JPS63275892A - Heat insulator - Google Patents

Heat insulator

Info

Publication number
JPS63275892A
JPS63275892A JP11067487A JP11067487A JPS63275892A JP S63275892 A JPS63275892 A JP S63275892A JP 11067487 A JP11067487 A JP 11067487A JP 11067487 A JP11067487 A JP 11067487A JP S63275892 A JPS63275892 A JP S63275892A
Authority
JP
Japan
Prior art keywords
heat
skin
thin film
mechanical element
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11067487A
Other languages
Japanese (ja)
Inventor
岡田 正貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP11067487A priority Critical patent/JPS63275892A/en
Publication of JPS63275892A publication Critical patent/JPS63275892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、短時間の閂に高温と低温との間で繰り返され
る温度変化を受ける機械要素に採用して好適な断熱体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat insulator suitable for use in a mechanical element that undergoes repeated temperature changes between high and low temperatures in short periods of time.

[従来の技術] 様々な装置、構造等に採用される各種機械要素の中には
、短時間の間に高温から低温に回る温度変化を繰り返し
受けるものがあり、その代表例としてはディーゼル式内
燃機関のビスl−ンが挙げられる。そしてこのピストン
のビス1〜ンヘツド及びこのピストンヘッドに形成され
る燃焼室の内壁面には、熱効率向上の観点から様々な断
熱構造が採用されている(特開昭56−143328号
公報等)。従来における断熱構造の代表的な例とし一〇
は、次のようなものが知られている。
[Prior Art] Among the various mechanical elements used in various devices and structures, there are some that undergo repeated temperature changes from high to low temperatures in a short period of time.A typical example is a diesel internal combustion engine. One example is the engine service line. Various heat insulating structures have been adopted for the screw head of the piston and the inner wall surface of the combustion chamber formed in the piston head from the viewpoint of improving thermal efficiency (Japanese Patent Application Laid-Open No. 143328/1984, etc.). The following is known as a typical example of a conventional heat insulating structure.

■ 機械要素の受熱表層面よりも内部に単に空隙を形成
し、これを断熱空気層としたもの、■ 断熱材として固
形物(モノリス)のセラミック材を採用し、このセラミ
ック材と空気層とを層状に組み合わせたものを機械要素
の受熱表層面に取り付けてセラミック材の高温特性と空
気の低熱伝導性とを利用して構成したもの、■ 機械要
素の受熱表層面に、セラミック材を溶射したり、多孔質
状のセラミック材を貼付したりすることにより、セラミ
ック材の内部の孔質部分に空気層を形成したものがある
■ A void is simply formed inside the heat-receiving surface of the machine element, and this serves as an insulating air layer. ■ A solid (monolith) ceramic material is used as the insulating material, and the ceramic material and the air layer are A combination of layers is attached to the heat-receiving surface of a mechanical element to take advantage of the high-temperature properties of ceramic material and the low thermal conductivity of air. In some cases, a porous ceramic material is pasted to form an air layer in the porous portion inside the ceramic material.

そして、これらは例えば第12図に示ずように、ピスト
ンaのピストンヘッドb並びに燃焼室Cの内壁dの表面
a、fに、断熱構造として採用されている。
For example, as shown in FIG. 12, these are employed as a heat insulating structure on the piston head b of the piston a and the surfaces a and f of the inner wall d of the combustion chamber C.

[発明が解決しようとする問題点] ところで、上述した■の断熱構造は機械強度等の観点か
ら、断熱空気層が形成される機械要素の受熱表層部分が
厚く大きな休「■で形成され一〇その部分の熱容量が大
きなものとなっており、その結果機械要素の受熱部分の
温度が高温に維持されることとなっていた。ディーゼル
式内燃機関のピストンヘッドbや燃焼室Cに例をとれば
、第9図に示すようにこれらの壁面温度は、断熱構造を
有しない通常のピストン(図中、Dでポリ)に比べVイ
クルに亘って11温に維持される。このことは、燃焼行
程における熱効率を上げることはできるが、他方吸入行
程において吸入空気を加熱してその膨張を助長し、第1
0図に示すように吸入空気の体積効率(充填効率)を低
下させて結果的に燃焼効率や、第11図に示すように燃
費の悪化をもたらすことになっていた(図中、Aで示す
)。
[Problems to be Solved by the Invention] By the way, from the viewpoint of mechanical strength, etc., the above-mentioned heat-insulating structure (■) has a heat-receiving surface layer of the mechanical element where the heat-insulating air layer is formed by thick and large holes (■). The heat capacity of that part is large, and as a result, the temperature of the heat-receiving part of the mechanical element is maintained at a high temperature.For example, take the piston head b and combustion chamber C of a diesel internal combustion engine. , as shown in Fig. 9, the wall surface temperature of these pistons is maintained at 11 temperatures over V cycles compared to a normal piston without a heat insulating structure (D in the figure is poly).This means that during the combustion stroke However, on the other hand, it heats the intake air during the intake stroke to promote its expansion, and the first
As shown in Fig. 0, the volumetric efficiency (filling efficiency) of intake air was reduced, resulting in a deterioration of combustion efficiency and fuel efficiency as shown in Fig. 11 (indicated by A in the figure). ).

