JPS63275207A - Antenna apparatus - Google Patents

Antenna apparatus

Info

Publication number
JPS63275207A
JPS63275207A JP11001487A JP11001487A JPS63275207A JP S63275207 A JPS63275207 A JP S63275207A JP 11001487 A JP11001487 A JP 11001487A JP 11001487 A JP11001487 A JP 11001487A JP S63275207 A JPS63275207 A JP S63275207A
Authority
JP
Japan
Prior art keywords
phase
error
electric field
error correction
phase shifter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001487A
Other languages
Japanese (ja)
Inventor
Isamu Chiba
勇 千葉
Shinichi Sato
眞一 佐藤
Seiji Mano
真野 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11001487A priority Critical patent/JPS63275207A/en
Publication of JPS63275207A publication Critical patent/JPS63275207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To correct the error of a composite electric field by providing a beam direction error correction processor, which changes the setting of some elements among divided antenna groups so as to minimize the error electric field of the whole divided antenna. CONSTITUTION:The beam direction error correction processor 7, which adjusts the set phase of phase shifters Ph1, Ph2,..., PhN so that the output signal phases of a first composer 1 coincide with each other, is provided between a beam control processor 5 and a phase shifter drive circuit 6. Then, the beam direction error correction processor 7 changes the setting of some elements among the divided antenna groups Ea1, Ea2,...EaN so as to correct the error electric field of the whole divided antenna. Accordingly, a deep zero point is formed in the desired direction of a monopulse difference pattern as the output of a 180 deg. hybrid. Thus, the direction error of the monopulse difference pattern due to a quantized phase error can be decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数個の素子アンテナから入射あるいは放
射される電波の位相を変えて、アンテナ全体としての合
成ビーム走査を行うアンテナ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an antenna device that performs combined beam scanning of the entire antenna by changing the phase of radio waves incident or radiated from a plurality of element antennas. be.

〔従来の技術〕[Conventional technology]

第4図は例えば日経エレクトロニクス1972.7゜1
7pp84〜101  に示されたものを参考にして書
いた従来のアンテナ装置の構成を示す図である。
Figure 4 shows, for example, Nikkei Electronics 1972.7゜1
FIG. 7 is a diagram showing the configuration of a conventional antenna device, which was written with reference to the one shown in No. 7 pp. 84 to 101.

図において* Ea’ t F!a2r、 ”’e B
11Nは素子アンテナ。
In the figure * Ea' t F! a2r, ”'e B
11N is an element antenna.

Pfil 、 pH2、・・・、 PlINはディジタ
ル移相器、(11,+21はそれぞれη個の素子を合成
する第1の合成器。
Pfil, pH2, . . . , PlIN is a digital phase shifter, (11, +21 is a first synthesizer that synthesizes η elements, respectively.

(3)は第2の合成器としての1800ノ1イブリツド
、PSは18G’/−イブリッド(3)の相信号出力端
子、  Pdは180″/Sイブリツド(3)の差信号
出力端子、(4)は受信ffl、 (51はビーム制御
プロセッサ、(6)は移相器駆動回路である。
(3) is a phase signal output terminal of 1800-1 hybrid as the second combiner, PS is a phase signal output terminal of 18G'/- hybrid (3), Pd is a difference signal output terminal of 180''/S hybrid (3), and (4) ) is a receiving ffl, (51 is a beam control processor, and (6) is a phase shifter drive circuit.

次に動作について説明する。Next, the operation will be explained.

素子アンテナBa1 、 Ba2 、・・・、 BaN
  で受信した電波信号は移相器Ph1 、 Pfi2
 、・・・、 PhNによって位相を変えられる。その
後1合成器(1+ 、 (21で上記電波信号はη個ず
つ合成される。この合成後の信号をそれぞれ81 、8
2とする。次段の180°ハイブリツド(3)の沌信号
出力端子P8からはi91+82なる信号が、差信号出
力端子Pdからは81−82なる信号が出力される。上
記ハイブリッドから出力された信号は受信機(4)に伝
送される。電波の到来方向を検知する場合2通常、この
2つの信号の比(S1+82)/(81−82)の振幅
9位相の情報を基に検知を行なう。このとき、ビーム制
御プロセッサ(5)は。
Element antenna Ba1, Ba2,..., BaN
The radio wave signals received are passed through phase shifters Ph1 and Pfi2.
,..., the phase can be changed by PhN. After that, the above radio wave signals are combined by 1 combiner (1+, (21) by η pieces. The combined signals are 81 and 8
Set it to 2. A signal i91+82 is output from the chaotic signal output terminal P8 of the next-stage 180° hybrid (3), and a signal 81-82 is output from the difference signal output terminal Pd. The signal output from the hybrid is transmitted to a receiver (4). When detecting the direction of arrival of a radio wave, detection is normally performed based on information on the amplitude and 9 phases of the ratio (S1+82)/(81-82) of these two signals. At this time, the beam control processor (5).

