JPS63273071A - Temperature rise tester for large current bushing - Google Patents
Temperature rise tester for large current bushingInfo
- Publication number
- JPS63273071A JPS63273071A JP10811387A JP10811387A JPS63273071A JP S63273071 A JPS63273071 A JP S63273071A JP 10811387 A JP10811387 A JP 10811387A JP 10811387 A JP10811387 A JP 10811387A JP S63273071 A JPS63273071 A JP S63273071A
- Authority
- JP
- Japan
- Prior art keywords
- bushing
- current
- power supply
- air
- conductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 33
- 238000012360 testing method Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 230000006698 induction Effects 0.000 abstract 1
- 150000002739 metals Chemical group 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Testing Relating To Insulation (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
【発明の詳細な説明】
発明の目的
(産業上の利用分野)
本発明は300A以上の大電流ブッシングの温度上昇試
験装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a temperature rise test device for large current bushings of 300 A or more.
(従来の技術)
一般に、大電流ブッシングの温度上昇試験装置は、第4
図に示すように変圧器を模擬した油槽1に絶縁油0を満
たした油槽装置に供試用の大電流ブッシング3及び引き
出しブッシング16を装着し、通電したい電流値に適し
たサイズの平角銅板又は銅撚線31 (以下単に気中導
電体3Iという)によりこれらを連絡し、かつ両ブッシ
ング3゜16の油中端子金具どうしを導体32により接
続して閉回路を形成する。(Prior art) Generally, the temperature rise test device for large current bushings is
As shown in the figure, a large current bushing 3 and a drawer bushing 16 are attached to an oil tank device that simulates a transformer, with an oil tank 1 filled with insulating oil 0. These are connected by a stranded wire 31 (hereinafter simply referred to as an air conductor 3I), and the submerged terminal fittings of both bushings 3.16 are connected by a conductor 32 to form a closed circuit.
一方、200■の交流電源27から誘導電圧調整器26
を介して複数台の電源用変流器33を並列に接続し、前
述の閉回路が1ターンの2次巻線となるように電磁結合
させる。さらに、大電流ブッシング3に通電したい電流
値に応じて、電源用変流器33の並列台数を増加し、導
体31のサイズを決める。2次巻き線に流れる電流は測
定用変流器34と電流計35により計測きするようにな
っている。なお、26は前記電源用変流器33に接続し
た誘導電圧調整器、27は交流電源である。On the other hand, the induced voltage regulator 26 is connected to the 200cm AC power supply 27.
A plurality of power supply current transformers 33 are connected in parallel through the transformers 33 and electromagnetically coupled so that the aforementioned closed circuit becomes a one-turn secondary winding. Furthermore, the number of power supply current transformers 33 in parallel is increased and the size of the conductor 31 is determined depending on the current value to be applied to the large current bushing 3. The current flowing through the secondary winding is measured by a measuring current transformer 34 and an ammeter 35. Note that 26 is an induced voltage regulator connected to the power supply current transformer 33, and 27 is an AC power source.
(発明が解決しようとする問題点)
ところが、前記従来のブッシング試験装置は、導体31
の表皮効果により電流密度が一定値を越すと、導体イン
ピーダンスが大きくなり、電源用変流器33の台数を増
加してもその割りに電流値が増えないという問題があっ
た。又、電源用変流器33を複数台並べると、配置に最
少限必要な横幅が大きくなり、前述の閉回路を形成する
気中導体31を大きくせざるを得ない。それにより閉回
路で形成される2次巻線(気中導体31)のインピーダ
ンスが大きくなり、電源用変流器33の台数を一定とし
た場合には、2次巻線に流れる電流、つまり大電流ブッ
シング3に流れる電流が小さくなるという問題があった
。(Problem to be Solved by the Invention) However, the conventional bushing test device described above
When the current density exceeds a certain value due to the skin effect, the conductor impedance increases, and even if the number of power supply current transformers 33 is increased, there is a problem that the current value does not increase accordingly. Furthermore, when a plurality of power supply current transformers 33 are arranged in a row, the minimum width required for arrangement increases, and the air conductor 31 forming the aforementioned closed circuit has to be enlarged. As a result, the impedance of the secondary winding (air conductor 31) formed in a closed circuit increases, and if the number of power supply current transformers 33 is constant, the current flowing through the secondary winding, that is, a large There was a problem in that the current flowing through the current bushing 3 became small.
