board. As a result, the writing time is shortened, and a writing state with strong light scattering property is obtained, which improves the contrast.

また、レーザ光吸収膜とAlによる光反射膜の構成法に
より膜厚を従来の半分以下にしたことにより、液晶への
熱の伝播効率を向上するだけでなく、Al光反射膜の熱
容量を小さくしたので、レーザ光による熱の拡がりを小
さくすることができる。すなわち、書込み線幅を細くす
ることができ。
In addition, by making the film thickness less than half of the conventional thickness by using the method of constructing the laser light absorption film and the light reflection film using Al, we not only improve the efficiency of heat propagation to the liquid crystal, but also reduce the heat capacity of the Al light reflection film. Therefore, the spread of heat caused by the laser beam can be reduced. In other words, the writing line width can be made thinner.

精度が向上する。Improves accuracy.

Al光反射膜の膜厚と書込み速度、コントラスト比及び
書込み線幅の関係を第4図、第5図、第6図に示す。ま
た、Al光反射膜の膜厚と光反射率の関係を第7図に示
す。
The relationship between the film thickness of the Al light reflecting film, writing speed, contrast ratio, and writing line width is shown in FIGS. 4, 5, and 6. Further, FIG. 7 shows the relationship between the film thickness of the Al light reflecting film and the light reflectance.

第4図はAl光反射膜の膜厚と書込み速度の関係を示す
図であり、従来の装置での速度を1.0としたときの書
込み速度の比である。同図に示すように、AM光反射膜
の膜厚を薄くすると書込み速度は速くなり、膜厚を厚く
すると遅くなる。本実施例において、Al光反射膜の膜
厚の下限値を400人としたのは、Al光反射膜の製作
精度を考慮したからであり、反射特性が低下しなければ
Al光反射膜の膜厚は薄い方がよいことを確認している
FIG. 4 is a diagram showing the relationship between the film thickness of the Al light reflecting film and the writing speed, and is a ratio of the writing speed when the speed in the conventional device is set to 1.0. As shown in the figure, when the thickness of the AM light reflecting film is made thinner, the writing speed becomes faster, and when the film thickness is made thicker, the writing speed becomes slower. In this example, the lower limit of the film thickness of the Al light-reflecting film was set at 400 layers in consideration of the manufacturing precision of the Al light-reflecting film. We have confirmed that the thinner the thickness, the better.

第5図はAl反射膜の膜厚とコントラスト比の関係を示
す図である。同図に示すように、従来装置に比較し、A
l光反射膜の膜厚を薄くしてゆくにつれてコントラスト
比は高くなる。
FIG. 5 is a diagram showing the relationship between the thickness of the Al reflective film and the contrast ratio. As shown in the figure, compared to the conventional device,
The contrast ratio increases as the thickness of the l-light reflecting film decreases.

第6図はA0反射膜の膜厚と書込み線幅の関係を示す図
である。同図に示すように、従来装置に比較して、Al
光反射膜の膜厚を薄くした本発明の装置では書込み線幅
が約70%になり、精綱度が向上する。
FIG. 6 is a diagram showing the relationship between the film thickness of the A0 reflective film and the writing line width. As shown in the figure, compared to the conventional device, Al
In the device of the present invention in which the thickness of the light-reflecting film is reduced, the writing line width is approximately 70%, and precision is improved.

なお、第7図はA0反射膜の膜厚と反射率の関係を示す
図である。同図は、波長が550nmにおける値をプロ
ットしたものであり、反射率はA0反射膜の膜厚が40
0〜3000人の範囲ではほぼ一定である。また、可視
光の波長域(400〜700nm)では、400Å以上
の膜厚における分光反射率は同様の特性を示している。
Note that FIG. 7 is a diagram showing the relationship between the film thickness and reflectance of the A0 reflective film. The figure plots the values at a wavelength of 550 nm, and the reflectance is calculated when the thickness of the A0 reflective film is 40 nm.
It is almost constant in the range of 0 to 3000 people. Further, in the visible light wavelength range (400 to 700 nm), the spectral reflectance at a film thickness of 400 Å or more shows similar characteristics.

