JPS6327423B2 - - Google Patents

Info

Publication number
JPS6327423B2
JPS6327423B2 JP8571980A JP8571980A JPS6327423B2 JP S6327423 B2 JPS6327423 B2 JP S6327423B2 JP 8571980 A JP8571980 A JP 8571980A JP 8571980 A JP8571980 A JP 8571980A JP S6327423 B2 JPS6327423 B2 JP S6327423B2
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
furnace
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8571980A
Other languages
Japanese (ja)
Other versions
JPS5713156A (en
Inventor
Nobuyuki Yanagihara
Koji Gamo
Yoshio Moriwaki
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8571980A priority Critical patent/JPS5713156A/en
Publication of JPS5713156A publication Critical patent/JPS5713156A/en
Publication of JPS6327423B2 publication Critical patent/JPS6327423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水素吸蔵合金、とくにTiとMiを主
成分とするTi―Mn2元、および3元系合金を熱
処理する方法に関するものである。 従来、TiとMnを主成分とするTi―Mn2元およ
び3元系などのTi―Mn系合金の水素化物は、水
素の吸蔵・放出特性や、解離平衡圧力(プラトー
領域)の平坦性などの向上を図るために、熱処理
による合金組成の均質化を行なつている。この熱
処理は不活性雰囲気中で、熱処理温度約1100℃、
熱処理時間約20時間を要している。この様に、高
温で、長時間、アルゴンガスのような不活性雰囲
気中に露出させた状態で熱処理を行なつていたの
で、Ti―Mn系合金の表面層のMnの蒸発が多く
あり、このMnの蒸発により合金表面の組成が変
化したり、また、連続的に流れる不活性ガス中の
微量酸素により表面が酸化されて酸化物の被膜を
形成したりする不都合があつた。この現象が、水
素化特性や水素吸蔵・放出特性などを低下させる
原因となつていた。 本発明は、この問題点を解消するために、Ti
―Mn系合金の近傍とその合金周辺におけるMn
蒸気の濃度差(Mnの蒸気分布)を大きくしない
ように、Mnの蒸気圧付近またはそれ以上の圧力
を維持し、Ti―Mn系合金からのMn蒸気の移動
を抑制して、Mnの蒸発および酸化被膜の生成を
最小限度に食い止めるものである。すなわち、本
発明は、不活性ガス単独または水素ガスを含む不
活性ガスをMnの蒸気圧以上に保持した熱処理炉
内に水素貯蔵合金を封じ込めた状態で、前記合金
の融点よりも低い1000〜1200℃の温度で10〜30時
間熱処理することを特徴とするものである。 なお、熱処理前に、炉内を脱気した後、不活性
ガス雰囲気を10-1〜5気圧の範囲内に保持し、ま
た、炉内温度を約500〜600℃までは10-3Torr以
下の減圧下で昇温し、次に、約1100℃の熱処理温
度までは不活性ガス雰囲気中で昇温し、一定時間
保持するのがよい。 本発明によれば、Ti―Mn系合金のMn蒸発に
よる組成づれおよび、合金表面への酸化物被膜の
形成を防止することができ、水素の吸蔵・放出特
性の優れた水素貯蔵材料を得ることができる。 以下、本発明を実施例により詳細に説明する。
図面は熱処理炉の構成を示す。1は炉本体、2は
その開口部に設けた鍔部3にしめつけ具4により
しめつけられる蓋、5はパツキングである。6は
バルブ7を有するガス導入管、8はバルブ9を有
するガス排出管である。10は熱が外部へ逃げる
のを防止する仕切板、11は炉加熱用のヒータで
ある。 12は熱処理するための合金13を入れたステ
ンレス鋼製の容器、14は同材質の蓋であり、容
器と蓋との間にはガスが出入りできる隙間を有し
ている。 また一例として、市販のTi(純度99.5%)とMn
(純度99.5%)とを原子比でTiMn1.5となるように
秤量し、アーク溶解炉で溶解して2元合金を製造
した。この合金は定量分析の結果、TiMn1.5の組
成であつた。 この合金を容器12に入れて炉内に挿入し、
10-3Torr以下に脱気しながら500〜600℃に昇温
して炉内の酸素ガス、合金の吸着酸素を除去した
後、5%の水素ガスを含有するアルゴンガスを流
しながら、さらに昇温し、アルゴンガスの圧力を
5×10-1気圧、温度を1100℃にしてガスの流れを
停止し、約20時間熱処理した。 この時、炉の内圧はボイルシヤールの法則によ
り上昇するので、前もつて上昇する圧力を計算し
ておき、熱処理温度1100℃でも、数気圧以上に上
昇しないように設定した。この場合の炉内圧力
は、炉内が異常圧力に達して危険が生じないよう
に、5×10-1〜5気圧程度になる様に調節するの
が好ましい。 このように、本発明は、アルゴンガスの流れを
停止して、アルゴンガス雰囲気中で、水素貯蔵合
金を炉内に封じ込めた状態とし、Mnの蒸気圧力
のバランスをとり、Mnの蒸発の進行を抑制する
ものである。熱処理完了後は、自然冷却または強
制冷却などで合金自体を冷却し、その試料を水素
化特性の測定に供した。 従来法としては、単に不活性ガス(アルゴンガ
ス)の気流中で少なくとも大気圧より高い状態で
熱処理を行なつた。これを従来法の合金とした。 つぎに、これらのTiMn1.5合金の特性はつぎの
様にして測定した。まず合金を5〜20メツシユの
大きさの形状に粉砕し、密閉された容器の中で、
40気圧の水素圧力を印加し、20℃において水素化
し始まる時間と、その水素吸蔵・放出量を測定し
た。この結果を次表に示す。
The present invention relates to a method for heat treating hydrogen storage alloys, particularly Ti--Mn binary and ternary alloys containing Ti and Mi as main components. Conventionally, hydrides of Ti-Mn alloys, such as Ti-Mn binary and ternary systems containing Ti and Mn as main components, have been developed due to their hydrogen storage and desorption properties and the flatness of the dissociation equilibrium pressure (plateau region). In order to improve this, the alloy composition is homogenized by heat treatment. This heat treatment is performed in an inert atmosphere at a heat treatment temperature of approximately 1100℃.
The heat treatment time takes approximately 20 hours. In this way, heat treatment was performed at high temperatures and for long periods of time while exposed to an inert atmosphere such as argon gas, resulting in a large amount of evaporation of Mn on the surface layer of the Ti-Mn alloy. There were disadvantages in that the composition of the alloy surface changed due to the evaporation of Mn, and the surface was oxidized by trace amounts of oxygen in the continuously flowing inert gas, forming an oxide film. This phenomenon has been a cause of deterioration of hydrogenation properties, hydrogen storage/release properties, etc. In order to solve this problem, the present invention
-Mn in the vicinity of Mn-based alloys and around the alloys