また■の断熱構造では、モノリスで成るセラミック材の
材料費が一般的な金属材料の10〜100倍もかかり、
コストアップを招くという問題があった。またセラミッ
ク材は引張強度が低いため、そのままでは熱応力等に対
する耐久性・信頼性に疑問があった。更に空気層と組み
合わせて使用するものの、セラミック材と機械要素との
接合部分並びに空気層をシールするためのシール部分等
で機械要素への伝熱が相当大きく、十分な断熱性を得る
ことができなかった。
In addition, in the insulation structure (■), the material cost of the monolithic ceramic material is 10 to 100 times that of general metal materials.
There was a problem in that it led to an increase in costs. Furthermore, since ceramic materials have low tensile strength, their durability and reliability against thermal stress and the like are questionable. Furthermore, although it is used in combination with an air layer, the heat transfer to the mechanical element is quite large at the joint between the ceramic material and the mechanical element and the sealing area for sealing the air layer, making it difficult to obtain sufficient heat insulation. There wasn't.

他方、Q〕の断熱構〕告は、多孔質であるため強度面に
おいてその信頼性が懸念される。また、このような断熱
fa″lIiを上述の燃焼室等に利用した場合には、高
温・高圧ガスが多孔質部分に侵入することとなり、信頼
性・耐久性に欠けると共に断熱性能を十分に発揮できな
くなるという問題があった。
On the other hand, since the insulation structure of Q is porous, there are concerns about its reliability in terms of strength. In addition, when such heat insulation fa''lIi is used in the above-mentioned combustion chamber, etc., high temperature and high pressure gas will enter the porous part, resulting in a lack of reliability and durability and insufficient heat insulation performance. The problem was that I couldn't do it.

更にこれら■、■の断熱構造にあっては、燃焼室等の壁
面温度を低く抑えることができ吸気の体積効率を上げる
ことができる一方で、壁面温瓜の低さから燃焼効率が低
下し、この面から燃費が悪化すると共に、未燃分の排出
等排ガスが劣化するという問題があった(第9図〜第1
1図中、Eで示す)。
Furthermore, with these insulation structures (■) and (■), while it is possible to suppress the wall surface temperature of the combustion chamber etc. to a low level and increase the volumetric efficiency of intake air, the combustion efficiency decreases due to the low wall surface temperature. This has led to problems such as deterioration of fuel efficiency and deterioration of exhaust gas such as unburned emissions (Figures 9 to 1).
(Indicated by E in Figure 1).

[問題点を解決するための手段] 本発明は、温度変化を受ける機械要素の表面を被覆して
受熱面を形成する薄膜状の表皮と、機械要素の表面上に
着座して表皮を支持しつつこれら間に断熱空間を区画形
成する薄膜状の構造材とを一体的に形成すると共に、断
熱空間に外圧を支承する加圧ガスを封入して構成される
[Means for Solving the Problems] The present invention provides a thin film-like skin that covers the surface of a mechanical element subject to temperature changes to form a heat-receiving surface, and a thin film-like skin that is seated on the surface of the mechanical element to support the skin. A thin film-like structural material defining a heat insulating space therebetween is integrally formed, and a pressurized gas supporting external pressure is filled in the heat insulating space.

[作 用] 本発明の作用について述べると、全体を薄膜状に形成す
ることにより受熱部分を低熱容量化して熱サイクルに追
従させて温度変化させると共に、この低熱容量のav膜
で囲んだ断熱空間で機械要素に対する必要十分な断熱効
果を確保する。また薄膜化により、熱の流れに対する絞
り効果を確保して、表皮、構造材を介しての機械要素へ
の伝熱を規制して断熱作用を得る。そしてこのような薄
膜化構造を、表皮と構造材との構成で高効率な構造強度
で構築する。殊に、断熱空間に加圧ガスを封入すること
により、この断熱空間を区画する表皮に加わる外圧を、
加圧ガスによる断熱空間内圧で支承させて、加わる外圧
を見)1トは上小さくするようになっている。
[Function] Describing the function of the present invention, by forming the entire film in the form of a thin film, the heat receiving portion has a low heat capacity and the temperature changes by following the thermal cycle, and the heat insulating space surrounded by this low heat capacity AV film to ensure necessary and sufficient insulation effect for mechanical elements. In addition, by making the film thinner, it secures a throttling effect on heat flow, restricts heat transfer to mechanical elements through the skin and structural materials, and obtains a heat insulating effect. Then, such a thin film structure is constructed with highly efficient structural strength by the structure of the skin and the structural material. In particular, by filling the adiabatic space with pressurized gas, the external pressure applied to the skin that partitions this adiabatic space can be reduced.
It is designed to be supported by the internal pressure of the adiabatic space created by pressurized gas, and to reduce the applied external pressure.

[実施例] 以下に本発明の好適実施例を添付図面に従って詳述する
[Examples] Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

本実施例にあっては、機械要素として数1/100秒と
いう 1サイクルの極めて短時間の間に、200℃〜8
00℃というルめて急mな温度変化を受けるディービル
式内燃機関のピストンを例にとって説明する。
In this example, the mechanical element was heated to 200°C to 8°C during an extremely short period of one cycle of several 1/100 seconds.
This will be explained by taking as an example the piston of a Dieville internal combustion engine, which is subject to a very rapid temperature change of 00°C.

