JPS63274344A - Commutator type rotary electric machine - Google Patents

Commutator type rotary electric machine

Info

Publication number
JPS63274344A
JPS63274344A JP10750087A JP10750087A JPS63274344A JP S63274344 A JPS63274344 A JP S63274344A JP 10750087 A JP10750087 A JP 10750087A JP 10750087 A JP10750087 A JP 10750087A JP S63274344 A JPS63274344 A JP S63274344A
Authority
JP
Japan
Prior art keywords
commutator
brushes
brush
shape memory
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10750087A
Other languages
Japanese (ja)
Inventor
Takeshi Shiga
剛 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10750087A priority Critical patent/JPS63274344A/en
Publication of JPS63274344A publication Critical patent/JPS63274344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Current Collectors (AREA)

Abstract

PURPOSE:To prevent burning due to overheating by forming at least one part of brushes conducting electricity through an armature while being slid and brought in contact with a commutator bar by a shape memory member, deforming the brushes when heat is generated by overcurrents and separating the brushes from the commutator bar. CONSTITUTION:A plurality of commutator bars 17 are mounted around a shaft 10 through an insulator 18, and connected to a rotor winding. Brushes 10 are slid and contacted in order to conduct electricity through the rotor winding. The brushes 19 consist of sliding contacting members 21 and thermal responding sections 20, and set up to a lower end plate 3 composed of an insulating material by screws 22 and are connected to a power supply. The thermal responding sections 20 are shaped by a non-return type shape memory alloy, and cushion materials 24 for vibrationproofing are attached. When a rotor is locked for some reason and brought to the state of overload during operation and overcurrents flow and the temperature of the rotor is brought to a fixed temperature, the thermal responding sections 20 are deformed, and the sliding contact sections 21 are separated from the commutator bars 17 and conduction is stopped. Accordingly, the lowering of insulating properties and burning due to over-heating are prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、過電流に対する保護機能を備えた整流子形回
転電機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a commutator type rotating electric machine having a protection function against overcurrent.

(従来の技術) 従来、例えば整流子モータにおいては、電機子コイルを
備えた回転子に、整流子片を円環状1千配没して各整流
子片を電機子コイルに接続すると共に、固定子に設けた
ブラシを前記整流子片に摺接させる構成になっていた。
(Prior Art) Conventionally, for example, in a commutator motor, 1,000 commutator pieces are arranged in an annular shape on a rotor equipped with an armature coil, each commutator piece is connected to the armature coil, and the rotor is fixed. The brush provided on the commutator was configured to slide into contact with the commutator piece.

(発明が解決しようとする問題点) 上記従来構成では、運転中に回転子が何等かの原因でロ
ックした状態になったり、過負4ニア状態になると、電
機子コイルに流れる電流が過大になることから、電機子
コイルが過熱してその絶縁被膜を劣化させて絶縁性を低
下させたり、最悪の場合には電機♀コイルを焼損してし
まう虞れすらあった。
(Problems to be Solved by the Invention) In the conventional configuration described above, when the rotor becomes locked for some reason during operation or becomes overloaded 4-near, the current flowing through the armature coil becomes excessive. As a result, there was a risk that the armature coil would overheat, deteriorating its insulating coating and lowering its insulation properties, or in the worst case, burning out the electric machine's female coil.

本発明はこのような問題点を解決しようとするもので、
従ってその目的は、電機子コイルが過熱状態になること
を未然に防止できて、過熱による絶縁性低下や焼損を防
止できる整流子形回転電機を提供するにある。
The present invention aims to solve these problems,
Therefore, the object is to provide a commutator-type rotating electric machine that can prevent the armature coil from becoming overheated and prevent insulation from decreasing or burning out due to overheating.

[発明の構成コ (問題点を解決するための手段) 本発明の整流子形回転電機は、ブラシの少なくとも一部
を形状記憶部材で形成し、前記ブラシに過電流が流れた
とき、にブラシが自己発熱により温度上昇して整流子片
から離間するように変形する構成としたものである。
[Configuration of the Invention (Means for Solving Problems)] A commutator type rotating electric machine of the present invention has at least a part of the brush formed of a shape memory member, and when an overcurrent flows through the brush, the brush is The structure is such that the temperature rises due to self-heating and deforms so as to separate from the commutator piece.