In order to prevent the vapor concentration difference (Mn vapor distribution) from becoming large, the pressure is maintained near or above the Mn vapor pressure, and the movement of Mn vapor from the Ti-Mn alloy is suppressed to prevent Mn evaporation and This prevents the formation of oxide film to a minimum. That is, in the present invention, in a state in which a hydrogen storage alloy is sealed in a heat treatment furnace in which an inert gas alone or an inert gas containing hydrogen gas is maintained at a vapor pressure higher than the vapor pressure of Mn, a temperature of 1000 to 1200 It is characterized by heat treatment at a temperature of °C for 10 to 30 hours. Before heat treatment, after degassing the inside of the furnace, maintain the inert gas atmosphere within the range of 10 -1 to 5 atm, and keep the temperature inside the furnace below 10 -3 Torr until about 500 to 600℃. It is preferable to raise the temperature under a reduced pressure of 1,100°C, then raise the temperature in an inert gas atmosphere to a heat treatment temperature of about 1100°C, and hold it for a certain period of time. According to the present invention, it is possible to prevent composition deviation due to Mn evaporation in a Ti-Mn-based alloy and the formation of an oxide film on the alloy surface, and to obtain a hydrogen storage material with excellent hydrogen storage and release characteristics. Can be done. Hereinafter, the present invention will be explained in detail with reference to Examples.
The drawing shows the configuration of the heat treatment furnace. 1 is a furnace body, 2 is a lid that is fastened to a flange 3 provided at the opening of the furnace by a fastening tool 4, and 5 is a packing. 6 is a gas introduction pipe having a valve 7, and 8 is a gas exhaust pipe having a valve 9. 10 is a partition plate that prevents heat from escaping to the outside, and 11 is a heater for heating the furnace. Reference numeral 12 is a stainless steel container containing an alloy 13 for heat treatment, and 14 is a lid made of the same material, with a gap between the container and the lid allowing gas to enter and exit. As an example, commercially available Ti (purity 99.5%) and Mn
(purity 99.5%) was weighed so that the atomic ratio of TiMn was 1.5 , and melted in an arc melting furnace to produce a binary alloy. As a result of quantitative analysis, this alloy had a composition of TiMn 1.5 . This alloy is placed in a container 12 and inserted into the furnace,
After raising the temperature to 500 to 600℃ while degassing to below 10 -3 Torr to remove oxygen gas in the furnace and oxygen adsorbed by the alloy, the temperature was further raised while flowing argon gas containing 5% hydrogen gas. Then, the argon gas pressure was set to 5×10 −1 atm, the temperature was set to 1100° C., the gas flow was stopped, and heat treatment was performed for about 20 hours. At this time, the internal pressure of the furnace rises according to Boilschard's law, so we calculated the pressure rise in advance and set it so that it would not rise above a few atmospheres even at the heat treatment temperature of 1100°C. In this case, the pressure inside the furnace is preferably adjusted to about 5×10 -1 to 5 atm to prevent the inside of the furnace from reaching abnormal pressure and causing danger. In this way, the present invention stops the flow of argon gas and confines the hydrogen storage alloy in the furnace in an argon gas atmosphere, balances the vapor pressure of Mn, and prevents the progress of evaporation of Mn. It is something to suppress. After the heat treatment was completed, the alloy itself was cooled by natural cooling or forced cooling, and the sample was subjected to measurement of hydrogenation characteristics. In the conventional method, heat treatment was simply carried out in a stream of inert gas (argon gas) at a pressure higher than atmospheric pressure. This was used as the conventional alloy. Next, the properties of these TiMn 1.5 alloys were measured as follows. First, the alloy is crushed into a shape of 5 to 20 meshes and placed in a sealed container.
A hydrogen pressure of 40 atm was applied, and the time for hydrogenation to begin at 20°C and the amount of hydrogen absorbed and released were measured. The results are shown in the table below.