第2図及び第4図に示すように、短時間の間に高温から
低温に亘る温度変化を繰り返し受ける機械要素1の受熱
側となるピストンヘッド等の表面2には、その上方に間
隔を隔てて表面を被覆して受熱面を形成する薄膜状の表
皮3と、この表皮3の裏面にこれより表面2側へ垂下さ
れ表面2上に着座し−C表皮3を支持しつつこの表皮3
と慣械要索゛1の表面2との間に断熱空間4を区画形成
する肋膜状の構造材5とが一体的に形成されて成る断熱
体6が設けられる。これら表皮3と構造材5とから成る
断熱体6は、金属材又はセラミック材等の一般的な断熱
性材料で形成され、それ自体は熱サイクルに追従して温
度変化しつつ機械要素1に対してはその表面2を覆って
熱サイクルの影響を抑制する断熱性を発揮する機械要素
1の受熱部として機能する。
As shown in FIGS. 2 and 4, on the surface 2 of the piston head, etc., which is the heat receiving side of the mechanical element 1, which undergoes repeated temperature changes from high to low temperatures over a short period of time, there is a A thin film-like skin 3 that covers the surface to form a heat-receiving surface, and a thin film-like skin 3 that hangs down from this to the surface 2 side on the back side of this skin 3 and sits on the surface 2 and supports the -C skin 3.
A heat insulating body 6 is provided which is integrally formed with a membrane-like structural member 5 that defines a heat insulating space 4 between the surface 2 of the mechanical cable 1 and the surface 2 of the mechanical cable 1. The heat insulating body 6 consisting of the skin 3 and the structural material 5 is made of a general heat insulating material such as a metal material or a ceramic material, and the heat insulating body 6 is made of a general heat insulating material such as a metal material or a ceramic material. It functions as a heat receiving part of the mechanical element 1 that covers the surface 2 and exhibits heat insulation properties that suppress the effects of thermal cycles.

更に具体的に説明すると断熱体6は、その構造材5が機
械要素1の表面2上に沿ってハニカム構造を形成する薄
膜状の壁材7で↑j4成されると共に、表皮3がハニカ
ム構造を成す薄膜状の壁材7間に掛け渡される薄膜状の
アーチ而8を集合して構成され、これら各アーチ而8は
各壁材7と一体的に形成される。壁材7は夫々機械要素
゛1の表面2上に起立され、且つ互いに側縁が接続され
てハニカム形状を構成し、各アーチ而8はその周縁が互
いに接続されると共にその接続部分9が壁材7の、L縁
に接続される。断熱空間4は、側方が壁材7に区画され
上方がアーチ而8に区画されて機械要素1の表面2上に
複数ハニカム状に配列される。
More specifically, in the heat insulating body 6, the structural material 5 is composed of a thin film-like wall material 7 forming a honeycomb structure along the surface 2 of the mechanical element 1, and the skin 3 has a honeycomb structure. It is constituted by a collection of thin film-like arches 8 that are stretched between thin film-like wall materials 7 forming a structure, and each of these arches 8 is formed integrally with each wall material 7. The wall materials 7 are respectively erected on the surface 2 of the mechanical element 1, and their side edges are connected to each other to form a honeycomb shape, and each arch 8 has its peripheral edges connected to each other, and its connecting portion 9 is connected to the wall. It is connected to the L edge of the material 7. The heat insulating spaces 4 are partitioned by wall materials 7 on the sides and arches 8 on the top, and are arranged in a plurality of honeycomb shapes on the surface 2 of the machine element 1.

そして殊にこの断熱空間4には、第1図に示すように、
外圧を支承させるための加圧ガスが封入される。この断
熱空間4への加圧ガスの封入は、1$1体で形成される
断熱体6を機械要素1の表面2上にロー付けや接着等に
より貼付する工程を、加圧容器中で行なうことにより達
成される。
In particular, in this heat insulating space 4, as shown in FIG.
Pressurized gas is sealed to support external pressure. The pressurized gas is sealed in the heat insulating space 4 by a step of attaching the heat insulating body 6 formed in one piece to the surface 2 of the machine element 1 by brazing, gluing, etc. in a pressurized container. This is achieved by

次に、1ス上のような構成における熱対策上の特長を説
明する。
Next, the features in terms of heat countermeasures in a configuration like the one above will be explained.

