JPS63274349A - Number of pole change type motor - Google Patents
Number of pole change type motorInfo
- Publication number
- JPS63274349A JPS63274349A JP10555987A JP10555987A JPS63274349A JP S63274349 A JPS63274349 A JP S63274349A JP 10555987 A JP10555987 A JP 10555987A JP 10555987 A JP10555987 A JP 10555987A JP S63274349 A JPS63274349 A JP S63274349A
- Authority
- JP
- Japan
- Prior art keywords
- pole
- poles
- rotor
- winding
- skew
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004804 winding Methods 0.000 claims abstract description 43
- 239000004020 conductor Substances 0.000 claims abstract description 20
- 230000006698 induction Effects 0.000 abstract description 9
- 230000001360 synchronised effect Effects 0.000 abstract description 9
- 239000011295 pitch Substances 0.000 abstract 2
- 230000007659 motor function Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Landscapes
- Induction Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は低速駆動時のトルク特性を改善した極数変換形
電動機に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a pole-converting electric motor with improved torque characteristics during low-speed driving.
(従来の技術)
近年、インバータによる電動機の可変速運転が進んでお
り、その可変速範囲も1:100以上に広範囲化するこ
とが要望されている。特に最近では、hI変速範囲の高
範囲化のみならず、ダイレクトドライブ等の低速で高ト
ルクを必要とする用途も増大し、広い速度範囲で高トル
クが得られる電動機が求められている。しかしながら、
インバータにより誘導電動機を駆動した場合には、低速
域でのトルク低下を避けられないため、単一極数では可
変速範囲を十分に拡大することができないのが実情であ
った。(Prior Art) In recent years, variable speed operation of electric motors using inverters has been progressing, and there is a demand for widening the variable speed range to 1:100 or more. Particularly recently, not only the hI speed range has been increased, but also applications such as direct drives that require high torque at low speeds have increased, and there is a demand for electric motors that can obtain high torque over a wide speed range. however,
When an induction motor is driven by an inverter, a decrease in torque in the low speed range cannot be avoided, so the fact is that the variable speed range cannot be sufficiently expanded with a single pole number.
そこで、との様な広い速度範囲で使用する電動機として
、例えば4/32極等の大きな極数比の極数切換可能な
電機子巻線を備えた極数変換形誘導電動機をインバータ
駆動することも考えられている。Therefore, as a motor used in a wide speed range such as , it is recommended to use an inverter to drive a pole change type induction motor equipped with a switchable armature winding having a large pole ratio such as 4/32 poles. is also being considered.
(発明が解決しようとする問題点)
しかしながら、斯かる極致変換形電動機を使用しても、
低速側の運転においてトルクが著しく低下するという欠
点があった。以下、その理由について説明する。(Problem to be solved by the invention) However, even if such a maximum conversion type electric motor is used,
The drawback was that the torque was significantly reduced during low-speed operation. The reason for this will be explained below.
一般に、誘導電動機のトルク(T)は次の式(1)によ
り表わされる。Generally, the torque (T) of an induction motor is expressed by the following equation (1).
Tcく r2 / ((s rl + r2
) ’+8’ (XI +X2 ) ” ) −
(1)rl ニー次抵抗 「2 :二次抵抗x1
ニー次漏れリアクタンス
xl :二次漏れリアクタンス
S:すべり
ところで、二次抵抗r2、漏れリアクタンスX1、xl
は筒形導体のスキュー量の関数であり、これらは次の式
(2)、(3)により表わされる。Tc r2 / ((s rl + r2
) '+8' (XI +X2) ” ) −
(1) rl Knee resistance “2: Secondary resistance x1
Knee leak reactance xl: Secondary leakage reactance S: Slip, secondary resistance r2, leakage reactance X1, xl
is a function of the skew amount of the cylindrical conductor, and these are expressed by the following equations (2) and (3).
r2 C< (1/I() ’ = (2)xl
+X20CA+ (B/に’ ) −−(3)ここ
で、Kはスキューファクターで、空隙磁束の高調波次数
をγ、スキュー量を電気角で表わした値をθとすると、
次の式(4)にて表わされる。r2 C<(1/I()' = (2)xl
+X20CA+ (B/ni') --(3) Here, K is the skew factor, γ is the harmonic order of the air gap magnetic flux, and θ is the skew amount expressed in electrical angle.