(作用) 回転子が何等かの原因でロック状態になったり、過負荷
状態になると、ブラシを通して電機子コイルに流れる電
流が過大になる。このときの過電流によって、ブラシは
自己発熱して温度上昇するが、ブラシの少なくとも一部
は形状記憶効果によって形成されているため、ブラシは
温度1−昇に伴う形状記憶効果によって整流子片から離
間するように変形して、電機子コイルへの通電が断たれ
る。
(Function) If the rotor becomes locked or overloaded for some reason, the current flowing through the brushes to the armature coil becomes excessive. Due to the overcurrent at this time, the brush self-heats and its temperature rises, but since at least a part of the brush is formed by the shape memory effect, the brush moves away from the commutator piece due to the shape memory effect as the temperature rises. The armature coils are deformed so as to be separated, and the current to the armature coils is cut off.

(実施例) 以下、本発明を直流整流子モータに適用した一実施例に
ついて、第1図乃至第6図を参照して説明する。まず全
体の縦断面図を示す第2図において、1は円筒状のモー
タフレームで、その内周面に界磁マグネット2が接菅固
定されている。そして、モータフレームlの下端面に取
着された下端板3の中央には、軸受嵌合筒部4か形成さ
れ、この軸受嵌合筒部4に軸受5が嵌着されている。
(Example) Hereinafter, an example in which the present invention is applied to a DC commutator motor will be described with reference to FIGS. 1 to 6. First, in FIG. 2 showing a longitudinal cross-sectional view of the entire motor, reference numeral 1 denotes a cylindrical motor frame, and a field magnet 2 is fixedly connected to the inner peripheral surface of the motor frame. A bearing fitting cylindrical portion 4 is formed at the center of the lower end plate 3 attached to the lower end surface of the motor frame l, and a bearing 5 is fitted into this bearing fitting cylindrical portion 4.