しかし、400人未満では分光反射率が多少異なる。厳
密に言えば、A0反射膜の膜厚が380人程度でも40
0人と同一の特性になるが、膜付精度が中心波長に対し
て±50nmである。したがって、この膜付精度の点か
らも、Af1反射膜の膜厚の下限イ直は400人が妥当
である。
However, for less than 400 people, the spectral reflectance is somewhat different. Strictly speaking, even if the thickness of the A0 reflective film is around 380 people,
The characteristics are the same as those for 0 people, but the film deposition accuracy is ±50 nm with respect to the center wavelength. Therefore, also from the point of view of film deposition accuracy, it is appropriate that the lower limit of the film thickness of the Af1 reflective film is 400 people.

以上のことから、本発明によれば高速で画像を書込むこ
とが可能となり、しかも、高コントラストで高精綱の画
像が表示できる。
From the above, according to the present invention, it is possible to write images at high speed, and moreover, it is possible to display images of high spermatozoa with high contrast.

さらに、本発明の効果をより向上させる別な実施例を第
8図に示す。同図に示すように、熱容量の異なる2枚の
ガラス基板2,8で液晶6を挟んだ構造である。ガラス
基板2にはSiO2及び有機物から成る断熱層10、ク
ロムと酸化クロムから成る光吸収膜3、アルミの光反射
膜兼電極4、有機物及びSiOの液晶配向膜5が設けら
れている。ここで、アルミの光反射膜兼電極4の膜厚の
下限値は、光反射特性から決定され400人程度になる
Furthermore, another embodiment that further improves the effects of the present invention is shown in FIG. As shown in the figure, the structure is such that a liquid crystal 6 is sandwiched between two glass substrates 2 and 8 having different heat capacities. The glass substrate 2 is provided with a heat insulating layer 10 made of SiO2 and an organic material, a light absorption film 3 made of chromium and chromium oxide, a light reflection film/electrode 4 made of aluminum, and a liquid crystal alignment film 5 made of an organic material and SiO. Here, the lower limit of the film thickness of the aluminum light-reflecting film/electrode 4 is determined from the light-reflecting characteristics and is approximately 400.

一方、投射光側のガラス基板8には有機物及びSiOの
液晶配向膜5、工、、203の透明電極7が設けられて
いる。
On the other hand, on the glass substrate 8 on the projection light side, a transparent electrode 7 of an organic material and a liquid crystal alignment film 5 of SiO, etc. 203 is provided.

これらのガラス基板2,8の外側には、入射光の反射を
抑える反射防止膜1,9を施している。
On the outside of these glass substrates 2 and 8, antireflection films 1 and 9 are applied to suppress reflection of incident light.

本実施例で用いたガラス基板の材質はソーダガラス、B
K−7で、その厚さは3nwn、0.5mmである。ま
た、本実施例に用いた半導体レーザの波長は830nm
、投射光源はキセノンランプである。本実施例の液晶素
子では、レーザ光側のガラス基板に対し、投射側のガラ
ス基板の熱容量は約15倍大きい。しかも、光吸収膜下
に断熱層を施したことにより、二枚の基板間の温度差を
大きくつけることができる。
The material of the glass substrate used in this example was soda glass, B
K-7, its thickness is 3nwn, 0.5mm. Furthermore, the wavelength of the semiconductor laser used in this example was 830 nm.
, the projection light source is a xenon lamp. In the liquid crystal element of this example, the heat capacity of the glass substrate on the projection side is approximately 15 times larger than that of the glass substrate on the laser beam side. Moreover, by providing a heat insulating layer under the light absorption film, it is possible to increase the temperature difference between the two substrates.