It is expressed by the following equation (4).
K m 5in(7θ/2)/(7θ/2) ・・・
−・(4)さて、従来のこの種の電動機では、スキュー
量は一般に固定子の1スロットピッチ分である。従って
、極ピッチが大きい高速極による運転時には、電気角で
表わしたスキュー量θは小さく、基本波成分に関するス
キューの影響はほとんど無視できるから、空隙磁束の高
調波成分に関するスキューの影響のみを考慮すればよい
。例えばスロット数が36、高速極の極数が4であると
き、空隙磁束のスロットの影響による高調波次数は17
.19となり、そのときのスキューファクターIくは、
17次に関しては0.059.19次に関しては−0,
052となって基本波成分のスキューファクター0.
995に比べて極めて小さな値となる。従って、スロッ
ト高調赫によるトルクは極めて小さく、異常トルクを抑
えて運転特性の向−Lを図り得る。K m 5in (7θ/2)/(7θ/2)...
-.(4) Now, in a conventional electric motor of this type, the amount of skew is generally one slot pitch of the stator. Therefore, when operating with high-speed poles with a large pole pitch, the skew amount θ expressed in electrical angle is small and the effect of skew on the fundamental wave component can be almost ignored, so only the effect of skew on the harmonic component of the air gap magnetic flux should be considered. Bye. For example, when the number of slots is 36 and the number of high-speed poles is 4, the harmonic order due to the influence of the slots on the air gap magnetic flux is 17.
.. 19, and the skew factor I at that time is
0.059 for the 17th order, -0 for the 19th order,
052, and the skew factor of the fundamental wave component is 0.
This value is extremely small compared to 995. Therefore, the torque due to the slot harmonic adjustment is extremely small, and it is possible to suppress abnormal torque and improve the driving characteristics.
しかしながら、低速極による運転時には、極ピッチが小
さいから、電気角で表わしたスキュー量θは大きく、基
本波成分に関するスキューの影響は無視することができ
なくなる。例えば32極で基本波成分に関するスキュー
ファクターKを求めると、0.705となり、この結果
、二次抵抗r2及び漏れリアクタンスXI、X2が大き
くなってトルクTが大幅に低下するのである。特に、す
ベリSが0に近い運転状態では、トルクTはスキューフ
ァクターにの2乗に略比例するため、トルクはスキュー
がない場合に比べて約半分になってしまう。However, during operation using low-speed poles, since the pole pitch is small, the skew amount θ expressed in electrical angle is large, and the influence of skew on the fundamental wave component cannot be ignored. For example, if the skew factor K regarding the fundamental wave component is determined for 32 poles, it will be 0.705, and as a result, the secondary resistance r2 and leakage reactances XI and X2 will increase, and the torque T will decrease significantly. In particular, in an operating state where the slip S is close to 0, the torque T is approximately proportional to the square of the skew factor, so the torque is approximately half of that in the case where there is no skew.
以上述べたように、従来の極数変換形電動機では、高速
側の運転特性を良好なものとするために、低速側の運転
時におけるトルク低下を避けることができないという問
題があったのである。As described above, in the conventional pole change type electric motor, there is a problem in that in order to improve the operating characteristics on the high speed side, it is impossible to avoid a decrease in torque during operation on the low speed side.
そこで、本発明の目的は、高速側の運転特性を損うこと
なく、低速側のトルク低下を防II−することができる
極致変換形電動機を提供するにある。SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a maximum conversion type electric motor that can prevent a decrease in torque on the low speed side without impairing the operating characteristics on the high speed side.
[発明の構成]
(問題点を解決するための手段)
本発明の極数変換形電動機は、固定子鉄心に極数変換可
能な電機子巻線を設けると共に、共通のシャフトに筒形
導体を備えた筒形回転子と複数個の突極を有する突極回
転子とを設け、前記筒形導体のスキュー量を前記電機子
巻線の低速極の極ピッチの偶数倍に設定したところに特
徴を有するものである。[Structure of the Invention] (Means for Solving the Problems) The pole changeable motor of the present invention includes an armature winding that can change the number of poles on a stator core, and a cylindrical conductor on a common shaft. A cylindrical rotor having a cylindrical rotor and a salient pole rotor having a plurality of salient poles are provided, and the skew amount of the cylindrical conductor is set to an even multiple of the pole pitch of the low speed poles of the armature winding. It has the following.