■アーチ面8(表皮3)及び壁材7(構造材5)は薄膜
状に形成され低熱容量となっている。そしてこの低熱容
量の構造に区画させて断熱空間4が形成されている。こ
れにより、熱サイクルに追従して温度が変化する受熱部
分を構成することができ、単に受熱表層面の熱容量を大
きくして熱サイクルとは無関係に機械要素1への熱的影
響を阻止する断熱構造に比べて、的確且つ必要十分な断
熱作用を発揮させることができる。即ち熱サイクルに4
3いて、高温時には低熱容量の表皮3等で瞬時に受熱し
全体が高温に達しつつ機械要素1に対しては断熱空間4
が充分な断熱効果を発揮し、他方低温時には受けた熱を
低熱容量の表皮3等から瞬時に発散して全体が低温に移
行しつつ機械要素1に対しては断熱空間4で必要な断熱
効果を発揮する。
(2) The arch surface 8 (skin 3) and the wall material 7 (structural material 5) are formed into thin film shapes and have a low heat capacity. A heat insulating space 4 is formed by partitioning this low heat capacity structure. This makes it possible to configure a heat-receiving part whose temperature changes according to the heat cycle, and simply increases the heat capacity of the heat-receiving surface layer to prevent thermal effects on the mechanical element 1 regardless of the heat cycle. Compared to the structure, it is possible to exhibit an accurate and necessary and sufficient heat insulation effect. That is, the thermal cycle
3, when the temperature is high, heat is instantaneously received by the skin 3 etc. with low heat capacity, and while the entire body reaches high temperature, the heat insulating space 4 is closed to the mechanical element 1.
On the other hand, when the temperature is low, the received heat is instantly dissipated from the skin 3 etc. with low heat capacity, and the whole body moves to a low temperature, while providing the necessary insulation effect in the insulation space 4 for the mechanical element 1. demonstrate.

本所熱体6をディーゼル式内燃機関のピストンヘッドや
燃焼室の車面に設けた場合を例にと−)で説明すると、
機関の吸気から排気行程に亘る熱1Jイクルにおけるこ
れら甲面の温度は第9図に示すように、圧縮行程の@終
段階から燃焼行程に亘るシリンダ内温度の昇温期間中に
は断熱体6が受熱して高められると共に、他方燃焼によ
る膨張過程から排気、吸気に亘るシリンダ内温度の降下
期間中には断熱体6が効率良く熱を放出して降下される
。これにより第10図及び第11図に示すように、吸気
行程における燃焼室等の壁面湿度を下げて吸気の体積効
率を上げることができると共に、燃焼行程における壁面
温度を高り19て燃焼効率を向上させて燃費を改善でき
、上述した従来例における問題点を解決づることができ
る(図中、Cで示す)。そしてこのように表皮3等の受
熱面を熱サイクルに応じて湿度変化させてシリンダ内の
環現を改善しつつ、断熱空間4が機械要素゛1としての
ピストンに対する断熱作用を発揮し熱的悪影響を阻止す
るようになっている。
Taking as an example the case where the main heating element 6 is installed on the piston head or the vehicle surface of the combustion chamber of a diesel internal combustion engine, -)
As shown in Fig. 9, the temperature of these upper surfaces during a 1 J cycle of heat from the intake to exhaust stroke of the engine is as shown in Figure 9. On the other hand, during the period when the temperature inside the cylinder decreases from the expansion process due to combustion to the exhaust air and intake air, the heat insulator 6 efficiently releases heat and is lowered. As a result, as shown in Figs. 10 and 11, it is possible to lower the humidity on the walls of the combustion chamber, etc. during the intake stroke and increase the volumetric efficiency of the intake air, and also increase the wall surface temperature during the combustion stroke, thereby increasing the combustion efficiency. This makes it possible to improve fuel efficiency and solve the problems in the conventional example described above (indicated by C in the figure). In this way, the humidity of the heat-receiving surface such as the skin 3 is changed in accordance with the heat cycle to improve the environment inside the cylinder, while the heat-insulating space 4 exerts a heat-insulating effect on the piston as the mechanical element 1, thereby preventing adverse thermal effects. It is designed to prevent

■ また、壁材7をiil状に形成しているので、第5
図に示すように表皮3で受けた熱の機械要素1への移動
(熱伝jり )に対し、その熱流を絞る効果を発揮させ
ることができ、この面からも断熱性を高めることができ
る。
■ Also, since the wall material 7 is formed in an ii shape, the fifth
As shown in the figure, it is possible to exert the effect of restricting the heat flow against the transfer (heat transfer) of the heat received by the skin 3 to the mechanical element 1, and from this aspect as well, the heat insulation properties can be improved. .

■ 更に、この壁材7の厚さを、表皮3側よりも機械要
素1側で薄く形成していることにより、表皮3で受けl
c熱の機械要素1への伝達を絞り効果で更に規制して、
より断熱効果を高めることができる。
■Furthermore, by forming the wall material 7 thinner on the machine element 1 side than on the skin 3 side, the wall material 7 is thinner on the machine element 1 side than on the skin 3 side.
c further restricting the transfer of heat to the mechanical element 1 by the throttling effect,
The heat insulation effect can be further enhanced.

σ) 更に、アーチ面8の曲率半径を大きくして平坦面
に近く形成しているので、受熱表面積を減少でき、また
体積を抑えて熱容量を削減できる。
σ) Furthermore, since the radius of curvature of the arched surface 8 is increased and it is formed close to a flat surface, the heat receiving surface area can be reduced, and the volume can be suppressed to reduce the heat capacity.

■ 材質としては、熱伝導率が20kcal/ m、h
、’C以下で850℃以上の耐熱性を有するものが好ま
しい。
■ The material has a thermal conductivity of 20 kcal/m, h
, 'C or less and has heat resistance of 850°C or more.

