JPS63273046A - Atomic fluorescence analysis - Google Patents

Atomic fluorescence analysis

Info

Publication number
JPS63273046A
JPS63273046A JP10462787A JP10462787A JPS63273046A JP S63273046 A JPS63273046 A JP S63273046A JP 10462787 A JP10462787 A JP 10462787A JP 10462787 A JP10462787 A JP 10462787A JP S63273046 A JPS63273046 A JP S63273046A
Authority
JP
Japan
Prior art keywords
atoms
microwave
generated
fluorescent cell
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10462787A
Other languages
Japanese (ja)
Inventor
Masazumi Taura
昌純 田浦
Jun Izumi
順 泉
Mitsuo Maeda
前田 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10462787A priority Critical patent/JPS63273046A/en
Publication of JPS63273046A publication Critical patent/JPS63273046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve the efficiency of atom generation by changing a liquid material to particulates by spraying, atomizing the particulates through a microwave cavity under a low pressure condition, irradiating light with the absorption wavelength of generated atoms on atoms and observing fluorescence emitted from the atoms. CONSTITUTION:For example, 1ppm NaCl aqueous solution is sprayed on a fluorescent cell 1 held at 1-100Torr by using He gas as a career. A microwave from a microwave oscillator 2 is led to a microwave cavity 3 and solution particles are evaporated to be resolved to Na atoms. On the other hand, dye laser 7 excited by argon laser 6 is interrupted by a chopper 8 to be incident upon the inside of the fluorescent cell 1. The Na atoms generated in the cell 1 are made to absorb laser light with a 589nm wavelength, and fluorescence generated thereafter, after collected by a lens 10 via an interference filter 9, is detected by a photomultiplier tube 11 to be outputted to a recorder or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物質中の元素の定性分析、定量分析の方法に
関するもので、特に火力、原子力2次系の水質管理等に
適用しうるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for qualitative and quantitative analysis of elements in substances, and is particularly applicable to water quality management in secondary systems of thermal power and nuclear power. It is.

〔従来の技術〕[Conventional technology]

従来の技術を第2図を用いて説明する。 The conventional technique will be explained using FIG. 2.

先づ、溶液にしたサンプルを試料容器aからバーナーb
に吹き込み火炎を用いて原子を生成する。
First, the sample made into a solution is transferred from the sample container a to the burner b.
Atoms are created using a flame.

次に、原子の吸収波長の光をアルゴンレーザCによって
励起された色素レーザdよシ発生させ、チヨツノ2−e
によシ断続した光となし、この光を前記火炎に照射する
。火炎中の原子はレーザー光を吸収し、その後蛍光を発
する。この蛍光をレンズでで集光のうえ、干渉フィルタ
ーgを通して光電子増倍管りで検出し、ロックインアン
プして増幅後、記鈴計jによυ記鎌する。
Next, a dye laser d excited by an argon laser C generates light at the absorption wavelength of the atoms, and a chiyotsuno 2-e
The flame is illuminated with intermittent light. Atoms in the flame absorb the laser light and then fluoresce. This fluorescence is collected by a lens, passed through an interference filter g, detected by a photomultiplier tube, amplified by a lock-in amplifier, and then recorded by a recording meter j.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のような従来の技術では、バーナーを用いて原子を
生成していた為、火炎からの発光が背景光となり、原子
蛍光と重畳されて観測され、火炎のゆらぎが雑音となる
という問題点があった。
In the conventional technology mentioned above, atoms were generated using a burner, so the problem was that the light emitted from the flame became background light and was observed superimposed on the atomic fluorescence, and the fluctuations of the flame became noise. there were.

更に火炎の温度を任意に変化させることが困難な為、原
子化効率を制御できず、再現性が良くないという問題点
もあった。
Furthermore, since it is difficult to arbitrarily change the temperature of the flame, there is a problem that the atomization efficiency cannot be controlled and the reproducibility is poor.

〔問題点を解決するための手段〕[Means for solving problems]

液体粒子を噴霧し粒径10μ以下の微粒子として蛍光セ
ルに導入し、蛍光セル内でマイクロ波を照射し、気化、
原子化させる。
Liquid particles are sprayed and introduced into a fluorescent cell as fine particles with a particle size of 10μ or less, and microwaves are irradiated within the fluorescent cell to vaporize and
Atomize.

〔作用〕[Effect]

蛍光セル内で液体微粒子がマイクロ涙金吸収し、昇温気
化、原子化される。
Inside the fluorescent cell, liquid microparticles absorb micro-lacrimal gold, which is vaporized and atomized by heating.

原子は原子固有の吸収波長を有し、その波長の光を吸収
し、その後、同じ波長又はより長波長の蛍光を発する。
Atoms have their own absorption wavelengths, absorb light at that wavelength, and then emit fluorescence at the same wavelength or a longer wavelength.

この蛍光強度を測定して1分析を行なう。One analysis is performed by measuring this fluorescence intensity.