(作用)
高速側の運転時には、高速極による回転磁界と筒形導体
との間に生ずる誘導トルクによって誘導電動機として回
転する。この場合、筒形導体のスキュー量は高速極の極
ピッチに比べて十分に小さいから、電気角で表わしたス
キエーロθも小さく、従来と同様に異常トルクを抑えて
良好な運転特性を得ることができる。(Function) During high-speed operation, the motor rotates as an induction motor due to the induced torque generated between the rotating magnetic field by the high-speed pole and the cylindrical conductor. In this case, since the amount of skew of the cylindrical conductor is sufficiently small compared to the pole pitch of the high-speed pole, the schiero θ expressed in electrical angle is also small, making it possible to suppress abnormal torque and obtain good operating characteristics as in the conventional case. can.
一方、低速側の運転時には、筒形導体のスキュー量〇が
低速極の極ピッチの偶数倍となっていることからスキュ
ーファクターが0と弥っで式(2)、(3)から明らか
なように二次抵抗r2及び漏れリアクタンスX1+X2
が著しく大きくなるため、筒形回転子には誘導トルクT
がほとんど発生しない。しかし、突極回転子は複数個の
突極を有するから、低速極の回転磁界と突極回転子との
間で大きなリラクタンストルクが発生して同期電動機と
して回転する。On the other hand, during low-speed operation, the skew amount of the cylindrical conductor is an even number multiple of the pole pitch of the low-speed pole, so the skew factor is 0, which is clear from equations (2) and (3). to the secondary resistance r2 and leakage reactance X1+X2
becomes significantly large, so the cylindrical rotor has an induced torque T
rarely occurs. However, since the salient pole rotor has a plurality of salient poles, a large reluctance torque is generated between the rotating magnetic field of the low-speed pole and the salient pole rotor, and the rotor rotates as a synchronous motor.
(実施例)
以下、本発明の一実施例につき図面を参照して説明する
。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
まず、全体的構成を示す第1図において、1はモータフ
レーム、2は例えば36スロツトの固定子鉄心、3は固
定子鉄心に巻装した電機子巻線である。電機子巻線3は
例えば二重巻線構造により極数変換可能であって、4極
同心巻の高速側巻線3aと、32極の低速側巻線3bと
から構成されている。First, in FIG. 1 showing the overall configuration, 1 is a motor frame, 2 is a stator core with, for example, 36 slots, and 3 is an armature winding wound around the stator core. The armature winding 3 has a double winding structure, for example, so that the number of poles can be changed, and is composed of a high-speed side winding 3a of 4-pole concentric winding and a low-speed side winding 3b of 32 poles.
まず、高速側巻線3aにつき述べるに、これは一般的な
4極重ね巻により構成してあり、具体的な巻線配置を示
すと第3図に表わす通りである。First, the high-speed side winding 3a will be described. This is constituted by general four-pole overlapping winding, and the specific winding arrangement is shown in FIG. 3.
ここでU相巻線は、番号1,2.3,19.20゜21
の各スロット内の導体と番号10.11,12.28,
29.30の各スロット内の導体とでは電流の流れる方
向が逆になる結線である。また、V相巻線は、番号?、
8,9,25,26.27の各スロット内の導体と番号
16.17.1g。Here, the U-phase windings are numbers 1, 2.3, 19.20°21
The conductors in each slot and numbers 10.11, 12.28,
The connection is such that the direction of current flow is opposite to that of the conductor in each slot of 29.30. Also, is the V phase winding number? ,
Conductors in each slot of 8, 9, 25, 26.27 and number 16.17.1g.
34.35.36の各スロット内の導体とは逆方向の電
流が流れる結線である。そして、W相巻線は、番号13
,14,15.31,32.33の各スロット内の導体
と番号22,23.24.4゜5.6の各スロット内の
導体とは逆方向の電流が流れる結線である。また、低速
側巻線3bは、特公昭57−27654号公報に詳述さ
れたものと同一であって、第4図に示すように各スロッ
トにコイルが配置され、各相の上コイルと下コイルとで
は逆方向の電流が流れる結線となっている。This is a connection in which current flows in the opposite direction to the conductors in each slot of 34, 35, and 36. And the W phase winding is number 13
, 14, 15.31, 32.33 and the conductors in the slots numbered 22, 23, 24.4, 5.6 are wire connections in which current flows in opposite directions. The low-speed side winding 3b is the same as that detailed in Japanese Patent Publication No. 57-27654, with a coil arranged in each slot as shown in Fig. 4, and an upper coil and a lower coil for each phase. The wire is connected to the coil so that current flows in the opposite direction.