この発明の目的は、電源用変流器を可及的少ない台数で
、供試用の大電流ブッシングに所定の電流を通電するこ
とができる大電流ブッシングの試験装置を堤供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a test device for a large current bushing that is capable of passing a predetermined current through a large current bushing under test using as few power supply current transformers as possible.
発明の構成
(問題点を解決するための手段)
本発明は前記問題点を解消するため、油槽に引き込みブ
ッシングと供試用の大電流ブッシングを貫通支持し、両
ブッシングの油中側の端子金具どうしを油中導体により
接続し、気中側の端子金具どうしを複数の気中導体によ
り並列に接続し、各気中導体には電源用変流器及び測定
用変流器をそれぞれ電磁結合するという手段を採ってい
る。Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides penetrating support for the lead-in bushing and the test high-current bushing in an oil tank, and connects the terminal fittings on the oil-submerged side of both bushings. The terminal fittings on the air side are connected in parallel by multiple air conductors, and a power supply current transformer and a measurement current transformer are electromagnetically coupled to each air conductor. measures are being taken.
(作用)
本発明は複数の気中導体により閉回路を複数個形成する
ため、気中導体を形成する銅等の導電材の使用量を増や
して、閉回路のインピーダンスを下げ、電源用変流器の
使用台数を減少させることができるとともに、気中導体
に大電流を流すことができる。(Function) In order to form a plurality of closed circuits with a plurality of aerial conductors, the present invention increases the amount of conductive material such as copper used to form the aerial conductors, lowers the impedance of the closed circuit, and transforms the current for power supply. The number of devices used can be reduced, and a large current can be passed through the air conductor.
(実施例)
以下、本発明を具体化した一実施例を第1図〜第3図に
基づいて説明する。(Example) Hereinafter, an example embodying the present invention will be described based on FIGS. 1 to 3.
供試用大電流ブッシング3の試験用絶縁油を貯留するた
めの油槽lの上面1aにはパツキン2を介して大電流ブ
ッシング3が貫通するように支持され、同ブッシング3
の途中に設けたフランジ金具4を図示しないボルトによ
り前記上面1aに固定している。又、前記大電流ブッシ
ング3の内腔3a内には油通路5a−t−透設した銅よ
りなる導電筒体5が挿入され、その上端部に形成した雄
ネジ5bには端子板6aを取付けた気中端子金具6が螺
合されている。又、導電筒体5の上端部りには蓋板7が
例えば蝋や銀焼付等の金属固定Wq8により固定され、
同蓋板7と大電流ブッシング3の上端面との間には油密
性を保持するためのパツキン9が介在されている。A large current bushing 3 is supported so as to penetrate through a gasket 2 on the upper surface 1a of an oil tank l for storing test insulating oil of the large current bushing 3 under test.
A flange fitting 4 provided in the middle is fixed to the upper surface 1a with bolts (not shown). Further, a conductive cylinder 5 made of copper with oil passages 5a-t transparent therethrough is inserted into the inner cavity 3a of the large current bushing 3, and a terminal plate 6a is attached to a male screw 5b formed at the upper end thereof. An air terminal fitting 6 is screwed together. Further, a cover plate 7 is fixed to the upper end of the conductive cylinder 5 by a metal fixing Wq8 such as wax or baked silver.
A gasket 9 is interposed between the cover plate 7 and the upper end surface of the high current bushing 3 to maintain oil tightness.