【表】 本発明の方法で熱処理したTiMn1.5合金は、水
素化し始まるまでの時間は約5分で、しかも水素
が完全に吸蔵し終わるまでの時間は約15〜20分で
あつた。また水素吸蔵・放出量は各々、225c.c./
g,1855c.c./gであつた。 これに対して、従来法では連続的に流れる不活
性ガス中の微量酸素とTiMn1.5合金が高温時に反
応し、表面に酸化物皮膜を形成し、さらに、合金
表面でのMnの蒸発量による濃度差が大きく、ま
た、Ti―Mn系合金が非常に活性なものであるか
ら、Mnの蒸気圧以上の領域でもMnの一部が蒸
発することが観察され、表面において組成づれを
起こしている。 この様に、Ti―Mn系合金は、高温時におい
て、酸素と反応しやすく、またMnが蒸発しやす
い性質を有するので、水素化し始まる時間も約40
分以上を要し、本発明によるものより8倍も遅く
なつている。水素吸蔵完了までの時間も約2倍を
要している。また、最も重要な水素吸蔵・放出特
性も10〜20%程悪い。 本発明は、上気のように、Mnの蒸気圧以上の
雰囲気圧力で密封し、雰囲気ガスの流れを停止
し、雰囲気ガス中の酸素による酸化防止と、Mn
の蒸発濃度を高めて、Mn蒸気を充満させて、蒸
発した量を炉内で保持させて、新たにMnの蒸発
が促進しないようにしたので、合金表面の酸化と
Mnの蒸発が抑制され、従来法と比較して、すぐ
れた水素化特性を有する合金を得ることができ
る。 なお、炉内の圧力は、Mnの蒸気圧(1100℃,
10-1Torr)以上が望ましいが、最大5気圧以上
になると、時には内圧が上昇しすぎる場合もあ
り、密封系では危険であるから、5気圧以下がよ
い。また、熱処理前に10-3Torr以下の減圧下で
脱気して、炉内の酸素ガス,合金表面に付着して
いる酸素ガスを除いた後、炉内の雰囲気圧力を1
×10-1〜5気圧に設定するのが適当である。10-1
気圧より低い場合は、密封状態でも平衡に達する
までMnの蒸発が見られる。また、炉内温度約
500〜600℃までは真空中で昇温し、完全に脱ガス
し、1100℃で熱処理する時はアルゴンガス雰囲気
にすることは、合金表面の酸化防止に非常に効果
的である。また不活性ガス中に水素ガスを添加す
ると不活性ガス中の不純物としての酸素を除去で
きるし、合金に付着している酸素を除くこともで
きる。 実施例では、TiMn1.5合金について述べたが、
アーク溶解法だけでは均質化が不十分である3元
合金についても同様な効果が得られる。またた不
活性ガスとしてアルゴンガス(4%水素含有)を
用いたが、窒素ガス等の不活性ガスを用いてもよ
い。精製した不活性ガスを用いた場合はより効果
的である。 以上のように、本発明によれば、水素化,水素
吸蔵・放出特性などにすぐれたTi―Mn系水素貯
蔵合金を得ることができる。
[Table] In the TiMn 1.5 alloy heat-treated by the method of the present invention, it took about 5 minutes to start hydrogenation, and it took about 15 to 20 minutes to completely absorb hydrogen. In addition, the amount of hydrogen storage and release is 225 c.c./
g, 1855 c.c./g. In contrast, in the conventional method, trace amounts of oxygen in a continuously flowing inert gas react with the TiMn 1.5 alloy at high temperatures, forming an oxide film on the surface, and further increasing the concentration due to the amount of Mn evaporated on the alloy surface. Since the difference is large and the Ti-Mn alloy is very active, it has been observed that some of the Mn evaporates even in regions where the vapor pressure is higher than that of Mn, causing a compositional shift on the surface. In this way, Ti-Mn alloys have the property of easily reacting with oxygen and evaporating Mn at high temperatures, so it takes about 40 minutes for hydrogenation to begin.
It takes more than 1 minute, which is eight times slower than the method according to the present invention. It also takes about twice as long to complete hydrogen storage. In addition, the most important hydrogen absorption and release properties are about 10 to 20% worse. The present invention seals the atmosphere at an atmospheric pressure higher than the vapor pressure of Mn, like upper air, stops the flow of atmospheric gas, prevents oxidation due to oxygen in the atmospheric gas, and prevents Mn from oxidizing.
By increasing the evaporation concentration of Mn, filling it with Mn vapor, and retaining the evaporated amount in the furnace, new evaporation of Mn is not promoted, thereby reducing oxidation of the alloy surface.