また、モータフレーム1の上端面に一体に形成された上
端板6の中央にも、軸受嵌合t71部7が形成され、こ
の軸受嵌合筒部7に軸受8が同行されている。そして、
これら両軸受5,8に回転子9の回転軸10が回転自在
に挿通支持されている。11は回転軸10に1茨青した
回転子鉄心で、その表面に絶縁層12が例えば絶縁性粉
体の焼付処理により形成され、スロットIlaには例え
ば3つの電機子コイル13が巻装されている。そして、
回転軸10には回転子鉄心11の両側からカラー14と
ワッシャ15が嵌1′?され、下側のワッシャ15にバ
リスタ16が取付けられている。17はバリスタ16の
下方に設けた例えば3個の整流子片で、各整流子片17
は、第1図に示すように円弧状に形成され、回転軸10
に1俣着された絶縁材製円筒体18の外周面に固むされ
ている。これら各整流子片17は電機子コイル13及び
バリスタ16と第3図に示すように接続されている。一
方、第1図において、19は整流子片17の両側に対称
配置した一対のブラシで、各ブラシ19は、形状記憶部
材により板状に形成した熱応動部20と、この熱応動部
20の先端に固着した摺接部21とから構成され、熱応
動部20の基部に形成した取付片部20aがねじ22に
よりモータフレーム1の下端板3に締付固定されている
。この場合、熱応動部20を構成する形状記憶部材とし
て、非可逆形(非復帰形)の形状記憶合金を用い、温度
上昇に伴う形状記憶効果によって一旦変形した形状が、
温度低下しても元の形状に戻らない構成としている。ま
た、熱応動部20及びねじ22は下端板3に対しits
気的に絶縁され、熱応動部20がねじ22を介して電源
23(第3図参照)に接続されている。而して、通常の
運転状態(熱応動部20の温度が第4図の変形開始温度
Tに達しない状態)では、ブラシ19の熱応動部20が
第1図に実線で示すように一直線状に延びて摺接部21
を整流子片17に摺接させた状態にする。一方、熱応動
部20の温度が変形開始温度T以上に上昇したときには
、熱応動部20が形状記憶効果によって第1図に二点鎖
線で示す如く摺接部21を整流子片17から離間させる
ように「<」字状に屈曲変形する構成となっている。こ
のときの屈曲角度θは約45″である。尚、熱応動部2
0の基部側には防振用のクッション祠24が取付けられ
ている。
Further, a bearing fitting t71 portion 7 is also formed at the center of the upper end plate 6 integrally formed on the upper end surface of the motor frame 1, and a bearing 8 is attached to this bearing fitting cylindrical portion 7. and,
A rotating shaft 10 of a rotor 9 is rotatably inserted into and supported by both bearings 5 and 8. Reference numeral 11 denotes a rotor core with one thorny blue on the rotating shaft 10. An insulating layer 12 is formed on the surface of the rotor core by, for example, baking treatment of insulating powder, and three armature coils 13 are wound in the slots Ila. There is. and,
A collar 14 and a washer 15 are fitted onto the rotating shaft 10 from both sides of the rotor core 11. A varistor 16 is attached to the washer 15 on the lower side. For example, three commutator pieces 17 are provided below the varistor 16, and each commutator piece 17
is formed in an arc shape as shown in FIG.
It is fixed to the outer circumferential surface of a cylindrical body 18 made of an insulating material, which is attached one length to the outside. Each of these commutator pieces 17 is connected to the armature coil 13 and the varistor 16 as shown in FIG. On the other hand, in FIG. 1, reference numeral 19 denotes a pair of brushes arranged symmetrically on both sides of the commutator piece 17, and each brush 19 includes a thermally responsive part 20 formed in a plate shape from a shape memory member, and a thermally responsive part 20 formed of a shape memory member. A mounting piece 20a formed at the base of the thermally responsive part 20 is fastened to the lower end plate 3 of the motor frame 1 with screws 22. In this case, an irreversible (non-returnable) shape memory alloy is used as the shape memory member constituting the thermally responsive part 20, and the shape once deformed due to the shape memory effect accompanying temperature rise is
It is designed so that it does not return to its original shape even if the temperature drops. Further, the thermally responsive part 20 and the screw 22 are connected to the lower end plate 3.
The thermally responsive portion 20 is electrically insulated and connected to a power source 23 (see FIG. 3) via a screw 22. Therefore, in a normal operating state (a state in which the temperature of the thermally responsive part 20 does not reach the deformation start temperature T shown in FIG. 4), the thermally responsive part 20 of the brush 19 is in a straight line as shown by the solid line in FIG. The sliding contact portion 21 extends to
is in sliding contact with the commutator piece 17. On the other hand, when the temperature of the thermally responsive part 20 rises above the deformation start temperature T, the thermally responsive part 20 separates the sliding contact part 21 from the commutator piece 17 as shown by the two-dot chain line in FIG. 1 due to the shape memory effect. It has a structure that bends and deforms in the shape of a "<" character. The bending angle θ at this time is approximately 45″.
A cushion shrine 24 for vibration isolation is attached to the base side of 0.

次に、上記構成の作用について説明する。通常の運転状
態即ち負荷が定格以下の運転状態においては、ブラシ1
9の熱応動部20が第1図に実線で示すように一直線状
に延びて摺接部21を整流子片17に摺接させた状態に
なっている。この状態では、電[23から電流がブラシ
19及び整流子片17を通して電機子コイル13に流れ
、これによって電機子コイル13と界磁マグネット2と
の間でトルクを発生して回転子9が回転する。この際、
電機子コイル13及びブラシ19は、その内部を流れる
電流によって自己発熱することとなるが、通常運転時に
は、電流値が定格以下に抑えられるから、電機子コイル
13及びブラシ19の1M度上昇は、自然放熱による冷
却作用によって第5図に示すように低く抑えられ、その
結果、電機子コイル13の温度は耐熱保証温度(例えば
180’C)に達することはない。この通常運転時のブ
ラシ19の熱応動部20の温度は、変形開始温度T(例
えば130℃)に達することはなく、従って熱応動部2
0は一直線状に延びた状態を維持して摺接部21か整流
子片17に摺接し続ける。
Next, the operation of the above configuration will be explained. In normal operating conditions, that is, in operating conditions where the load is below the rated value, the brush 1
9 extends in a straight line as shown by the solid line in FIG. 1, and the sliding contact portion 21 is in sliding contact with the commutator piece 17. In this state, current flows from the electric current 23 to the armature coil 13 through the brushes 19 and commutator pieces 17, which generates torque between the armature coil 13 and the field magnet 2, causing the rotor 9 to rotate. do. On this occasion,
The armature coil 13 and brush 19 self-heat due to the current flowing inside them, but during normal operation, the current value is suppressed below the rating, so a 1M degree increase in the armature coil 13 and brush 19 is As shown in FIG. 5, the temperature of the armature coil 13 is kept low by the cooling effect of natural heat radiation, and as a result, the temperature of the armature coil 13 never reaches the guaranteed heat resistance temperature (for example, 180'C). The temperature of the thermally responsive part 20 of the brush 19 during this normal operation does not reach the deformation start temperature T (for example, 130°C), so the thermally responsive part 20
0 continues to be in sliding contact with the sliding contact portion 21 or the commutator piece 17 while maintaining the state of extending in a straight line.