一方、前記導電筒体5の下端部内周には油中端子板11
を取付けた油中端子金具10が嵌入固定され、同端子金
具10の外周雄ネジ10aには締付リング15が螺合さ
れ、同締付リング15と前記大電流ブッシング3の下端
面との間には、スペーサ12、バネ13、座板14が締
付固定されている。On the other hand, an oil-immersed terminal plate 11 is provided on the inner periphery of the lower end of the conductive cylinder 5.
The oil-submerged terminal fitting 10 with the attached terminal fitting 10 is fitted and fixed, and a tightening ring 15 is screwed onto the outer peripheral male screw 10a of the terminal fitting 10, and between the tightening ring 15 and the lower end surface of the high current bushing 3. A spacer 12, a spring 13, and a seat plate 14 are fastened and fixed to the.
又、前記油槽1の上面1aには前記大電流ブッシング3
と同様に引き出しブッシング16が嵌装されている。そ
して、前記両ブッシング3.16の気中側の端子板6a
、6aの間には、第1図に示すように第1の平角銅板又
は銅撚線17 (以下単に第1気中導体17という)と
、第2の平角銅板又は銅撚線18(以下単に第2気中導
体18という)が並列に接続されている。又、油槽1内
においては、両ブッシング3,16の油中端子金具lO
の油中端子板11.11の間には、油中平角銅板又は銅
撚線19(以下単に油中導体19という)が接続されて
いる。Further, the high current bushing 3 is provided on the upper surface 1a of the oil tank 1.
Similarly, a drawer bushing 16 is fitted. And the terminal plate 6a on the air side of both bushings 3.16
, 6a, as shown in FIG. (referred to as a second air conductor 18) are connected in parallel. In addition, in the oil tank 1, the oil-submerged terminal fittings lO of both bushings 3 and 16 are
An oil-submerged flat copper plate or copper stranded wire 19 (hereinafter simply referred to as oil-submerged conductor 19) is connected between the oil-submerged terminal plates 11 and 11.
前記第1及び第2の気中導体17.18には、高さ1m
の架台20に支持された第1電源用変流器21及び第2
電源用変流器22がそれぞれ電磁結合されるとともに、
第1測定用変流器23、第2測定用変流器24もそれぞ
れ電磁結合されている。前記再測定用変流器23.24
にはそれぞれ電流計25が接続されている。又、前記両
電源用変流器21.22は、誘導電圧調整器26を介し
て200■の交流電源27に接続されている。The first and second aerial conductors 17.18 have a height of 1 m.
A first power supply current transformer 21 and a second power supply current transformer 21 supported on a frame 20 of
The power supply current transformers 22 are electromagnetically coupled, and
The first measuring current transformer 23 and the second measuring current transformer 24 are also electromagnetically coupled. Said re-measuring current transformer 23.24
An ammeter 25 is connected to each. Further, the dual power supply current transformers 21 and 22 are connected to a 200cm AC power supply 27 via an induced voltage regulator 26.
一方、前記油槽lには絶縁油0を循環させながら、適温
に加熱するために、油循環路28が接続され、その途中
には油ポンプ29及び加熱装置30が直列に接続されて
いる。On the other hand, an oil circulation path 28 is connected to the oil tank 1 in order to circulate the insulating oil 0 and heat it to an appropriate temperature, and an oil pump 29 and a heating device 30 are connected in series along the way.
次に、前記のように構成した大電流ブッシングの温度上
昇試験装置について、その作用を説明する。Next, the operation of the high current bushing temperature rise test device configured as described above will be explained.
“ この温度上昇試験装置では予め大電流ブッシング3
の必要箇所に熱電対(図示路)を設け、各熱電対を温度
測定装置に接続しておく。“In this temperature rise test equipment, high current bushing 3
Thermocouples (paths shown) are installed at the required locations, and each thermocouple is connected to a temperature measuring device.