Evaporation of Mn is suppressed, and an alloy with superior hydrogenation properties compared to conventional methods can be obtained. The pressure inside the furnace is the vapor pressure of Mn (1100℃,
10 -1 Torr) or higher is desirable, but if it reaches a maximum of 5 atm or higher, the internal pressure may sometimes rise too much, which is dangerous in a sealed system, so it is better to set it at 5 atm or lower. In addition, before heat treatment, deaeration is performed under reduced pressure of 10 -3 Torr or less to remove oxygen gas in the furnace and oxygen gas attached to the alloy surface, and then the atmospheric pressure in the furnace is reduced to 1.
It is appropriate to set the pressure at ×10 -1 to 5 atm. 10-1
If the temperature is lower than the atmospheric pressure, Mn evaporates until equilibrium is reached even in a sealed state. In addition, the temperature inside the furnace is approximately
Raising the temperature in vacuum to 500-600°C, completely degassing, and creating an argon gas atmosphere when heat treating at 1100°C is very effective in preventing oxidation of the alloy surface. Furthermore, when hydrogen gas is added to the inert gas, oxygen as an impurity in the inert gas can be removed, and oxygen adhering to the alloy can also be removed. In the example, TiMn 1.5 alloy was described, but
A similar effect can be obtained for ternary alloys whose homogenization is insufficient by arc melting alone. Further, although argon gas (containing 4% hydrogen) was used as the inert gas, an inert gas such as nitrogen gas may also be used. It is more effective if purified inert gas is used. As described above, according to the present invention, it is possible to obtain a Ti--Mn-based hydrogen storage alloy that has excellent hydrogenation, hydrogen storage and release properties, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に用いた熱処理炉の縦断
面図である。
The drawing is a longitudinal sectional view of a heat treatment furnace used in an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガス単独または水素ガスを含む不活性
ガスを10-1〜5気圧に保持した熱処理炉内にチタ
ン―マンガン系水素貯蔵合金を封じ込めた状態
で、前記合金を1000〜1200℃の温度で10〜30時間
熱処理することを特徴とするチタン―マンガン系
水素貯蔵合金の熱処理法。
1. With the titanium-manganese hydrogen storage alloy sealed in a heat treatment furnace in which an inert gas alone or an inert gas containing hydrogen gas is maintained at 10 -1 to 5 atm, the alloy is heated at a temperature of 1000 to 1200 °C. A heat treatment method for a titanium-manganese hydrogen storage alloy, which is characterized by heat treatment for 10 to 30 hours.
JP8571980A 1980-06-24 1980-06-24 Heat treatment of titanium-manganese hydrogen storing alloy Granted JPS5713156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8571980A JPS5713156A (en) 1980-06-24 1980-06-24 Heat treatment of titanium-manganese hydrogen storing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8571980A JPS5713156A (en) 1980-06-24 1980-06-24 Heat treatment of titanium-manganese hydrogen storing alloy