一方、運転中に回転子9が何等かの原因でロック状態に
なったり、或は過負荷状態になったときには、ブラシ1
9を介して電機子コイル13に流れる電流が過大になる
。この場合には、電機子コイル13及びブラシ19の自
己発熱が過大になって、両者の温度上昇が第6図に示す
ように大きくなる。しかしながら、ブラシ19の熱応動
部20の温度か変形開始温度Tにまで」−Hすると、形
状記憶部材製の熱応動部20が形状記憶効果によ・って
第1図に二点鎖線で示す如く摺接部21を整流子片17
から離間させるように「<」字状に約45°屈曲変形す
る。このときの熱応動部20の屈曲角度θと温度との関
係を第4図に示し、温度上Rに伴って熱応動部20が右
向き矢印で示す態様で変形する。この変形によって、電
機子コイル13への通電が断たれ、その後は電機子コイ
ル13の温度は放熱により低ドするようになる。この結
果、電機子コイル13の温度]−昇は耐熱保証温度以下
に抑えられて、過熱による電機子コイル13の絶縁波膜
の劣化や焼損が未然に防+Lされる。尚、本実施例では
、熱応動部20を構成する形状記憶部材として、非可逆
形(非復帰形)の形状記憶合金を用いたから、一旦「<
」字状に屈曲変形した熱応動部20の形状は、第4図左
向きの矢印で示すように温度低下しても元の一直線状に
復帰せず、屈曲したままの状態を維持して、電機子コイ
ル13への通電を阻止する。このように、熱応動部20
が屈曲女形した状態を温度低下後も維持することで、使
用者は、電機子コイル13に過電流が流れたことを確実
に知ることができ、その原因を追及する機会が使用者に
必ず与えられることになる。
On the other hand, if the rotor 9 becomes locked for some reason or becomes overloaded during operation, the brush 1
The current flowing to the armature coil 13 via the armature coil 9 becomes excessive. In this case, the self-heating of the armature coil 13 and the brush 19 becomes excessive, and the temperature rise of both becomes large as shown in FIG. However, when the temperature of the thermally responsive part 20 of the brush 19 reaches the deformation start temperature T, the thermally responsive part 20 made of a shape memory material deforms due to the shape memory effect, as shown by the two-dot chain line in FIG. Similarly, the sliding contact portion 21 is connected to the commutator piece 17.
It is bent at an angle of about 45 degrees in a "<" shape so as to be separated from the center. The relationship between the bending angle θ of the thermally responsive portion 20 and the temperature at this time is shown in FIG. 4, and as the temperature increases, the thermally responsive portion 20 deforms in the manner shown by the rightward arrow. Due to this deformation, the power to the armature coil 13 is cut off, and thereafter the temperature of the armature coil 13 decreases due to heat radiation. As a result, the temperature rise of the armature coil 13 is suppressed to below the guaranteed heat resistance temperature, and deterioration and burnout of the insulating wave film of the armature coil 13 due to overheating are prevented. In this example, since an irreversible (non-returnable) shape memory alloy is used as the shape memory member constituting the thermally responsive part 20, once the
The shape of the thermally responsive part 20, which has been bent and deformed into a ``'' shape, does not return to its original straight shape even when the temperature drops, as shown by the left-pointing arrow in FIG. Energization to the child coil 13 is blocked. In this way, the thermally responsive section 20
By maintaining the bent female shape state even after the temperature drops, the user can definitely know that an overcurrent has flowed through the armature coil 13, and the user is always given an opportunity to investigate the cause. It will be done.