今、油ポンプ29及び加熱装置30を作動させて、油槽
1内の絶縁油Oの温度を基準温度(例えば40℃)に保
持する。Now, the oil pump 29 and the heating device 30 are operated to maintain the temperature of the insulating oil O in the oil tank 1 at a reference temperature (for example, 40° C.).
一方、交流電源27から誘導電圧調整器26を介して第
1及び第2の電源用変流器21.22により第1気中導
体17及び第2気中導体18に電流を誘導発生させる。On the other hand, a current is induced from the AC power supply 27 through the induced voltage regulator 26 and the first and second power supply current transformers 21 and 22 in the first air conductor 17 and the second air conductor 18 .
このようにして、大電流ブッシング3の各部に発生する
温度をそれぞれ測定してブッシング3の品質を判別する
。In this way, the quality of the bushing 3 is determined by measuring the temperature generated in each part of the large current bushing 3.
さて、本発明実施例では、大電流ブッシング3と引き出
しブッシング160両気中端子金具6゜6の端子板5a
、6a間に第1気中導体17と第2気中導体18を並列
に接続し、両気中魂電ケーブル17.18に第1電源用
変流器21及び第2電源用変流器22を配置したので、
固気中導電ケーブル17.18のインピーダンスを減少
して大電流ブッシング3に合流する電流値を増加するこ
とができる。又、一つの長いケーブルに多数の電源用変
流器を直列に電磁結合させる従来の試験装置と比較して
、設置スペースの裕度を高めることができる。Now, in the embodiment of the present invention, the large current bushing 3 and the drawer bushing 160 are connected to the terminal plate 5a of the air terminal fitting 6°6.
, 6a, the first air conductor 17 and the second air conductor 18 are connected in parallel, and the first power supply current transformer 21 and the second power supply current transformer 22 are connected to both the air conductor cables 17 and 18. Since I placed
By reducing the impedance of the solid air conductive cables 17, 18, the current value flowing into the high current bushing 3 can be increased. Furthermore, compared to conventional test equipment in which a large number of power supply current transformers are electromagnetically coupled in series to one long cable, the margin of installation space can be increased.
変電所の壁貫ブッシングのように気中と気中をつなぐブ
ッシングで、電圧階級が高くなると、例えば275KV
、4000Aの壁貫ブッシングでは、ブッシングの長さ
がl1mに及び従来の方法では、電源用変流器を10台
並列に接続しなければならなかった。しかし、本発明に
よる方法では、固気中導体17.18に4台ずつ、計8
台の電源用変流器21.22で所定の電流、っまり40
00Aをブッシングに通電することができた。Bushings that connect the atmosphere to the atmosphere, such as through-the-wall bushings at substations, have higher voltage classes, such as 275KV.
, 4000A through-wall bushing, the length of the bushing is 11 m, and in the conventional method, 10 current transformers for power supply had to be connected in parallel. However, in the method according to the present invention, a total of 8
The predetermined current is 40 at the power supply current transformer 21 and 22.
00A could be applied to the bushing.
なお、前記実施例では両電源用変流器21゜22を架台
20により地上高さから約1m程度に浮上したが、この
場合には浮遊磁束が減少するので、大電流ブッシング3
に流す電流を一層大きくすることができる。In the above embodiment, the current transformers 21 and 22 for dual power supplies were floated approximately 1 m above the ground using the pedestal 20, but in this case, the floating magnetic flux is reduced, so the high current bushing 3
It is possible to further increase the current flowing through the current.
発明の効果
以上詳述したように、本発明は複数の気中導電ケーブル
に電源用変流器と測定用変流器を電磁結合し、大電流ブ
ッシングには各々の気中導電ケーブルを流れる電流の合
計電流が流れるようにしたので、各気中導電ケーブルの
インピーダンスを下げることができ、電源用変流器の使
用台数を減少することができるとともに、設置スペース
の裕度を高めることができる効果がある。Effects of the Invention As detailed above, the present invention electromagnetically couples a power supply current transformer and a measuring current transformer to a plurality of air conductive cables, and a large current bushing that connects a plurality of air conductive cables to each other, and has a large current bushing that is connected to the current flowing through each air conductive cable. Since the total current of There is.