次に、上述した薄膜化を達成するための構造強麿上の特
長について説明する。
Next, the features of structural reinforcement for achieving the above-mentioned thinning will be explained.

■ 本構造は基本的には、引張応力を受ける部分をでき
る限り排除して、構造強度の確保の上で右利な圧縮応力
を受ける構造とし、薄膜化を)!成できるようにしてい
る。材質としては、圧縮強度の高いセラミック材、金属
材等の断熱性材料が採用される。表皮3は、高効率な強
度を発揮するアーチ面8の殻構造で構成される。殊に内
燃機関のシリンダ内には燃焼による高いシリンダ内圧力
が壁面に作用するが、この圧力を受ける表皮3は上方に
凸のアーチ面8の集合で形成され、個々のノ7−ヂ面8
には第5図に示すように圧縮応力が作用するようになっ
ている二また壁材7にし上方から圧縮応力が作用するよ
うになっている。また熱サイクルにおけるアーチ面8の
膨張に際しても、隣接部分によりアーチ面8の膨張が抑
えられて圧縮熱応力が作用するようになっている。
■ Basically, this structure eliminates as much as possible the parts that receive tensile stress, creates a structure that receives compressive stress to the advantage of ensuring structural strength, and makes the film thinner)! We are making it possible for you to do so. As the material, a heat insulating material such as a ceramic material or a metal material with high compressive strength is used. The skin 3 is composed of a shell structure of an arched surface 8 that exhibits highly efficient strength. Particularly in the cylinder of an internal combustion engine, high internal cylinder pressure due to combustion acts on the wall surface, and the skin 3 that receives this pressure is formed by a collection of upwardly convex arched surfaces 8, and the individual nozzle surfaces 8
As shown in FIG. 5, the bifurcated wall material 7 is designed to be subjected to compressive stress, and the compressive stress is applied from above. Further, even when the arch surface 8 expands during thermal cycles, the expansion of the arch surface 8 is suppressed by the adjacent portions, so that compressive thermal stress is applied.

■ 上述したような断熱体6の薄膜化を進めて表皮3等
を薄くしてゆくと、第6図に破線で示すように、シリン
ダ内の燃焼圧力等の外圧によって表皮3が下方l\沈み
込んで凹むことになる。外圧としては、一般的な無過給
の直接噴射式ディーゼル機関で70〜90kg/cm2
 、過給式機関で100〜150’+9z”C1112
にし達する。イしてこのような凹み変形が、内燃機関の
シリンダ内圧(第8図中、G参照)の変動?7極めて短
い周期で繰り返される場合には、構造強度の確保、構造
の信頼性の面から好ましい乙のではない。
■ As the heat insulator 6 is made thinner and the skin 3 etc. are made thinner as described above, the skin 3 sinks downward due to external pressure such as the combustion pressure inside the cylinder, as shown by the broken line in Figure 6. It will become crowded and dented. The external pressure is 70 to 90 kg/cm2 for a typical non-supercharged direct injection diesel engine.
, 100-150'+9z"C1112 with supercharged engine
reach. Is this concave deformation caused by fluctuations in the cylinder internal pressure of the internal combustion engine (see G in Figure 8)? 7) If it is repeated in an extremely short period, it is not preferable from the viewpoint of ensuring structural strength and reliability of the structure.

ここに、このような表皮3のJti l#を抑えるため
に厚みを増すと今度は熱容量が大きくなり、第8図に「
で示すように、表皮3の温度を熱リイクルに十分に追従
させることができず、上述の熱的改善(図中、Cで示1
)を達成できなくなる。
Here, if the thickness of the epidermis 3 is increased to suppress Jtil#, the heat capacity will increase, and as shown in Figure 8,
As shown in Figure 1, the temperature of the epidermis 3 could not fully follow the thermal recycling, and the above-mentioned thermal improvement (indicated by C in the figure)
) will not be able to be achieved.

そこで本発明にあっては、表皮3等を薄く形成しつつ構
造上の健全性を確保できるように、第1図に示すごとく
外圧を支承する加圧ガスを断熱空間4に封入するように
なっている。このように構成ずれば、加圧ガスにより外
圧を相当相殺させて、表皮3′sに作用する見掛け上の
圧力を小さくすることができ、薄膜化をj構成しつつ構
造強度を確保することができる。
Therefore, in the present invention, in order to ensure structural soundness while forming the skin 3 etc. thin, pressurized gas that supports external pressure is sealed in the heat insulating space 4 as shown in FIG. ing. With this configuration, the external pressure can be considerably offset by the pressurized gas, and the apparent pressure acting on the skin 3's can be reduced, making it possible to ensure structural strength while achieving a thin film structure. can.

