JPS5928958B2 - High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals - Google Patents

High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals

Info

Publication number
JPS5928958B2
JPS5928958B2 JP50080517A JP8051775A JPS5928958B2 JP S5928958 B2 JPS5928958 B2 JP S5928958B2 JP 50080517 A JP50080517 A JP 50080517A JP 8051775 A JP8051775 A JP 8051775A JP S5928958 B2 JPS5928958 B2 JP S5928958B2
Authority
JP
Japan
Prior art keywords
temperature
metals
alloys
heating elements
temperature heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50080517A
Other languages
Japanese (ja)
Other versions
JPS524994A (en
Inventor
主税 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP50080517A priority Critical patent/JPS5928958B2/en
Publication of JPS524994A publication Critical patent/JPS524994A/en
Publication of JPS5928958B2 publication Critical patent/JPS5928958B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 本発明は、W、Mo、Reおよびこれら金属を主成分と
する合金を被覆し、水素吸収防止層を施したTa、Nb
およびこれら金属の合金からなる真空又は不活性ガス中
で使用する高温構造物および、高温発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hydrogen absorption prevention layer coated with W, Mo, Re, and alloys containing these metals as main components.
and high-temperature structures and high-temperature heating elements for use in vacuum or inert gas made of alloys of these metals.

Ta、Nbおよびそれらの金属の合金は 1)高温強度を必要とする構造体 Ii)高温発熱体 として有用な金属材料である。Ta, Nb and their alloys are 1) Structures requiring high temperature strength Ii) High temperature heating element It is a useful metal material.

と<にそれらの材料は純度が高<(不純物が少く)また
使用される環境はほとんどが高真空中または高純度の不
活性ガス雰囲気中である。このため極めて活性なこれら
金属材料は上述の環境で使用する限りにおいてはその品
負を保つて長期間の使用が可能である。し力化、高温で
の使用時に雰囲気の活性ガス(例えば酸素、窒素、水素
)の圧力が高くなるとそれらのガスを吸収し材質が劣化
する。Ta、Nbおよびそれらの合金は酸素、窒素と反
応すると硬<なり延性が低下する。
These materials have high purity (few impurities) and are mostly used in high vacuum or high purity inert gas atmospheres. Therefore, as long as these extremely active metal materials are used in the above-mentioned environment, their quality can be maintained and they can be used for a long period of time. When the pressure of active gases (such as oxygen, nitrogen, and hydrogen) in the atmosphere increases during use at high temperatures, these gases are absorbed and the material deteriorates. When Ta, Nb and their alloys react with oxygen and nitrogen, they become hard and their ductility decreases.

そのため高温度で使用される機器に用いると熱膨張にと
もなつておこる引張り応力、圧縮応力およびたわみなど
にたえられず材料が破断することも考えられる。また水
素と反応すると引張り強さ、耐力、伸びが減少し脆くな
る。そのため使用中外部からもしくは流体から発生する
衝撃、振動が原因で材料に割れが発生することがある。
第1図から判るように、酸素分圧の上昇、温度の上昇と
共にTa中への酸素吸収量が増加することが明らかであ
る。
Therefore, when used in equipment used at high temperatures, the material may break due to the inability to withstand the tensile stress, compressive stress, and deflection that occur with thermal expansion. Also, when it reacts with hydrogen, its tensile strength, yield strength, and elongation decrease, making it brittle. Therefore, during use, cracks may occur in the material due to shocks and vibrations generated from the outside or from fluids.
As can be seen from FIG. 1, it is clear that the amount of oxygen absorbed into Ta increases as the oxygen partial pressure and temperature rise.

また第2図から判るようにTa中の酸素吸収量の増加に
伴つて伸び率が低下することも明らかである。
It is also clear from FIG. 2 that the elongation rate decreases as the amount of oxygen absorbed in Ta increases.

更に第3図には、Ta中の酸素および窒素の含有量(吸
収量)の増加に伴い硬化することが記載されている。T
a、Nbおよびこれらの金属の合金の原子炉材料として
の利用例は下表の通りである。
Further, FIG. 3 shows that Ta hardens as the content (absorbed amount) of oxygen and nitrogen increases. T
Examples of the use of a, Nb, and alloys of these metals as nuclear reactor materials are shown in the table below.