第1図は本発明のブッシングの電気試験装置の一実施例
を示す路体平面図、第2図は電源用変流器の支持構造を
示す正面図、第3図は試験装置全体の正面図、第4図は
従来の大電流ブッシングの温度上昇試験装置を示す路体
回路図である。
1・・・油槽、3・・・大電流ブッシング、5・・・導
電筒体、6・・・気中端子金具、10・・・油中端子金
具、11・・・油中端子板、16・・・引き出しブッシ
ング、17・・・第1気中導体、18・・・第2気中導
体、19・・・油中導体、20・・・架台、21・・・
第1電源用変流器、22・・・第2電源用変流器、23
・・・第1測定用変流器、24・・・第2測定用変流器
。Fig. 1 is a plan view of a road body showing an embodiment of the electrical testing device for bushings of the present invention, Fig. 2 is a front view showing the support structure of a power supply current transformer, and Fig. 3 is a front view of the entire testing device. , FIG. 4 is a road body circuit diagram showing a conventional temperature rise test device for large current bushings. DESCRIPTION OF SYMBOLS 1... Oil tank, 3... Large current bushing, 5... Conductive cylinder, 6... Air terminal fitting, 10... Oil submerged terminal fitting, 11... Oil submerged terminal plate, 16 ... Drawer bushing, 17... First air conductor, 18... Second air conductor, 19... Oil submerged conductor, 20... Frame, 21...
Current transformer for first power supply, 22... Current transformer for second power supply, 23
. . . 1st measurement current transformer, 24 . . . 2nd measurement current transformer.
Claims (1)
ングを貫通支持し、両ブッシングの油中側の端子金具ど
うしを導体により接続し、気中側の端子金具どうしを複
数の気中導電体により並列に接続し、各気中導電体には
電源用変流器及び測定用変流器をそれぞれ電磁結合した
ことを特徴とする大電流ブッシングの温度上昇試験装置
。 2、前記電源用および測定用変流器は高さ1mの架台上
に設置されている特許請求の範囲第1項に記載の大電流
ブッシングの温度上昇試験装置。[Claims] 1. A retractable bushing and a high-current test bushing are supported through the oil tank, and the terminal fittings on the oil side of both bushings are connected to each other by a conductor, and the terminal fittings on the air side are connected to each other by a plurality of A temperature rise test device for large current bushings, which is connected in parallel by air conductors, and each air conductor is electromagnetically coupled to a power supply current transformer and a measurement current transformer. 2. The temperature rise test device for large current bushings according to claim 1, wherein the power source and measuring current transformers are installed on a pedestal with a height of 1 m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10811387A JPS63273071A (en) | 1987-04-30 | 1987-04-30 | Temperature rise tester for large current bushing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10811387A JPS63273071A (en) | 1987-04-30 | 1987-04-30 | Temperature rise tester for large current bushing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63273071A true JPS63273071A (en) | 1988-11-10 |
JPH0549193B2 JPH0549193B2 (en) | 1993-07-23 |
Family
ID=14476229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10811387A Granted JPS63273071A (en) | 1987-04-30 | 1987-04-30 | Temperature rise tester for large current bushing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63273071A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520278A (en) * | 2011-12-07 | 2012-06-27 | 中国电力科学研究院 | Device used for thermal stability and temperature rise test of transformer sleeve |
WO2012097596A1 (en) * | 2011-01-20 | 2012-07-26 | 国电南瑞科技股份有限公司 | Temperature rise testing system of electric vehicle conduction type charging interface |
CN103954872A (en) * | 2014-05-20 | 2014-07-30 | 中华人民共和国东莞出入境检验检疫局 | Transformer temperature rise measuring device and method |
CN107607221A (en) * | 2017-08-03 | 2018-01-19 | 中国电力科学研究院 | A kind of current-carrying temperature rise experimental method and system for current conversion station tab terminal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5854567U (en) * | 1981-10-09 | 1983-04-13 | 株式会社フジクラ | Discharge device for DC withstanding voltage test |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5854567B2 (en) * | 1972-07-05 | 1983-12-05 | 日立電線株式会社 | Hikitome Clamp |