すなわち、投射光側ガラス基板よりレーザ光側ガラス基
板の温度がより高くなり、レーザ光吸収膜で発生した熱
を液晶により効率よく伝播し、かつ、液晶層に加えられ
た熱が短時間で投射光側ガラス基板に引抜ける。このこ
とにより、より書込み時間が短縮され、しかも、光散乱
性の強い書込み状態が得られ、コントラストが向上する
In other words, the temperature of the glass substrate on the laser light side is higher than that of the glass substrate on the projection light side, allowing the heat generated in the laser light absorption film to be efficiently propagated to the liquid crystal, and the heat added to the liquid crystal layer being projected in a short time. Pull it out to the optical side glass substrate. As a result, the writing time can be further shortened, and a written state with strong light scattering properties can be obtained, and the contrast can be improved.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の投射装置によ
れば、従来の液晶を用いた投射装置で問題になった書込
み速度とコントラストを改善することができ、しかも、
書込み線幅を細くできるので、高速書込みで、かつ、高
コントラスト、高精度の画像表示が得られる効果がある
As is clear from the above description, according to the projection device of the present invention, it is possible to improve the writing speed and contrast, which were problems with conventional projection devices using liquid crystals, and moreover,
Since the writing line width can be made thinner, there is an effect that high-speed writing and high-contrast, high-precision image display can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の投射装置で用いる液晶素子の構造図、
第2図は従来の投射装置で用いた液晶素子の構造図、第
3図は本発明を実施したカラー投射装置の構成図、第4
図は液晶素子Al光反射膜の膜厚と書込み速度の関係を
示す特性図、第5図は液晶素子のAl光反射膜の膜厚と
コントラスト比の関係を示す特性図、第6図は液晶素子
のAl光反射値と書込み線幅の関係を示す図、第7図は
A2反射膜の膜厚と反射率の関係を示す図、第8図は他
の実施例を示す図である。 1.10・・・レーザ光反射防止膜、2,8,11゜1
9・・・ガラス基板、3,13・・・レーザ光吸収膜、
  、4.14・・・光反射膜兼電極、5,16・・・
液晶配向膜、6,17・・・液晶、7,18・・・透明
電極、9゜20・・・可視光反射防止膜、13・・・断
熱層、15・・・液晶ブロック膜、21・・・光源、2
2・・・熱線カットフィルタ、23・・・コンデンサレ
ンズ、23・・・偏光ビームスプリッタ、25・・・液
晶素子、26・・・レーザ、27・・・変調器、28・
・・偏光器、29・・・液晶駆動回路、30・・・投射
レンズ、31・・・色フィルタ、32・・・スクリーン
、33・・・ビームスプリッタ、34・・・ミラー、3
5・・・入/4波長板。 第 1 日 l−・−【射P紅噌 2・・イ゛ラス苓才反 3、ルーず゛尤rJVL孜膜 4・・−を反牟丁噌 5 液晶西乙藺11憂 2・・・液部 7−・bぞ(ロバ1θ:他 $2図 //−to −z 射w−/?# 17・・・5梗晶 tg・・・屋明電魯 第4層 第 Sの l!老反射蕨猶−厚(イ) 第 b 囚 〃烈射第g4 (iジ 竿′1 口 AI光¥L々1ルーら醍4  (A’)柔 g 口
FIG. 1 is a structural diagram of a liquid crystal element used in the projection device of the present invention;
Fig. 2 is a structural diagram of a liquid crystal element used in a conventional projection device, Fig. 3 is a structural diagram of a color projection device embodying the present invention, and Fig. 4
The figure is a characteristic diagram showing the relationship between the film thickness of the liquid crystal element's Al light-reflecting film and the writing speed, Figure 5 is a characteristic diagram showing the relationship between the film thickness of the liquid crystal element's Al light-reflecting film and contrast ratio, and Figure 6 is a characteristic diagram showing the relationship between the film thickness of the liquid crystal element's Al light-reflecting film and the contrast ratio. FIG. 7 is a diagram showing the relationship between the Al light reflection value of the device and the writing line width, FIG. 7 is a diagram showing the relationship between the thickness of the A2 reflective film and the reflectance, and FIG. 8 is a diagram showing another example. 1.10...Laser light antireflection film, 2,8,11゜1
9...Glass substrate, 3,13...Laser light absorption film,
, 4.14...Light reflecting film and electrode, 5,16...
Liquid crystal alignment film, 6, 17... Liquid crystal, 7, 18... Transparent electrode, 9° 20... Visible light reflection prevention film, 13... Heat insulating layer, 15... Liquid crystal block film, 21.・・Light source, 2
2... Heat ray cut filter, 23... Condenser lens, 23... Polarizing beam splitter, 25... Liquid crystal element, 26... Laser, 27... Modulator, 28...
...Polarizer, 29...Liquid crystal drive circuit, 30...Projection lens, 31...Color filter, 32...Screen, 33...Beam splitter, 34...Mirror, 3
5...Enter/4 wavelength plate. Day 1 - - [Shot P red 2...Eras Reisai anti 3, Luz yuri JVL 孓 4... - anti Mu Ding 5 LCD Sai Etsu Ii 11 Sorrow 2... Liquid part 7-・b (donkey 1θ: other $2 figure//-to -z shooting w-/?# 17...5 crystal tg...Yamei Denro 4th layer S no l! Old reflex bulge-thickness (A) No. b prisoner Retsu-shot g4 (iji rod'1 Mouth AI light ¥ L 1 Lu et al. 4 (A') Soft g Mouth