〔実施例〕〔Example〕

第1図において、1は蛍光セル、2はマイクロ波発振器
、3はマイクロ波キャビティ、4はトラップ、5は真空
ポンプ、6はアルゴンレーザ、7は色素レーザ、8はチ
ョッパー、9は干渉フィルター、10はレンズ、11は
光電子増倍管、12はストレージスコープ、13はロッ
クインアンプ、14は記録計である。
In FIG. 1, 1 is a fluorescence cell, 2 is a microwave oscillator, 3 is a microwave cavity, 4 is a trap, 5 is a vacuum pump, 6 is an argon laser, 7 is a dye laser, 8 is a chopper, 9 is an interference filter, 10 is a lens, 11 is a photomultiplier tube, 12 is a storage scope, 13 is a lock-in amplifier, and 14 is a recorder.

NaCl水溶液1 ppmを、 He ガスをキャリヤ
ーとして、1〜100 Torr に保たれた蛍光セル
IK噴霧し供給する。マイクロ波発振器2で発振された
マイクロ波はマイクロ波キャビティ3に導ひかれる。蛍
光セル1は、マイクロ波キャビティ3内に設置され溶液
粒子は、低圧での蒸発及びマイクロ波の吸収によシ、水
溶液は蒸発し、 NaCJは蒸発固化後、Na原子に分
解され、下流に設置されたトラップ4を介し、真空ポン
プ5で排気される。
1 ppm of NaCl aqueous solution is supplied by spraying into a fluorescent cell IK maintained at 1 to 100 Torr using He gas as a carrier. The microwave oscillated by the microwave oscillator 2 is guided to the microwave cavity 3. The fluorescent cell 1 is installed in the microwave cavity 3, and the solution particles are evaporated at low pressure and absorbed by the microwave, the aqueous solution is evaporated, NaCJ is decomposed into Na atoms after evaporation and solidification, and the solution is installed downstream. The air is evacuated by a vacuum pump 5 through a trapped trap 4.

アルゴンレーザー6によって励起された色素レーザー7
はチョッパー8によって断続され蛍光セルIK入射され
る。蛍光セル1内で生成したNa原子は、波長589 
nmのレーザー光を吸収し、その後同波長の蛍光を発す
る。
Dye laser 7 excited by argon laser 6
is interrupted by the chopper 8 and is incident on the fluorescent cell IK. Na atoms generated in the fluorescent cell 1 have a wavelength of 589
It absorbs laser light of nm wavelength and then emits fluorescence of the same wavelength.

蛍光セル1の出射窓から出てきた光を、中心波長が58
9 nmに設定された干渉フィルター9を通し、レンズ
10で集光した後、光電子増倍管11で検出し、ストレ
ージスコープ12で観測又はロックインアンプ13で増
幅後、記録計14で記録する。
The center wavelength of the light coming out of the emission window of fluorescent cell 1 is 58
After passing through an interference filter 9 set to 9 nm and condensing with a lens 10, it is detected with a photomultiplier tube 11, observed with a storage scope 12, or amplified with a lock-in amplifier 13, and then recorded with a recorder 14.

本発明に利用できる溶液は、酸、アルカリ、塩の水溶液
、或いは極性有機溶媒を含む溶液等の噴霧可能な液体で
あり、噴霧器で粒径10μ以下1乃至20ω/11ti
Rで噴霧され、蛍光セル1に導入される。
The solution that can be used in the present invention is a sprayable liquid such as an aqueous solution of an acid, an alkali, or a salt, or a solution containing a polar organic solvent.
R and introduced into the fluorescent cell 1.

溶液微粒子は蛍光セル1内で1周波数100乃至300
0 MHz 、出力10乃至1000 Wのマイクロ波
を吸収し、昇温気化原子化される。
The solution particles have a frequency of 100 to 300 in the fluorescent cell 1.
It absorbs microwaves with a frequency of 0 MHz and an output of 10 to 1000 W, and is vaporized and atomized by heating.

第1図の装置を用いて測定したNa原子の検出下限界と
他の方法との比較を下記の表に示す。
The table below shows a comparison between the detection limit of Na atoms measured using the apparatus shown in FIG. 1 and other methods.

なお、従来法では1 ppb以下の測定は不可能で原子
力でのNa(又はCI>の分析は現在サンプル水を10
00倍に濃縮して測定するなどの手段が必要である。
It should be noted that with conventional methods it is impossible to measure below 1 ppb, and nuclear power analysis of Na (or CI>) is currently performed using sample water of 10
It is necessary to measure the amount by concentrating it 00 times.

〔発明の効果〕〔Effect of the invention〕

マイクロ波を用いて、液体粒子を気化、原子化すること
によシ、効率良く中性原子を生成でき、また背景光を低
減できる様になった。
By using microwaves to vaporize and atomize liquid particles, it has become possible to efficiently generate neutral atoms and reduce background light.

更にマイクロ波電力は連続的に可変である為。Furthermore, microwave power is continuously variable.