-
1987
- 1987-04-30 JP JP10811387A patent/JPS63273071A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5854567U (en) * | 1981-10-09 | 1983-04-13 | 株式会社フジクラ | Discharge device for DC withstanding voltage test |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012097596A1 (en) * | 2011-01-20 | 2012-07-26 | 国电南瑞科技股份有限公司 | Temperature rise testing system of electric vehicle conduction type charging interface |
CN102520278A (en) * | 2011-12-07 | 2012-06-27 | 中国电力科学研究院 | Device used for thermal stability and temperature rise test of transformer sleeve |
CN103954872A (en) * | 2014-05-20 | 2014-07-30 | 中华人民共和国东莞出入境检验检疫局 | Transformer temperature rise measuring device and method |
CN107607221A (en) * | 2017-08-03 | 2018-01-19 | 中国电力科学研究院 | A kind of current-carrying temperature rise experimental method and system for current conversion station tab terminal |
CN107607221B (en) * | 2017-08-03 | 2020-06-02 | 中国电力科学研究院 | Current-carrying-temperature-rise experimental method and system for converter station joint terminal |
Also Published As
Publication number | Publication date |
---|---|
JPH0549193B2 (en) | 1993-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kulkarni et al. | Transformer engineering | |
Dao et al. | Effects of voltage harmonic on losses and temperature rise in distribution transformers | |
GB990418A (en) | Improvements in electrical apparatus having foil windings | |
US8575918B2 (en) | Wideband transducer for measuring a broad range of currents in high voltage conductors | |
SK164098A3 (en) | Transformer/reactor | |
PT2260557E (en) | A fault current limiter | |
US1873977A (en) | Condenser bushing | |
US20180047499A1 (en) | Distribution transformer and integrated power conditioning device | |
JPS63273071A (en) | Temperature rise tester for large current bushing | |
ATE3679T1 (en) | FULLY INSULATED, METAL ENCLOSED HIGH VOLTAGE SWITCHGEAR WITH SINGLE-LINE CURRENT TRANSFORMERS. | |
McNutt et al. | Mathematical Modelling--A Basis for Bushing Loading Guides | |
JPS62144082A (en) | Method and apparatus for testing heat stability of bushing | |
CN209804428U (en) | Anti-interference zero sequence current transformer with electromagnetic balance function | |
Schurig et al. | Losses in armored single-conductor lead-covered ac. cables | |
US2450973A (en) | Instrument current transformer with part turn winding | |
Still | Principles of Transformer Design | |
Vakhnina et al. | The Method for Assessing the Permissible Overload Capacity of Power Transformers during High Geomagnetic Activity | |
CN212542147U (en) | Transformer and transformer system | |
US2182324A (en) | Device for measuring high-frequency currents | |
Moghaddami et al. | Effective magnetic shielding in electric arc furnace transformers using interphase wall shunts | |
Pyanzina et al. | A High-Frequency Isolation Transformer for Auxiliary Converters of Locomotives with Autonomous Power Plants | |
Sah et al. | Modelling And Simulation Of Distribution Transformer For Analysing The Transformer Losses Using Analytical And Simulation Method | |
US5850054A (en) | Division of current between different strands of a superconducting winding | |
Schurig et al. | Temperature Rise and Losses in Solid Structural Steel Exposed to the Magnetic Fields from AC. Conductors | |
Radakovic et al. | Temperature Distribution in Windings of Transformers with natural Oil circulation |