Claims (1)

【特許請求の範囲】 1、レーザビーム発生器と該レーザビームを二次元的に
走査する光学的手段と熱電気光学効果を有する液晶素子
を有し、上記レーザビーム発生器と該レーザビームを二
次元的に走査する光学的手段により、液晶素子上に画像
を形成し、該画像をスクリーン上に拡大投射して成る投
射型液晶表示装置において、上記液晶素子を構成する二
枚のガラス基板間に温度差をつける手段を設えたことを
特徴とする投射型液晶表示装置。 2、特許請求の範囲第1項において、液晶素子を構成す
る二枚のガラス基板間に温度をつける手段として、該ガ
ラス基板の熱容量をそれぞれ異なるようにしたことを特
徴とする投射型液晶表示装置。 3、特許請求の範囲第2項において、液晶素子を構成す
る二枚のガラス基板は、レーザ光の入射する側に熱容量
の小さなものを配し、投射光の入射する側に熱容量の大
きなものを配置する構造としたことを特徴とする投射型
液晶表示装置。 4、特許請求の範囲第3項において、液晶素子を構成す
る二枚のガラス基板のうち、レーザ光の入射する側のガ
ラス基板に設けたAlによる光反射膜兼電極の膜厚を4
00〜1000Å範囲にしたことを特徴とする投射型液
晶表示装置。
[Scope of Claims] 1. A laser beam generator, an optical means for two-dimensionally scanning the laser beam, and a liquid crystal element having a thermo-electro-optic effect; In a projection type liquid crystal display device in which an image is formed on a liquid crystal element using an optical means that scans dimensionally, and the image is enlarged and projected onto a screen, there is a space between two glass substrates constituting the liquid crystal element. A projection type liquid crystal display device characterized by being equipped with a means for creating a temperature difference. 2. A projection type liquid crystal display device according to claim 1, characterized in that, as a means for applying temperature between two glass substrates constituting a liquid crystal element, the heat capacities of the glass substrates are made different from each other. . 3. In claim 2, of the two glass substrates constituting the liquid crystal element, one with a small heat capacity is placed on the side where the laser beam is incident, and one with a large heat capacity is placed on the side where the projected light is incident. 1. A projection type liquid crystal display device characterized by having a structure in which: 4. In claim 3, of the two glass substrates constituting the liquid crystal element, the thickness of the light reflecting film/electrode made of Al provided on the glass substrate on the side into which the laser beam is incident is 4.
A projection type liquid crystal display device characterized in that the thickness is in the range of 00 to 1000 Å.
JP11056587A 1987-05-08 1987-05-08 Projection type liquid crystal display device Pending JPS63276023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11056587A JPS63276023A (en) 1987-05-08 1987-05-08 Projection type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11056587A JPS63276023A (en) 1987-05-08 1987-05-08 Projection type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS63276023A true JPS63276023A (en) 1988-11-14