中性原子を生成する最も良い条件を見出すことも簡単に
できる様になシ、原子の検出下限界を大幅に下げること
が可能になった。
It has become easier to find the best conditions for generating neutral atoms, and it has become possible to significantly lower the detection limit of atoms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明原子蛍光分析法の説明図、第2図は従来
法の説明図である。 1・・・蛍光セル    2・・・マイクロ波発振器3
・・・マイクロ波キャビティ
FIG. 1 is an explanatory diagram of the atomic fluorescence analysis method of the present invention, and FIG. 2 is an explanatory diagram of the conventional method. 1... Fluorescent cell 2... Microwave oscillator 3
...Microwave cavity

Claims (1)

【特許請求の範囲】[Claims] 液状物質を噴霧、微粒化し、低圧条件下でマイクロ波キ
ャビティを通過させて前記液状物質を気化、原子化させ
、生成した原子の吸収波長の光を前記原子に照射し、前
記原子からの蛍光を観測することを特徴とする原子蛍光
分析法。
A liquid substance is sprayed and atomized, passed through a microwave cavity under low pressure conditions to vaporize and atomize the liquid substance, and the atoms are irradiated with light at the absorption wavelength of the generated atoms to emit fluorescence from the atoms. Atomic fluorescence spectrometry is characterized by observation.
JP10462787A 1987-04-30 1987-04-30 Atomic fluorescence analysis Pending JPS63273046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10462787A JPS63273046A (en) 1987-04-30 1987-04-30 Atomic fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10462787A JPS63273046A (en) 1987-04-30 1987-04-30 Atomic fluorescence analysis

Publications (1)

Publication Number Publication Date
JPS63273046A true JPS63273046A (en) 1988-11-10

Family

ID=14385676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10462787A Pending JPS63273046A (en) 1987-04-30 1987-04-30 Atomic fluorescence analysis

Country Status (1)

Country Link
JP (1) JPS63273046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360296A2 (en) * 1988-09-23 1990-03-28 Heinz Prof. Dr. Falk Process and device for separating and determining atoms
CN102338745A (en) * 2010-07-15 2012-02-01 北京吉天仪器有限公司 Electro-thermal vaporization atomic fluorescence spectrometry method and spectrometer used for determining cadmium
CN107193035A (en) * 2017-06-28 2017-09-22 华中科技大学 The detection system and method for pump atom are returned in a kind of atomic interferometer based on microwave

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032837A (en) * 1973-05-11 1975-03-29 Electroprint Inc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032837A (en) * 1973-05-11 1975-03-29 Electroprint Inc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360296A2 (en) * 1988-09-23 1990-03-28 Heinz Prof. Dr. Falk Process and device for separating and determining atoms
CN102338745A (en) * 2010-07-15 2012-02-01 北京吉天仪器有限公司 Electro-thermal vaporization atomic fluorescence spectrometry method and spectrometer used for determining cadmium
CN107193035A (en) * 2017-06-28 2017-09-22 华中科技大学 The detection system and method for pump atom are returned in a kind of atomic interferometer based on microwave
CN107193035B (en) * 2017-06-28 2023-11-14 华中科技大学 Detection system and method based on microwave pump-back atoms in atomic interferometer

Similar Documents

Publication Publication Date Title
Dovichi et al. Attogram detection limit for aqueous dye samples by laser-induced fluorescence
Woodrief et al. Atomic absorption spectroscopy with a high-temperature furnace
Tweet et al. Fluorescence of chlorophyll a in monolayers
Butcher et al. Laser-excited atomic fluorescence spectrometry in flames, plasmas and electrothermal atomisers. A review
Fung et al. Detection limits for sulfates and nitrates in aerosol particles by Raman spectroscopy
Omenetto Role of lasers in analytical atomicspectroscopy: where, when and why
Núñez et al. Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation
Omenetto et al. Laser-induced single-resonance and double-resonance atomic fluorescence spectrometry in a graphite tube atomiser
JPS63273046A (en) Atomic fluorescence analysis
Sullivan et al. Characterization of individual aerosol particles
WO1992002282A1 (en) Method and apparatus for analytical sample preparation
Winefordner et al. Atomic fluorescence flame spectrometry
Müller et al. The relation between prompt and delayed emission in photosynthesis.
JP3618198B2 (en) Elemental analysis method
Fung et al. Aerosol particle analysis by resonance Raman spectroscopy
Cabalo et al. Micro-UV detector
JP2002122543A (en) Elementary analysis device and method
JP2002328090A (en) Concentration measuring device for trace amount of component
Omenetto et al. Laser-induced intermodulated flame fluorescence: a new approach to scattering correction in analytical atomic fluorescence
Walters et al. Spatially resolved concentration studies of ground state atoms in a flame: saturated absorption spectroscopic method
Robinson et al. Real-time observation of laser-induced ir fluorescence of organic pollutants in the ambient atmosphere: suggested mechanism of laser-induced ir fluorescence
Niessner Chemical characterization of aerosols
McKenzie et al. Time-dependent local density measurements in unsteady flows
Nießner Chemical Characterization of Aerosols: On‐Line and In Situ
Burakov et al. Intracavity laser spectroscopy: plasma diagnostics and spectral analysis