ビーム走査方向に応じて移相器Ph1 、 Ph2 、
・・・、 PhNの設定量を計算し、その結果に従って
移相器駆動回路(4)は移相器Ph1 、 Ph2 、
・・・、 PhNを設定する。例えば任意の方向θSの
利得を最大にする場合、上記方向の素子アンテナBa1
.Ea2y・・・、 BaNの受信電界の位相をPl 
、 P2 、・・・、PNとするとこれと共相の位相Q
l、Q2.・・・、QN(Q1=−Pl)の位相変化量
を各ディジタル移相器に与えることになる。ディジタル
移相器のビット数をMとすると最小位相変化量θBは第
il1式で与えられる。
Depending on the beam scanning direction, phase shifters Ph1, Ph2,
..., calculates the setting amount of PhN, and according to the result, the phase shifter drive circuit (4) operates the phase shifters Ph1, Ph2,
..., Set PhN. For example, when maximizing the gain in an arbitrary direction θS, the element antenna Ba1 in the above direction
.. Ea2y..., the phase of the received electric field of BaN is Pl
, P2 , ..., PN, the phase Q in phase with this is
l, Q2. ..., a phase change amount of QN (Q1=-Pl) is given to each digital phase shifter. When the number of bits of the digital phase shifter is M, the minimum phase change amount θB is given by the formula il1.

θB = 56072”            il
+このディジタル移相器を用いた場合、実際に設定され
る位相q1は第(2)式で与えられる。
θB = 56072”il
+When this digital phase shifter is used, the actually set phase q1 is given by equation (2).

qi=(Qi/θB)xθB(2) (〔〕は最も近い整数を表わす) 〔発明が解決しようとする問題点〕 従来のアンテナ装置は以上のように構成されているので
1位相設定に次の第(3)式で茨わす誤差e1が生じる
ことになる。
qi=(Qi/θB)xθB(2) ([ ] represents the nearest integer) [Problem to be solved by the invention] Since the conventional antenna device is configured as described above, one phase setting and the next An error e1 is caused by the equation (3).

a1= qi −Qi            (3)
上記e1は量子化位相誤差と呼ばれる。この量子化位相
誤差e1によってモノノくルス差ノくターンの方向誤差
、サイドロープ上昇が起こる。
a1=qi −Qi (3)
The above e1 is called a quantization phase error. This quantization phase error e1 causes a direction error in the turn due to the mono-curse difference, and a rise in the side rope.

この発明は上記のような問題点を解消するためになされ
たもので、上記の量子化位相誤差によるモノパルス差パ
ターンの方向誤差を軽減するアンテナ装置を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain an antenna device that reduces the direction error of a monopulse difference pattern caused by the above-mentioned quantization phase error.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るアンテナ装置は2分割されたアンテナ群
の中のいくつかの素子の設定を2分割されたアンテナ全
体としての誤差電界を最小にするように変えるビーム方
向誤差補正プロセッサを設けたものである。
The antenna device according to the present invention is provided with a beam direction error correction processor that changes the settings of some elements in the two-divided antenna group so as to minimize the error electric field of the entire two-divided antenna. be.

〔作用〕[Effect]

この発明におけるアンテナ装置はビーム方向誤差補正プ
ロセッサによ多分割されたアンテナ群の中のいくつかの
素子の設定を1分割されたアンテナ全体としての誤差電
界を補正するように変えるたり、  tao°ハイブリ
ッドの出力としてのモノパルス差パターンの所望の方向
に深い零点が形成される。
The antenna device according to the present invention uses a beam direction error correction processor to change the settings of some elements in a multi-divided antenna group so as to correct the error electric field of the entire one-divided antenna, A deep zero is formed in the desired direction of the monopulse difference pattern as the output of .