一方、第1図において、4はモータフレーム1に設けた
一対の軸受、5はこの軸受4に回転自在に支持させたシ
ャフトで、このシャフト5には1つの固定子鉄心2に対
して2個の回転子が同心に固定されている。1つは第2
図(A)に示すように周知の筒形導体6を備えた筒形回
転子7で、他の1つは第2図(B)に示すように外周面
にm数個の突極8を備えた突極回転子9である。筒形回
転子7の筒形導体6にはスキューが施されており、その
スキュー量は低速側巻線3bの極ピッチの偶数倍例えば
2倍に設定されている。また、突極回転子9は、鉄板を
外周に罠数個の突片を有する形状に打ち抜き、これを所
定枚数積層することにより軸方向に延びる形態の突極8
を有するように形成されたもので、この突極8の極数は
例えば低速側巻線3bの極数32と同数に設定している
。On the other hand, in FIG. 1, reference numeral 4 indicates a pair of bearings provided on the motor frame 1, and reference numeral 5 indicates a shaft rotatably supported by the bearing 4. The rotors of are fixed concentrically. one is second
As shown in Figure (A), a cylindrical rotor 7 is equipped with a well-known cylindrical conductor 6, and the other one is equipped with several m salient poles 8 on its outer peripheral surface as shown in Figure 2 (B). This is a salient pole rotor 9 equipped with a salient pole rotor 9. The cylindrical conductor 6 of the cylindrical rotor 7 is skewed, and the amount of skew is set to an even number multiple, for example twice, of the pole pitch of the low-speed winding 3b. Further, the salient pole rotor 9 is formed by punching an iron plate into a shape having several protruding pieces on the outer periphery and stacking a predetermined number of these pieces so that the salient poles 8 extend in the axial direction.
The number of salient poles 8 is set to be the same as the number of poles 32 of the low-speed winding 3b, for example.
次に、上記構成の作用につき説明する。高速側巻線3a
に通電すると、4極の回転磁界が形成され、筒形導体6
との間で誘導トルクを発生して筒形回転子7が回転して
出力がシャフト5から取出される。このとき、突極回転
子9にリラクタンストルクはほとんど発生せず、誘導ト
ルクにより通常のものと同様に良好なトルク特性を有す
る誘導電動機として回転する。Next, the operation of the above configuration will be explained. High speed side winding 3a
When energized, a four-pole rotating magnetic field is formed, and the cylindrical conductor 6
An induced torque is generated between the cylindrical rotor 7 and the cylindrical rotor 7, and output is taken out from the shaft 5. At this time, almost no reluctance torque is generated in the salient pole rotor 9, and due to the induction torque, the salient pole rotor 9 rotates as an induction motor having good torque characteristics like a normal rotor.
一方、低速側巻線3bに通電したときには、次のように
して同期速度で同期電動機として回転する。低速側巻線
3bによる起磁力分布は、例えばU相電流が1、V相及
びW相の各電流が−0,5のときには、第5図に示すよ
うになる。同図において、Nは実極を示し、■、■は実
極間に形成された虚極を示しており、計32極が形成さ
れている。この低速極の極数32は、回転子4の突極7
の極数32と同数であるから、同期速度付近で大きなリ
ラクタンストルクが発生し、結局、突極回転子9は同期
速度で回転して出力がやはりシャフト5から取出される
。この場合、筒形回転子7の筒形導体6には、低速極の
極ピッチの2倍に相当するスキューが施されていて電気
角で表したスキュー量θは2πとなるから、スキューフ
ァクターには基本波(γ−1)に対しては式(4)から
明らかなようにOとなり、筒形導体6との間で誘導トル
クは全く発生しない。この結果、突極回転子9に発生す
るリラクタンストルクのみにて同期電動機として画報す
るのである。On the other hand, when the low-speed winding 3b is energized, it rotates as a synchronous motor at a synchronous speed in the following manner. For example, when the U-phase current is 1 and the V-phase and W-phase currents are -0 and 5, the magnetomotive force distribution due to the low-speed side winding 3b is as shown in FIG. 5. In the figure, N indicates a real pole, and ■ and ■ indicate imaginary poles formed between the real poles, and a total of 32 poles are formed. The number of low-speed poles is 32, and the number of salient poles of the rotor 4 is 7.