Family

ID=14539054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11056587A Pending JPS63276023A (en) 1987-05-08 1987-05-08 Projection type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS63276023A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165819A (en) * 1981-04-06 1982-10-13 Nec Corp Color liquid-crystal light valve and its displaying method
JPS58163943A (en) * 1982-03-24 1983-09-28 Dainippon Printing Co Ltd Image processing method
JPS5937523A (en) * 1982-08-26 1984-03-01 Seiko Epson Corp Smectic liquid crystal display body
JPS60191227A (en) * 1984-03-12 1985-09-28 Nec Corp Liquid crystal light valve for thermal writing
JPS6139024A (en) * 1984-07-31 1986-02-25 Casio Comput Co Ltd Recorder
JPS61198129A (en) * 1985-02-27 1986-09-02 Canon Inc Image recording device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165819A (en) * 1981-04-06 1982-10-13 Nec Corp Color liquid-crystal light valve and its displaying method
JPS58163943A (en) * 1982-03-24 1983-09-28 Dainippon Printing Co Ltd Image processing method
JPS5937523A (en) * 1982-08-26 1984-03-01 Seiko Epson Corp Smectic liquid crystal display body
JPS60191227A (en) * 1984-03-12 1985-09-28 Nec Corp Liquid crystal light valve for thermal writing
JPS6139024A (en) * 1984-07-31 1986-02-25 Casio Comput Co Ltd Recorder
JPS61198129A (en) * 1985-02-27 1986-09-02 Canon Inc Image recording device

Similar Documents

Publication Publication Date Title
KR960002308B1 (en) Polarizer and light valve image projector having the polarizer
US6795243B1 (en) Polarizing light pipe
JP2765471B2 (en) Projection type liquid crystal display
JP3326614B2 (en) Liquid crystal light valve projection device having correction means and counter electrode substrate composition
US5748376A (en) High optical throughput liquid-crystal projection display system
US20050190445A1 (en) Wire grid polarizer
JPH08502833A (en) Liquid crystal light valve with minimal double reflection
WO1998014012A1 (en) Angled color dispersement and recombination prism
JP3603758B2 (en) Polarizing element of polarized light irradiation device for photo-alignment of liquid crystal alignment film
JP5359128B2 (en) Polarizing element and manufacturing method thereof
JP2830534B2 (en) Polarization conversion element
JP3139387B2 (en) Projection display device
JPS63276023A (en) Projection type liquid crystal display device
JP3257311B2 (en) Liquid crystal display panel and projection display
JP3060720B2 (en) Polarizing device and projection display device using the polarizing device
JP2001215491A (en) Polarized beam splitter and reflection type liquid crystal projector using the same
JPS63155023A (en) Projection type liquid crystal display device
KR100227483B1 (en) Optical system of lcd projector
JPS63214723A (en) Projection type liquid crystal display device
JP2828451B2 (en) Liquid crystal projector, polarizer used for the same, and polarizing microscope using the polarizer
JP2003195252A (en) Liquid crystal projector
KR100227482B1 (en) Optical system of lcd projector
JPH02264904A (en) Light source for linearly polarized light
JP2552507Y2 (en) Projection display device
JP2002162614A (en) Projection type display device