この場合、使用者が熱応動部20を一直線状に曲げ戻し
て摺接部21を整流子j)17に摺接させれば、運転可
能な状態になり、その後の運転により再度過電流が流れ
れば、その時点で再度熱応動部20が屈曲変形して、電
機子コイル13への通電が断たれる。
In this case, if the user bends the heat-responsive part 20 back into a straight line and brings the sliding part 21 into sliding contact with the commutator j) 17, the operation becomes possible, and the overcurrent will flow again during subsequent operation. At that point, the thermally responsive portion 20 bends and deforms again, and the power to the armature coil 13 is cut off.

上記実施例では、熱応動部20を構成する形状記憶部材
として、非可逆形(非復帰形)の形状記憶合金を用いた
が、これに限定されず、熱応動部20をi+J逆形(復
)+1i形)の形状記憶部材で構成するようにしても良
い。この場合の熱応動部20の屈曲角度θと温度との関
係は第7図に示すようになり、熱応動部20が温度」−
Hに伴って右向き矢印で示す態様で屈曲変形し、その後
の温度低下に伴って左向き矢印で示す態様で復帰変形す
る。従って、熱応動部20は、一旦屈曲変形しても、そ
の後の温度低下によって元の一直線状に復帰して摺接部
21を整流子片17に摺接させ、電機子コイル13への
通電を可能な状態にする。このような可逆形のブラシを
備えたモータを例えば扇風機に組込んだ場合、室内のカ
ーテン等が送風羽根に絡まってロック状態になると、ブ
ラシが屈曲変形してモータが停止するが、その後、カー
テンの絡まりを解くだけで、ブラシの復帰変形によって
通常の運転が可能な状態になり、使用者によるブラシの
曲げ戻しの手間が省ける利点がある。
In the above embodiment, an irreversible (non-returnable) shape memory alloy is used as the shape memory member constituting the thermally responsive section 20, but the present invention is not limited to this. )+1i type) shape memory member may be used. In this case, the relationship between the bending angle θ of the thermally responsive part 20 and the temperature is as shown in FIG.
H, it bends and deforms in the manner shown by the rightward arrow, and then returns to deformation in the manner shown by the leftward arrow as the temperature decreases. Therefore, even if the thermally responsive part 20 is once bent and deformed, it returns to its original straight shape due to a subsequent temperature drop, brings the sliding contact part 21 into sliding contact with the commutator piece 17, and stops energizing the armature coil 13. make it possible. For example, when a motor equipped with such a reversible brush is installed in an electric fan, if a curtain or the like in the room gets entangled with the blower blades and becomes locked, the brush bends and deforms and the motor stops. By simply untangling the brush, the brush returns to its original deformation and normal operation becomes possible, which has the advantage of saving the user the trouble of bending the brush back.

尚、本発明の適用範囲は上記実施例ような直流整流子モ
ータに限定されず、例えば交流整流子モータ、整流子発
電機、その他の整流子形回転回転電機に広く適用して実
施できる。また、上記実施例では、ブ弓シ19の基端部
側(熱応動部20)を形状記憶部材で形成したが、先端
部側(摺接部21)を形状記憶部材で形成しても良く、
史にはブラシ全体を形状記憶部材で一体に形成する構成
としても良い。
The scope of application of the present invention is not limited to the DC commutator motor as in the embodiments described above, but can be widely applied to, for example, AC commutator motors, commutator generators, and other commutator-type rotating electric machines. Further, in the above embodiment, the proximal end side (thermal responsive part 20) of the bow bow 19 is formed of a shape memory material, but the distal end side (sliding contact part 21) may be formed of a shape memory material. ,
Historically, the entire brush may be integrally formed with a shape memory member.

その他、本発明はブラシ19の変形態様を適宜変更して
実施できる等、要旨を逸脱しない範囲内で種々の変形が
可能である。
In addition, the present invention can be modified in various ways without departing from the scope of the invention, such as by appropriately changing the shape of the brush 19.