尚、断熱空間4に封入される加圧ガスは、凹のアーチ面
11に作用することから、表皮3の裏面側に?i Tの
引張応力を発生さゼる傾向にあるため、加圧ガスの封入
圧力は作用外圧よりも小さく、且つ断熱体6の素材の引
張強度を超えない大きさに設定することが好ましい。例
えば、上述の70〜150ko /cm2の外圧に対し
ては、10〜50kg/ am2が適当と考えられる。
In addition, since the pressurized gas sealed in the heat insulating space 4 acts on the concave arch surface 11, it may be applied to the back side of the skin 3. Since it tends to generate a tensile stress of i T, it is preferable that the pressure of the pressurized gas is set to be lower than the working external pressure and not to exceed the tensile strength of the material of the heat insulator 6. For example, 10 to 50 kg/am2 is considered appropriate for the above-mentioned external pressure of 70 to 150 ko/cm2.

■ 構造月5が全体としてハニカム状の等方性の殻構造
を構成しており、全体的に強度高く構成される。従って
、壁材7並びにアーチ面8の@膜化を図ることができる
■ Structure Moon 5 as a whole constitutes a honeycomb-like isotropic shell structure, which is highly strong as a whole. Therefore, the wall material 7 and the arch surface 8 can be made into a membrane.

■ 更に、アーチ而8相互の接続部9並びにこの接続部
9と壁材7との接続部10は、第2図に示すように丸み
をもたせて滑らかに形成され、応力緩和が図られている
Furthermore, the connecting portions 9 between the arches 8 and the connecting portions 10 between the connecting portions 9 and the wall material 7 are rounded and smoothly formed to alleviate stress, as shown in Fig. 2. .

そして、このようにして得られた断熱体6を第7図に示
すように、ピストン19のピストンヘッド20や燃焼室
21にロー付けや接着等により貼付することになる。
Then, as shown in FIG. 7, the heat insulator 6 thus obtained is attached to the piston head 20 of the piston 19 and the combustion chamber 21 by brazing, gluing, or the like.

ところで上述した本断熱体6は、低熱容量とするための
薄膜化と必要強度との関係において設計される。本発明
者が必要最低強度の素材として選定したステンレス鋼等
の鉄系材料について解析した結果、下記の諸元で設計づ
ることが好ましいとにえられる(第2図拳照)。
By the way, the above-mentioned heat insulating body 6 is designed in consideration of the relationship between the thin film thickness for low heat capacity and the required strength. As a result of analyzing the iron-based materials such as stainless steel selected by the present inventor as the material with the minimum required strength, it has been concluded that it is preferable to design with the following specifications (see Figure 2).

壁材7の中心間距離L :0,03<L≦0.5(mm) アーチ面8の最大高さ1−4 :(1,03<H≦ i、o(mm) 壁材7の厚さB :  0.002< B≦ 0.25  ←I)アーチ
面8の中央部厚さt :  0,001 < t ≦ 0.35  (mm)
アーチ面8の受熱側曲率半径R1 : R1’a 2L (am) アーチ面8の受熱側反対面゛の曲率半径R2:R2≦R
1 アーチ面8と壁材7どの接続部10曲率半径r”1:B
/2≦ r1≦L/2(ml゛) 7−チ而8相nの接続部9曲率半径r2:r1≦ r2
≦R2(ml) 更に、本発明者が解析したところによれば、以下に示す
諸元を有する酸化ジルコニウム(ZrO2)で約400
℃の壁面湿度振幅(最高温度と(y低温度との差)を得
ることができ、2.5〜3%の燃費向上を達成でさた。
Distance between centers of wall material 7 L: 0,03<L≦0.5 (mm) Maximum height of arch surface 8 1-4: (1,03<H≦ i, o (mm) Thickness of wall material 7 Thickness B: 0.002< B≦0.25 ←I) Thickness at the center of arch surface 8 t: 0,001<t≦0.35 (mm)
Radius of curvature R1 of the arch surface 8 on the heat receiving side: R1'a 2L (am) Radius of curvature R2 of the opposite surface of the arch surface 8 on the heat receiving side: R2≦R
1 Arch surface 8 and wall material 7 Connection part 10 Radius of curvature r”1:B
/2≦ r1≦L/2 (ml゛) 7-ch 8-phase n connection 9 radius of curvature r2: r1≦ r2
≦R2 (ml) Furthermore, according to the analysis by the present inventor, zirconium oxide (ZrO2) having the following specifications has a
It was possible to obtain the wall humidity amplitude (difference between the maximum temperature and the (y-low temperature) in degrees Celsius) and achieve a fuel efficiency improvement of 2.5 to 3%.

また窒化珪素(SitN4)では約120℃の温度振幅
を確保でき、約1%の燃費向上を図ることができた。
Furthermore, with silicon nitride (SitN4), a temperature amplitude of approximately 120° C. could be secured, and fuel efficiency could be improved by approximately 1%.

記 H=  1.0mm、  L −1,2mm、  B−
0,2mm、    t  =0.25n+m  、 
 Rt  =4mm  、、rt  =  0.5mm
、   r2−0.8mm 第2図には変形例が示されており、図示づるようにアー
チ面8は、その中央部から壁材7側に向かって順次肉厚
を増すように形成しても良い。このようにづれば、更に
受熱部分の低熱容量化を確保できる。また壁材7とアー
チ面8との接続部分10については、肉jワが厚くなっ
て構造強度を高めることができる。
Note H = 1.0mm, L -1.2mm, B-
0.2mm, t = 0.25n+m,
Rt = 4mm, rt = 0.5mm
, r2-0.8mm A modified example is shown in FIG. 2, and as shown in the figure, the arch surface 8 may be formed so that the thickness increases gradually from the center toward the wall material 7 side. good. In this way, it is possible to further reduce the heat capacity of the heat receiving portion. Furthermore, the connecting portion 10 between the wall material 7 and the arch surface 8 has a thick wall, thereby increasing the structural strength.