Since the number of poles is the same as 32, a large reluctance torque is generated near the synchronous speed, and as a result, the salient pole rotor 9 rotates at the synchronous speed and the output is also taken out from the shaft 5. In this case, the cylindrical conductor 6 of the cylindrical rotor 7 is skewed by twice the pole pitch of the low-speed poles, and the skew amount θ expressed in electrical angle is 2π, so the skew factor is is O for the fundamental wave (γ-1) as is clear from equation (4), and no induced torque is generated between the cylindrical conductor 6 and the fundamental wave (γ-1). As a result, only the reluctance torque generated in the salient pole rotor 9 is used as a synchronous motor.
このように本実施例によれば、高速運転時にはスキュー
が有効に作用する誘導電動機として回転し、低速運転時
にはスキューを無効化してリラクタンストルクにより同
期電動機として大きなトルクで回転するので、高速域で
の優れた運転特性を維持しながら、従来問題とされてい
た低速域のトルク低下を招くことなく運転できる。しか
も、低速運転時にはすべりを生ずることなく同期速度で
定速回転するから、高速で目標位置まで運転し、低速運
転に切換えて位置決め制御を行う場合に、従来の誘導電
動機によるものに比べて極めて高精度の位置決め制御が
可能になる。In this way, according to this embodiment, during high-speed operation, the motor rotates as an induction motor with effective skew, and during low-speed operation, the skew is disabled and the motor rotates with a large torque as a synchronous motor using reluctance torque. While maintaining excellent driving characteristics, it can be operated without causing a decrease in torque in the low speed range, which has been a problem in the past. Moreover, during low-speed operation, it rotates at a constant synchronous speed without slipping, so when operating at high speed to a target position and then switching to low-speed operation to perform positioning control, it is extremely fast compared to conventional induction motors. Accurate positioning control becomes possible.
尚、上記実施例では固定子巻線を4/32極の極数変換
可能なfi’a成にしたが、極数比は4/30極や2/
20極等の他の極数比としても良いことは勿論であり、
また二重巻線方式により極数変換を行うものに限らず、
l1i−巻線方式にて極数変換を行うようにしたもので
あってもよいことは勿論である。更に、低速運転時には
回転子の位置を検出して電機子巻線に順次通電するいわ
ゆるスイッチドリラクタンスモークとして運転するよう
にしても1〕記実施例と同様な効果を得ることができる
ものである。In the above embodiment, the stator winding was made into a fi'a configuration that can convert the number of poles to 4/32 poles, but the pole number ratio could be changed to 4/30 poles or 2/32 poles.
Of course, other pole number ratios such as 20 poles may also be used.
In addition, it is not limited to those that change the number of poles using the double winding method.
Of course, the pole number conversion may be performed using the l1i-winding method. Furthermore, even if the rotor position is detected during low speed operation and the armature windings are sequentially energized to operate as a so-called switched reluctance smoke mode, the same effect as in the embodiment 1) can be obtained. .
[発明の効果コ
本発明は以上述べたように、極数変換可能な電機子巻線
と、籠形回転子と、突極回転子とを備え、籠形回転子の
スキュー量を電機子巻線の低速極の極ピッチの偶数倍に
設定したところに特徴を有し、これにて高速運転時には
スキューを生かして優れた運転特性にて運転できると共
に、低速運転時には大きなリラクタンストルクにより運
転できるようになるから、高速側の運転特性を損うこと
なく低速側のトルク特性を大幅に改汲することができる
という優れた効果を奏するものである。[Effects of the Invention] As described above, the present invention includes an armature winding that can change the number of poles, a cage rotor, and a salient pole rotor, and the skew amount of the cage rotor can be adjusted by changing the skew amount of the cage rotor. The characteristic is that the pitch of the low-speed poles of the line is set to an even number multiple of the pole pitch.This allows operation with excellent driving characteristics by taking advantage of the skew during high-speed operation, and allows operation with large reluctance torque during low-speed operation. Therefore, it is possible to significantly improve the torque characteristics on the low speed side without impairing the driving characteristics on the high speed side, which is an excellent effect.