[発明の効果] 本発明は以上の説明から明らかなように、ブラシが温度
上昇に伴う形状記憶効果によって整流子片から離間する
ように変形して、電機子コイルへの通電が断たれるよう
になっているから、電機子コイルが過熱状態になること
を未然に防止できて、過熱による絶縁性低下や焼損を防
止できるという優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, the present invention has a structure in which the brush is deformed so as to be separated from the commutator piece due to the shape memory effect accompanying temperature rise, and the current to the armature coil is cut off. Because of this, it is possible to prevent the armature coil from becoming overheated, and it has the excellent effect of preventing insulation deterioration and burnout due to overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明を直流整流子モータに適用し
た一実施例を示したもので、第1図は第2図の1−1線
に沿って示す横断面図、第2図は縦断面図、第3図は電
機子コイルの電気的結線図、第4図はブラシの熱応動部
の変形特性図、第5図は通常運転11、シにおける電機
子コイル及びブラシの熱応動部の温度変化図、第6図は
異常時における第5図相当図であり、そして第7図は本
発明の他の実施例を示す第4図相当図である。 図面中、13は電機子コイル、17は整流子片、19は
ブラシ、20は熱応動部、21はJF7接部である。
1 to 6 show an embodiment in which the present invention is applied to a DC commutator motor, and FIG. 1 is a cross-sectional view taken along line 1-1 in FIG. is a longitudinal sectional view, Fig. 3 is an electrical connection diagram of the armature coil, Fig. 4 is a deformation characteristic diagram of the thermally responsive part of the brush, and Fig. 5 is the thermal response of the armature coil and brush during normal operation 11. FIG. 6 is a diagram corresponding to FIG. 5 in an abnormal state, and FIG. 7 is a diagram corresponding to FIG. 4 showing another embodiment of the present invention. In the drawing, 13 is an armature coil, 17 is a commutator piece, 19 is a brush, 20 is a thermally responsive part, and 21 is a JF7 contact part.

Claims (1)

【特許請求の範囲】[Claims] 1、ブラシを整流子片に摺接させることによって電機子
コイルに通電するようにしたものにおいて、前記ブラシ
の少なくとも一部を形状記憶部材で形成し、前記ブラシ
に過電流が流れたときにブラシが自己発熱により温度上
昇して前記整流子片から離間するように変形する構成と
したことを特徴とする整流子形回転電機。
1. In a device in which the armature coil is energized by bringing the brush into sliding contact with the commutator piece, at least a part of the brush is formed of a shape memory member, and when an overcurrent flows through the brush, the brush 1. A commutator-type rotating electrical machine characterized by having a configuration in which the commutator pieces are deformed so as to increase in temperature due to self-heating and move away from the commutator pieces.
JP10750087A 1987-04-30 1987-04-30 Commutator type rotary electric machine Pending JPS63274344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10750087A JPS63274344A (en) 1987-04-30 1987-04-30 Commutator type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10750087A JPS63274344A (en) 1987-04-30 1987-04-30 Commutator type rotary electric machine

Publications (1)

Publication Number Publication Date
JPS63274344A true JPS63274344A (en) 1988-11-11

Family

ID=14460783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10750087A Pending JPS63274344A (en) 1987-04-30 1987-04-30 Commutator type rotary electric machine

Country Status (1)

Country Link
JP (1) JPS63274344A (en)

Similar Documents

Publication Publication Date Title
US2338515A (en) Motor protective device
JP2002010555A (en) Rotary electric machine for vehicle
US3575622A (en) Rotor resistor assembly for ac induction motors
US3219856A (en) Motor thermal protection system
US1947078A (en) Motor thermal relay
US2094386A (en) Motor protective device
JPS63274344A (en) Commutator type rotary electric machine
US3435315A (en) Apparatus for control of adjustable speed a-c motors
JP4152503B2 (en) Motor with thermal fuse
US4247842A (en) Cut-in resistance for motor vehicle heating fans
US2259972A (en) Split-phase motor
US1449577A (en) Dynamo-electric machine
JPH0614797B2 (en) Electric motor armature current controller
JPS631827B2 (en)
JP5936900B2 (en) Electric motor
JP7450705B2 (en) Stator of rotating electrical machine and rotating electrical machine
US2117915A (en) Damper winding thermal protection
JP2002101625A (en) Ac generator for vehicle
JP2641440B2 (en) Overload protection device
WO2017099027A1 (en) Rotor structure of rotary electrical machine
JPH0717249Y2 (en) Motor with overcurrent protection element
JP2002198235A (en) Reverse rotation motor
JP2000262025A (en) Capacitor motor
JP2579718Y2 (en) Small motor with positive temperature coefficient thermistor
JPH0630558B2 (en) Commutator motor