尚、ハニカム構造については、六角形状に限らず、四角
形、五角形、六角形等であっても良い。
Note that the honeycomb structure is not limited to a hexagonal shape, and may be square, pentagonal, hexagonal, or the like.

[発明の効果] 以上型するに本発明によれば次のような優れた゛  効
果を発揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

温度変化を受ける機械要素の表面を被覆して受゛熱面を
形成する薄膜状の表皮と、機械要素の表面上に着座して
表皮を支持しつつこれら間に断熱空間を区画形成する薄
膜状の構造材とを一体的に形成し−(構成したので、全
体を薄膜状に形成したことにより受熱部分を低熱容量化
して熱サイクルに追従させて湿度変化さVることができ
ると共に、この低熱容量の暑膜で囲lυだ断熱空間で機
械要素に対する必要十分な断熱効果を確保できる。また
薄膜化により、熱の流れに対する絞り効果を確保して、
表皮、構造材を介してのは械要素への伝熱を規制し断熱
作用を得ることができる。そしてこのような薄膜化横道
を、表皮と構造材どの構成で高効率な構造強度で溝築す
ることができる。
A thin film-like skin that covers the surface of a mechanical element that is subject to temperature changes to form a heat-receiving surface, and a thin film-like skin that sits on the surface of the mechanical element to support the skin and define a heat-insulating space between them. Since the structure is formed integrally with the structural material of It is possible to secure the necessary and sufficient insulation effect for the mechanical elements in the insulation space surrounded by a thermal membrane with a high heat capacity.Also, by making the membrane thinner, it can ensure the throttling effect on the heat flow.
Heat insulation can be obtained by regulating heat transfer to mechanical elements through the skin and structural materials. Such a thin-film cross-channel can be constructed with high efficiency and structural strength, depending on the composition of the skin and structural materials.