図面は本発明の一実施例を示し、第1図は電動機の部分
断面図、第2図は回転子の部分断面図、第3図は高速側
巻線のコイル配置図、第4図は低速側巻線のコイル配置
図、第5図は低速側巻線の起磁力波形図である。
図面中、3は電機子巻線、3aは高速側巻線、3bは低
速側巻線、5はシャフト、7は籠形導体、7は籠形回転
子、8は突極、9は突極回転子である。The drawings show an embodiment of the present invention, in which Fig. 1 is a partial cross-sectional view of the electric motor, Fig. 2 is a partial cross-sectional view of the rotor, Fig. 3 is a coil arrangement diagram of the high-speed side winding, and Fig. 4 is a low-speed side winding. The coil arrangement diagram of the side winding, and FIG. 5 is a magnetomotive force waveform diagram of the low speed side winding. In the drawing, 3 is the armature winding, 3a is the high-speed side winding, 3b is the low-speed side winding, 5 is the shaft, 7 is the cage conductor, 7 is the cage rotor, 8 is the salient pole, and 9 is the salient pole. It is a rotor.
Claims (1)
共に、共通のシャフトに籠形導体を備えた籠形回転子と
複数個の突極を有する突極回転子とを設け、前記籠形導
体のスキュー量を前記電機子巻線の低速極の極ピッチの
偶数倍に設定したことを特徴とする極数変換形電動機。1. An armature winding whose number of poles can be changed is provided on the stator core, and a cage rotor having a cage conductor and a salient pole rotor having a plurality of salient poles are provided on a common shaft, 1. A pole-converting motor, characterized in that the skew amount of the cage conductor is set to an even multiple of the pole pitch of the low-speed poles of the armature winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10555987A JPS63274349A (en) | 1987-04-28 | 1987-04-28 | Number of pole change type motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10555987A JPS63274349A (en) | 1987-04-28 | 1987-04-28 | Number of pole change type motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63274349A true JPS63274349A (en) | 1988-11-11 |
Family
ID=14410901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10555987A Pending JPS63274349A (en) | 1987-04-28 | 1987-04-28 | Number of pole change type motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63274349A (en) |
-
1987
- 1987-04-28 JP JP10555987A patent/JPS63274349A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200186012A1 (en) | High acceleration rotary actuator | |
EP0467517B1 (en) | Dual-stator induction synchronous motor | |
US5631512A (en) | Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material | |
JP4926107B2 (en) | Rotating electric machine | |
US6700272B1 (en) | Reluctance motor with gearless step-down without electronic control of rotating field | |
US4393344A (en) | Squirrel cage induction motors | |
KR19990029801A (en) | Brushless DC Motor with Permanent Magnet | |
US5285124A (en) | Brushless induction synchronous motor with two stators | |
JP2799604B2 (en) | Switching reluctance motor and operating method thereof | |
US6891301B1 (en) | Simplified hybrid-secondary uncluttered machine and method | |
US20050073207A1 (en) | Electric motor windings | |
US20200274429A1 (en) | Tandem rotor servo motor | |
CN108712045B (en) | Synchronous switch reluctance motor | |
JPH0638475A (en) | Permanent magnet rotary electric machine, controlling method therefor, controller and electric motor vehicle using the same | |
JP2001186733A (en) | Induction motor | |
JP2002272067A (en) | Squirrel-cage rotor and motor using the squirrel-cage rotor | |
JP2001169517A (en) | Capacitor motor | |
JP2002247816A (en) | Induction starting synchronous motor | |
JP3422643B2 (en) | Synchronous motor | |
JPS63274349A (en) | Number of pole change type motor | |
JP2008178187A (en) | Polyphase induction machine | |
Xue et al. | Optimum Design of Self-Starting Capability for Two-Phase Double Stator Switched Reluctance Motor | |
JPH09168271A (en) | Synchronous motor and method of controlling the same | |
JPH08322171A (en) | Rotor pole for salient pole rotating machine | |
JPH1094232A (en) | Flat motor |