〔発明の実施例〕[Embodiments of the invention]

以ド、この発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、(7)はビーム制御プロセッサ(5)
と移相器駆動回路(6)の間に設けられたビーム方向誤
差補正プロセッサであシ、その他は第4図に示す従来の
装置と同様なものである。
In Figure 1, (7) is the beam control processor (5)
The beam direction error correction processor is provided between the phase shifter drive circuit (6) and the phase shifter drive circuit (6), and the rest is the same as the conventional device shown in FIG.

つぎに上記ビーム方向誤差補正プロセッサ(7)の動作
について説明する。
Next, the operation of the beam direction error correction processor (7) will be explained.

第2図は第4図に2けるアレーアンテナの1〜η個の素
子のθS方向の受信電界ベクトルを表わす図である。図
中、実線は量子化位相を与えた場合の電界ベクトル、破
線はアナログ位相を与えた場合の電界ベクトルである。
FIG. 2 is a diagram showing received electric field vectors in the θS direction of 1 to η elements of the array antenna shown in FIG. 4. In the figure, the solid line is an electric field vector when a quantization phase is given, and the broken line is an electric field vector when an analog phase is given.

量子化位相誤差のため、誤差電界ベクトルBrが生じる
。このErを補正するために9次式で示されるn個の素
子の設定を1図中φで示される量が正の場合はθBだけ
遅らせ、φが負の場合は進ませれば良い。
Due to the quantization phase error, an error electric field vector Br arises. In order to correct this Er, it is sufficient to delay the setting of n elements expressed by the 9th order equation by θB when the amount indicated by φ in FIG. 1 is positive, and advance it when φ is negative.

これによってF!r #Oとなシアナログ位相を与えた
場合の合成電界との誤差が補正される。従って、ビーム
を08方向に走査した場合、θS方向の180°ハイブ
リツドの出力端子Pdからの出力が補正前に比べて大幅
に小さくなる。即ち、信号比(81+82 )/(81
+82 )が犬きくな凱レーダシステムとして探知能力
が高くなる。
With this, F! The error with the composite electric field when a shear analog phase of r #O is given is corrected. Therefore, when the beam is scanned in the 08 direction, the output from the 180° hybrid output terminal Pd in the θS direction becomes significantly smaller than before correction. That is, the signal ratio (81+82)/(81
+82) increases the detection ability as the Inukikuna Gai radar system.