殊に、断熱空間に外圧を支承づる加圧ガスを封入して断
熱体に作用する外圧を見掛け上小さくすることができ、
必要強度を補って断熱体の薄膜化を達成することができ
る。
In particular, the external pressure acting on the heat insulator can be reduced by filling the heat insulating space with pressurized gas that supports the external pressure.
By supplementing the necessary strength, it is possible to make the heat insulator thinner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は木宛明q−好適−実施例における圧力状態を示
す要部拡大断面図、第2図は本発明の好適一実施例の構
造を示す要部拡大断面図、第3図は他の実施例の構造を
示す要部拡大断面図、第4図はその全体を示す一部破断
斜視図、第5図は圧力の作用と熱の流れを説明する図、
第6図は圧力の作用による表皮の状態を示す要部拡大断
面図、第7図は機械要素としてのディーピル式内燃機関
のピストンl\の取付は状態を示す側面図、第8図はデ
ィーゼル式内燃機関のサイクルと壁面温度及びシリンダ
内圧力どの関係を示すグラフ、第9図はディーゼル式内
燃機関のサイクルと壁面温度どの関係を示すグラフ、第
10図は吸気行程終了時のガス温と体積効率とのr!A
係を示すグラフ、第11図は各種断熱構造と゛ 燃費と
の関係を示すグラフ、第12図は従来の断熱構造を適用
したディービル式内燃機関のピストンを示ず側断面図で
ある。 図中、1は機械要素、2はその表面、3は表皮、4は断
熱空間、5は構造材、7は壁材、8はアーヂ面である。 特許出願人  いtず自動車株式会社 代理人弁理士 絹  谷  信  維 第2図 第3図 工 第6図 第7図 顯気   虜  ≦達  排気 Q少、扼デ寸茅呈φ望ト了11−ガ文占為kc℃)第1
1図
FIG. 1 is an enlarged cross-sectional view of the main part showing the pressure state in a preferred embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the main part showing the structure of a preferred embodiment of the present invention, and FIG. FIG. 4 is a partially cutaway perspective view showing the entire structure, FIG. 5 is a diagram illustrating the action of pressure and the flow of heat,
Figure 6 is an enlarged sectional view of the main part showing the state of the skin due to the action of pressure, Figure 7 is a side view showing the installation state of the piston l\ of a deep-pil type internal combustion engine as a mechanical element, and Figure 8 is a diesel type internal combustion engine. A graph showing the relationship between the internal combustion engine cycle, wall temperature, and cylinder pressure. Figure 9 is a graph showing the relationship between the cycle and wall temperature of a diesel internal combustion engine. Figure 10 is the gas temperature and volumetric efficiency at the end of the intake stroke. Tono r! A
Fig. 11 is a graph showing the relationship between various heat insulating structures and fuel efficiency, and Fig. 12 is a side sectional view, without showing the piston, of a Deville internal combustion engine to which a conventional heat insulating structure is applied. In the figure, 1 is a mechanical element, 2 is its surface, 3 is a skin, 4 is a heat insulating space, 5 is a structural material, 7 is a wall material, and 8 is an arch surface. Patent Applicant Itzu Jidosha Co., Ltd. Representative Patent Attorney Nobuo Kinutani Fig. 2 Fig. 3 Fig. 6 Fig. 7 Wen Zhanwei kc℃) 1st
Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)温度変化を受ける機械要素の表面を被覆して受熱
面を形成する薄膜状の表皮と、上記機械要素の表面上に
着座して上記表皮を支持しつつこれら間に断熱空間を区
画形成する薄膜状の構造材とを一体的に形成すると共に
、上記断熱空間に外圧を支承する加圧ガスを封入したこ
とを特徴とする断熱体。
(1) A thin film-like skin that covers the surface of a mechanical element that is subject to temperature changes to form a heat-receiving surface, and a thin film-like skin that sits on the surface of the mechanical element to support the skin and define a heat-insulating space between them. What is claimed is: 1. A heat insulating body, characterized in that the heat insulating body is integrally formed with a thin film-like structural material, and the heat insulating space is filled with pressurized gas that supports external pressure.
(2)上記薄膜状の表皮及び構造材が、圧縮強度の高い
断熱性材料で形成された前記特許請求の範囲第1項記載
の断熱体。
(2) The heat insulator according to claim 1, wherein the thin film skin and the structural material are made of a heat insulating material with high compressive strength.
(3)上記構造材が、上記表皮で受けた熱の上記機械要
素への伝達を規制するために、表皮側よりも機械要素側
で薄く形成された前記特許請求の範囲第1項または第2
項いずれかの項に記載の断熱体。
(3) Claim 1 or 2, wherein the structural material is formed thinner on the machine element side than on the skin side in order to restrict the transfer of heat received by the skin to the mechanical element.
The heat insulator described in any of the paragraphs.
(4)上記構造材が、上記機械要素の表面上に沿ってハ
ニカム構造を形成する薄膜状の壁材で構成された前記特
許請求の範囲第1項〜第3項いずれかの項に記載の断熱
体。
(4) The structure according to any one of claims 1 to 3, wherein the structural material is a thin film wall material forming a honeycomb structure along the surface of the mechanical element. Thermal insulation.
(5)上記表皮が、ハニカム構造を形成する薄膜状の上
記壁材間に掛け渡される薄膜状のアーチ面を集合して構
成され、これら壁材と一体的に形成された前記特許請求
の範囲第4項記載の断熱体。
(5) The above-mentioned claim, wherein the skin is constituted by a collection of thin film-like arch surfaces that are stretched between the thin film-like wall materials forming a honeycomb structure, and is formed integrally with these wall materials. The heat insulator according to item 4.
JP11067487A 1987-05-08 1987-05-08 Heat insulator Pending JPS63275892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067487A JPS63275892A (en) 1987-05-08 1987-05-08 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067487A JPS63275892A (en) 1987-05-08 1987-05-08 Heat insulator

Publications (1)

Publication Number Publication Date
JPS63275892A true JPS63275892A (en) 1988-11-14

Family

ID=14541582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067487A Pending JPS63275892A (en) 1987-05-08 1987-05-08 Heat insulator

Country Status (1)

Country Link
JP (1) JPS63275892A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187853A (en) * 1975-01-30 1976-07-31 Mitsubishi Electric Corp DANNET SUZAIRYO
JPS5511833A (en) * 1978-07-11 1980-01-28 Hitachi Chemical Co Ltd Laminated prepreg mica sheet body and making method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187853A (en) * 1975-01-30 1976-07-31 Mitsubishi Electric Corp DANNET SUZAIRYO
JPS5511833A (en) * 1978-07-11 1980-01-28 Hitachi Chemical Co Ltd Laminated prepreg mica sheet body and making method thereof

Similar Documents

Publication Publication Date Title
JPS63275892A (en) Heat insulator
US4838235A (en) Heat-insulating engine structure and method of manufacturing the same
JPS6142194B2 (en)
JPS63280996A (en) Heat-insulating structure
JPS63275891A (en) Heat insulator
JPS63280997A (en) Heat-insulating structure
JPS63280998A (en) Heat-insulating structure
JPS63280995A (en) Heat-insulating structure
JP4135608B2 (en) Piston engine
JPH0631673B2 (en) Insulation
JPS63275893A (en) Heat-insulating structure
JPS63149498A (en) Heat-insulating structure
JP3091049B2 (en) Heat shielding gasket and combustion chamber structure of engine using the same
JPS61119892A (en) Heat-insulating structure of heat engine, etc.
JPH0555748B2 (en)
JPS61106677U (en)
JP2540878B2 (en) Insulation engine structure
JPH01318750A (en) Structure of insulated piston
JPH03179153A (en) Structure of insulated engine
JPS61119893A (en) Heat-insulating structure of heat engine, etc.
JPH0738641U (en) Cylinder liner
JPS6330074Y2 (en)
JP4216205B2 (en) Cylinder block
JPH0689710B2 (en) Insulation engine structure
JPH07109176B2 (en) Insulation engine structure