上記の如く原子炉材料として使用する場合、酸素、窒素
などの活性ガスは、1)機器の構造を密封状に製作し、
漏洩を防止し、11)機器の運転開始に当り、脱ガスと
残留ガスの除去を充分に行L・、運転を規定通りに行う
こと等を忠実に行うことにより、これら活性ガスをかな
り低いレベルに保時することができる。
When used as a reactor material as described above, active gases such as oxygen and nitrogen must be prepared by: 1) manufacturing the equipment structure in a sealed manner;
11) By thoroughly degassing and removing residual gases before starting equipment operation, and faithfully operating according to regulations, these active gases can be reduced to considerably low levels. It is possible to keep the time.

しかしながら、水素ガスは上記の如き手段を講じても、
運転中継続して発生することが認められている。この理
由は、高渦のTa,Nb等に隣接している構造材料(不
銹鋼、ニツケル基合金、鉄基合金等)卦よび高温のTa
,Nbと同一グルーブの構造材料(例えば発熱体電極銅
、不銹鋼、断熱材な8が高温に加熱されると、これら構
造材料中に包含されている水素ガスが放出、透過される
ためである。Ta,Nb,(Vも同じである)などのV
a族金属は非常に水素を吸収しやすいのに対してMO,
WなどのVIa族金属はほとんど水素を吸収しないこと
が知られている。
However, even if the above measures are taken, hydrogen gas
It is recognized that this phenomenon occurs continuously during operation. The reason for this is due to structural materials (non-rust steel, nickel-based alloys, iron-based alloys, etc.) adjacent to high-vortex Ta, Nb, etc. and high-temperature Ta.
, Nb, and the like (e.g. heating element electrode copper, stainless steel, heat insulating material) are heated to a high temperature, hydrogen gas contained in these structural materials is released and permeated. V such as Ta, Nb, (the same is true for V)
Group A metals absorb hydrogen very easily, whereas MO,
It is known that Group VIa metals such as W hardly absorb hydrogen.

例えば第4図にはMO中への水素吸収の割合を示す図表
刀・ら明らかとなり、Ta,Nb等の高温構造体、高温
発熱体は10000〜1200℃の温度範囲で使用され
る場合が多く、その場合のMO中への水素の吸収割合は
0.01原子%以下である。し力・し0,Wは加工がむ
づかし〈、また溶接を行うと溶接部が脆化しTa,Nb
のように任意の形状に加工することができない。
For example, Figure 4 shows the rate of hydrogen absorption into MO.High-temperature structures and high-temperature heating elements such as Ta and Nb are often used in the temperature range of 10,000 to 1,200℃. In that case, the absorption rate of hydrogen into MO is 0.01 atomic % or less. The welding force is difficult to process, and when welding, the welded part becomes brittle and Ta, Nb
cannot be processed into any shape.

また脆性一延性遷移温度が高〈(MOは20℃、Wは3
00℃)、使用中に破壊される欠点がある。Ta,Nb
卦よびそれら金属の合金で製作した高温構造材、卦よび
高温発熱体の表面に同じ高融点金属のMO,Wf)膜を
付着または被覆させると原子炉材料として使用される場
合などに予想される雰囲気中の水素ガスの吸収防止とそ
れによる材料の劣化に有効である。
In addition, the brittle-ductile transition temperature is high (MO is 20℃, W is 3
00°C), which has the disadvantage of being destroyed during use. Ta,Nb
High-temperature structural materials made from hexagrams and alloys of these metals, as well as when attaching or coating the surfaces of hexagrams and high-temperature heating elements with MO, Wf) films of the same high-melting point metals, are expected to be used as nuclear reactor materials. It is effective in preventing the absorption of hydrogen gas in the atmosphere and the resulting deterioration of materials.

具鉢的な実施方法としてはTa,Nb卦よびそれら金属
の合金の高温構造物、高温発熱体で水素吸収の防止を必
要とする面に、イオンブレーテング、スパツタリングな
どの物理的な方法もしくはケミカル・ベーパーデポジシ
ヨンなどの化学的な方法でMOもしくはWの10〜10
0μの厚みを付着させればよい。
Practical implementation methods include physical methods such as ion blasting, sputtering, etc., or chemical methods for high-temperature structures made of Ta, Nb, and alloys of these metals, and high-temperature heating elements that require prevention of hydrogen absorption.・10 to 10 of MO or W by chemical methods such as vapor deposition
It is sufficient to deposit a thickness of 0μ.

本発明実施の態様を要約すれば次のと卦りである。The embodiments of the present invention can be summarized as follows.