以上の手順を第3図の70−チャートに示す。The above procedure is shown in chart 70 of FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればビーム方向誤差補正プ
ロセッサによって1位相設定を変えることによシ2合成
電界の誤差を補正するので、装置が安価にでき、また、
a度の高いものが得られる効果がある。
As described above, according to the present invention, the beam direction error correction processor corrects the error in the two combined electric fields by changing the first phase setting, so the device can be made inexpensive, and
This has the effect of obtaining a product with a high degree of a.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるアンテナ装置の構成
を表わす図、第2図は量子化位相を与えた場合の電界ベ
クトルとアナログ位相を与えた場合の電界ベクトルの状
態を表わす図、第3図はこの発明の実施例を表わしたフ
ローチャート、第4図は従来の発明によるアンテナ装置
の構成を表わす図である。 図中符号、  EaL”a2+・・・、 BaNは素子
アンテナ。 pH1、Ph2 、・・・、 PhNは移相器、 11
1 、 +21は合成器、(3)は180°ハイブリツ
ド、(4)は受信機、(5)はビーム制御プロセッサ、
(6)は移相器駆動回路、(7)はビーム方向誤差補正
プロセッサである。 なお9図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the configuration of an antenna device according to an embodiment of the present invention, FIG. FIG. 3 is a flowchart showing an embodiment of the present invention, and FIG. 4 is a diagram showing the configuration of an antenna device according to the conventional invention. Symbols in the figure, EaL"a2+..., BaN are element antennas. pH1, Ph2,..., PhN are phase shifters, 11
1, +21 is a combiner, (3) is a 180° hybrid, (4) is a receiver, (5) is a beam control processor,
(6) is a phase shifter driving circuit, and (7) is a beam direction error correction processor. Note that the same reference numerals in Figure 9 indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の素子アンテナと、この素子アンテナにそれぞれつ
ながれた複数の移相器と、この移相器を通過後の上記素
子アンテナの出力を合成する複数個の第1の合成器と、
この第1の合成器の出力をさらに合成する第2の合成器
と、この第2の合成器に接続された受信機と、上記移相
器を駆動する移相器駆動回路と、上記移相器の設定位相
を計算するビーム制御プロセッサを有するアンテナ装置
において、上記第1の合成器の出力信号位相が一致する
ように上記移相器の設定位相調整を行うビーム方向誤差
補正プロセッサを上記ビーム制御プロセッサと上記移相
器駆動回路との間に設けたことを特徴とするアンテナ装
置。
a plurality of element antennas, a plurality of phase shifters respectively connected to the element antennas, and a plurality of first combiners that combine the outputs of the element antennas after passing through the phase shifters;
a second combiner that further combines the outputs of the first combiner; a receiver connected to the second combiner; a phase shifter drive circuit that drives the phase shifter; In the antenna device, the beam direction error correction processor adjusts the phase setting of the phase shifter so that the output signal phase of the first synthesizer matches the beam control processor. An antenna device provided between a processor and the phase shifter drive circuit.
JP11001487A 1987-05-06 1987-05-06 Antenna apparatus Pending JPS63275207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001487A JPS63275207A (en) 1987-05-06 1987-05-06 Antenna apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001487A JPS63275207A (en) 1987-05-06 1987-05-06 Antenna apparatus

Publications (1)

Publication Number Publication Date
JPS63275207A true JPS63275207A (en) 1988-11-11

Family

ID=14524935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001487A Pending JPS63275207A (en) 1987-05-06 1987-05-06 Antenna apparatus

Country Status (1)

Country Link
JP (1) JPS63275207A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195762A (en) * 1975-02-19 1976-08-21
JPS57178170A (en) * 1981-04-27 1982-11-02 Mitsubishi Electric Corp Phased array radar
JPS59135904A (en) * 1983-01-25 1984-08-04 Mitsubishi Electric Corp Electronic scanning antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195762A (en) * 1975-02-19 1976-08-21
JPS57178170A (en) * 1981-04-27 1982-11-02 Mitsubishi Electric Corp Phased array radar
JPS59135904A (en) * 1983-01-25 1984-08-04 Mitsubishi Electric Corp Electronic scanning antenna

Similar Documents

Publication Publication Date Title
EP0919828B1 (en) Radar apparatus
US10979117B2 (en) Method, system and apparatus for beam forming in a radio frequency transceiver with reduced complexity
US6630905B1 (en) System and method for redirecting a signal using phase conjugation
JP3461911B2 (en) Phased array antenna
US10374308B2 (en) Signal distribution network
JP2008005063A (en) Antenna device
JP2001166029A (en) Dbf radar device
US11431400B2 (en) Method and apparatus for forming a plurality of beamformed signals using a plurality of received signals
JP2003232852A (en) Radar device
JPS63275207A (en) Antenna apparatus
JP4782090B2 (en) Wireless transmitter and wireless transmission method
JP4850222B2 (en) Correction method of offset amount in phased array radar
JPH1197922A (en) Array antenna system
JP2003168912A (en) Antenna assembly
JP3181415B2 (en) Radar equipment
JP2010068482A (en) Array antenna apparatus
JPH1098326A (en) Method for reducing bias error of n-port mode former of batler matrix form and its method
JP2550707B2 (en) Phased array radar
Biswas et al. An ultra-fast method for designing hybrid phase-shifting surfaces
US20230129253A1 (en) Reconfigurable phase array
JPH08148923A (en) Method for detecting polarization plane and polarization control method in satellite communication
JPH08248122A (en) Radar receiver
US10284271B1 (en) Method, system and device for providing phase shifted signals to an array of antennas for beam steering
JP2001136016A (en) Beam scanning type antenna system
JPH02111109A (en) Array antenna system