Publications (2)

Publication Number Publication Date
JPS5713156A JPS5713156A (en) 1982-01-23
JPS6327423B2 true JPS6327423B2 (en) 1988-06-02

Family

ID=13866639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8571980A Granted JPS5713156A (en) 1980-06-24 1980-06-24 Heat treatment of titanium-manganese hydrogen storing alloy

Country Status (1)

Country Link
JP (1) JPS5713156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152833A (en) * 2014-08-28 2014-11-19 航天精工股份有限公司 A titanium alloy solid solution heat treatment furnace and a solid solution method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652749B (en) * 2018-12-10 2020-02-14 华中科技大学 Method for manufacturing titanium alloy dual-performance turbine disc based on local hydrogen placement and product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152833A (en) * 2014-08-28 2014-11-19 航天精工股份有限公司 A titanium alloy solid solution heat treatment furnace and a solid solution method

Also Published As

Publication number Publication date
JPS5713156A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US3378914A (en) Fluxless aluminum brazing
Berkowitz‐Mattuck et al. High‐Temperature Oxidation: II. Molybdenum Silicides
US5143355A (en) Apparatus for manufacturing oxygen-free copper
JPS63428A (en) Low temperature reusable hydrogen getter
US5007243A (en) Vessel for making high-purity fine particles of active metals
US4200460A (en) Alloys for gettering moisture and reactive gases
EP0591952B1 (en) Hydrogen absorbing alloy and process for preparing same
JPS6327423B2 (en)
US3460816A (en) Fluxless aluminum brazing furnace
EP1875978B1 (en) Method of melting alloy containing high-vapor-pressure metal
US4489050A (en) Method of preparing a hydrogen-absorbing alloy
JP3322486B2 (en) Hydrogen storage alloy with excellent poisoning resistance and regenerative recovery
CN110387495A (en) A kind of antioxygen gas poisons Zr-V-Ni hydrogen storage material and preparation method thereof
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPS6310215B2 (en)
JPS635321B2 (en)
JPS619544A (en) Titanium alloy for occluding hydrogen
JPS6051544B2 (en) Manufacturing method of titanium-manganese alloy
JPS60155614A (en) Additive for metallurgical liquid, manufacture and device
Zhang et al. A redetermination of the La-Ni phase diagram from LaNi to LaNi5 (50 to 83.3 at.% Ni)
JPH0531489B2 (en)
Grider et al. Quenching defects in aluminium plus 10 at.% zinc
JP3000680B2 (en) Materials for hydrogen storage
JPS5928958B2 (en) High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals
Shiwa et al. Anelastic effects in molybdenum due to the precipitation and dissolution of oxides at low temperatures