Ta,Nb卦よびこれら金属の合金からなる高温構造体
、高温発熱体の表面に、イオンブレーテング、スパツタ
リング等0吻理的な被覆方法またはケミカル、ベーパー
デポジシヨン等の化学的な被覆方法で、MO,Wまたは
Reまたはこれら合金を主成分とする合金の被膜を被覆
する方法。
The surface of a high-temperature structure or high-temperature heating element made of Ta, Nb or an alloy of these metals is coated using a chemical coating method such as ion brazing or sputtering, or a chemical coating method such as chemical or vapor deposition. A method of coating with an alloy film containing MO, W, Re, or an alloy thereof as a main component.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTaを高温加熱時の酸素分圧とTa中への酸素
吸収量卦よび酸素吸収率を示している。
FIG. 1 shows the oxygen partial pressure, the amount of oxygen absorbed into Ta, and the oxygen absorption rate when Ta is heated at a high temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 Ta、Nbおよびこれら金属の合金からなる高温構
造体および高温発熱体の表面にW、Mo、Reまたはこ
れら金属を主成分とする合金を被覆してなる水素吸収防
止膜(または層)を施したTa、Nbおよびこれら金属
の合金からなる真空又は不活性ガス中で使用する高温構
造体および高温発熱体。
1. A hydrogen absorption prevention film (or layer) coated with W, Mo, Re, or an alloy containing these metals as main components is applied to the surface of a high-temperature structure and a high-temperature heating element made of Ta, Nb, and alloys of these metals. A high-temperature structure and a high-temperature heating element for use in vacuum or inert gas, which are made of Ta, Nb, and alloys of these metals.
JP50080517A 1975-07-01 1975-07-01 High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals Expired JPS5928958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50080517A JPS5928958B2 (en) 1975-07-01 1975-07-01 High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50080517A JPS5928958B2 (en) 1975-07-01 1975-07-01 High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals

Publications (2)

Publication Number Publication Date
JPS524994A JPS524994A (en) 1977-01-14
JPS5928958B2 true JPS5928958B2 (en) 1984-07-17

Family

ID=13720492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50080517A Expired JPS5928958B2 (en) 1975-07-01 1975-07-01 High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals

Country Status (1)

Country Link
JP (1) JPS5928958B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734995Y2 (en) * 1978-02-01 1982-08-03
JPS58155770A (en) * 1982-03-10 1983-09-16 Matsushita Electric Ind Co Ltd Substrate for amorphous silicon solar cell
US7400697B1 (en) * 2003-12-08 2008-07-15 Bwx Technologies, Inc. Clad tube for nuclear fuel

Also Published As

Publication number Publication date
JPS524994A (en) 1977-01-14

Similar Documents

Publication Publication Date Title
US3395993A (en) Titanium activated nickel seal and method of forming it
US2763921A (en) Corrosion and impact resistant article and method of making same
US3540863A (en) Art of protectively metal coating columbium and columbium - alloy structures
US4082834A (en) Process for gettering moisture and reactive gases
US4200460A (en) Alloys for gettering moisture and reactive gases
EP2204466A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
US3928029A (en) Braze alloy system
Miller et al. Development of oxidation resistance of some refractory metals
JPS5928958B2 (en) High-temperature structures and high-temperature heating elements made of Ta, Nb and alloys of these metals
Lee et al. Amorphous sputter coating of a multi-component Zr–Ti–Ni–Cu alloy as a filler for brazing Zircaloy-4
US8591992B2 (en) Method for forming a protective coating against high-temperature oxidation on a refractory composite material based on silicon and niobium
US2800711A (en) Brazing method
US3268306A (en) Titanium pretreatment for protective coating of refractory alloys
US3104972A (en) Zirconium-base brazing alloys
US3604103A (en) Method of cladding metals and composites thereof
US3700420A (en) Ceramic-to-metal seal
EP0066895B1 (en) Method of joining ni-base heat-resisting alloys
JPS5934230B2 (en) Metal surface treatment method
JPS6036091B2 (en) Method for manufacturing harmech seals
US3005254A (en) Brazed zirconium base alloy structures
JPH0662342B2 (en) Method for joining silicon nitride ceramics and metal
US3579808A (en) Tantalum clad niobium
Walter et al. Compatibility of tantalum and columbium alloys with hydrogen.
Votinov et al. Vanadium alloys as structural materials for fusion reactor blanket
US3466203A (en) Method of producing purified refractory metal and alloy powders