JPS63273044A - Refractive index detecting sensor - Google Patents

Refractive index detecting sensor

Info

Publication number
JPS63273044A
JPS63273044A JP10813587A JP10813587A JPS63273044A JP S63273044 A JPS63273044 A JP S63273044A JP 10813587 A JP10813587 A JP 10813587A JP 10813587 A JP10813587 A JP 10813587A JP S63273044 A JPS63273044 A JP S63273044A
Authority
JP
Japan
Prior art keywords
light
optical fiber
refractive index
medium
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10813587A
Other languages
Japanese (ja)
Inventor
Kazunori Aoki
和則 青木
Hiroyuki Ozeki
尾関 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DERUFUAI KK
Delphi Co Ltd
Original Assignee
DERUFUAI KK
Delphi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DERUFUAI KK, Delphi Co Ltd filed Critical DERUFUAI KK
Priority to JP10813587A priority Critical patent/JPS63273044A/en
Publication of JPS63273044A publication Critical patent/JPS63273044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To easily obtain detecting sensitivity characteristics in the neighborhood of a refractive index desired to be obtained by forming the end face of an light emitting optical fiber so as to have an angle smaller than a right angle with respect to an axial direction, leading emitted light to a light receiving optical fiber by providing a reflector for reflecting the emitted light once or more and detecting the intensity of reflected light by the difference of a medium to be measured. CONSTITUTION:A sensor is constructed such that, for example, light emitted from a light emitting side optical fiber 10 with an obliquely cut end face is reflected from a reflecting surface 18 and incident upon a light receiving side optical fiber 20 with a rectangularly formed end face to be led to a photodetector. The light is emitted in an oblique direction with respect to an optical axis to be expanded whereby an optical path difference after a reflection is increased. Accordingly, when the angle of a reflector is set in accordance with a medium to be measured in advance even though the emitted light has a wide distribution, the reflected light can be received when the medium has a refractive index corresponding to the angle of the reflector. Since reflection characteristics are added other than an emitted light distribution when the refractive index of the medium is not aligned to last-said refractive index, a sensitivity can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は屈折率検出センサに関する。詳説すれば、光が
媒質の屈折率によって、その境界面に於て屈折すること
を利用した被測定媒質の屈折率検出センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a refractive index detection sensor. More specifically, the present invention relates to a sensor for detecting the refractive index of a medium to be measured, which utilizes the fact that light is refracted at a boundary surface depending on the refractive index of the medium.

(従来の技術並びに発明の解決しようとする問題点) 以下添付図面を参照して従来例を説明する。(Prior art and problems to be solved by the invention) A conventional example will be described below with reference to the accompanying drawings.

従来より使用されているこの種のセンサは、第5図又は
第6図に示すように、媒質特に液体又は気体の屈折率を
検出、測定する光ファイバセンサは、光ファイバCをU
字型あるいはラセン状に加工して、センサの近傍に被測
定媒質を配設したときに、湾曲部での光ファイバのベン
ディング損失が変化することを利用して、被測定媒質の
不純物含有量の測定等を行っている。しかし光ファイバ
は元来、光の伝送を目的としている為、光の伝送部であ
るコア部と光をとじ込める役目のクラッド部から構成さ
れている。今光が光ファイバの開口角以上で入射したと
き、その光は外部に放出され、おあ伝送が、きh<ヶ、
。従来例。屈折率検出センサはこの原理を応用したもの
で、意図的に、光ファイバを曲げ加工し、その湾曲部で
異なった媒質を介在させた時に生じる導波路の曲がりに
よる放射損すなわちベンディング損失の変化を測定する
ことによって、媒質の屈折率を検知している。しかしこ
の様な方法による屈折率検知には次の様な欠陥があった
As shown in FIG. 5 or 6, this type of sensor that has been used conventionally is an optical fiber sensor that detects and measures the refractive index of a medium, particularly a liquid or gas.
When the medium to be measured is placed in the vicinity of the sensor by processing it into a letter or helical shape, the bending loss of the optical fiber changes at the curved part. Measurements, etc. are being carried out. However, since optical fibers are originally intended for the transmission of light, they consist of a core section that is a light transmission section and a cladding section that serves to trap light. Now, when light enters the optical fiber at an aperture angle greater than or equal to the aperture angle, the light is emitted to the outside and the transmission is
. Conventional example. Refractive index detection sensors apply this principle, and detect changes in radiation loss, or bending loss, caused by the bending of the waveguide, which occurs when an optical fiber is intentionally bent and a different medium is interposed at the bend. By measuring, the refractive index of the medium is detected. However, refractive index detection using this method has the following drawbacks.

(1)゛光ファイバの曲率半径を極端に小さくする必要
があり、径の太い光ファイバでは検出不能となり従って
入射光量に制限がある。
(1) It is necessary to make the radius of curvature of the optical fiber extremely small, and an optical fiber with a large diameter cannot be detected, so there is a limit to the amount of incident light.

(2)光ファイバを加工したとき、その加工状態が復元
しない様な構造にするか又はガラスファイバの様にそれ
自身復元しないものを使用する。その為、加工あるいは
その曲げ状態の維持は困難であり、特定の光ファイバ以
外の他の手段の使用は不可能である。
(2) When an optical fiber is processed, it should be structured so that its processed state will not recover, or a material such as glass fiber that does not recover itself should be used. Therefore, it is difficult to process or maintain the bent state, and it is impossible to use other means than using a specific optical fiber.

(3)光ファイバの屈折率は通常的1.5である為、光
ファイバ近傍に配設した被測定媒質の屈折率が1.5に
近い場合には、その検知が困難である。更に光ファイバ
の曲率半径によって検知感度が変化する為、常に安定し
た検出は得られない。
(3) Since the refractive index of an optical fiber is usually 1.5, it is difficult to detect if the refractive index of the medium to be measured placed near the optical fiber is close to 1.5. Furthermore, since the detection sensitivity changes depending on the radius of curvature of the optical fiber, stable detection cannot always be obtained.

従って被測定媒質の屈折率近傍の感度特性を特に良くす
ることは不可能である。
Therefore, it is impossible to particularly improve the sensitivity characteristics near the refractive index of the medium to be measured.

(4)光の伝送部と物体の間にクラッド層が介在してい
る為、直接被測定媒質の屈折率を検知できないので感度
特性は低下する。
(4) Since the cladding layer is interposed between the light transmission section and the object, the refractive index of the medium to be measured cannot be directly detected, resulting in a decrease in sensitivity characteristics.

更に、光ファイバの端面を軸方向に対し斜めに切断して
、出射光がその境界面で屈折することが知られているの
でその原理を利用した媒質の屈折率検出センサが考えら
れるが、光ファイバからの出射光は、その端面から所定
の広がりで伝搬する為、屈折した光を受光するにはその
出射端よりも相当程度の距離を離さなければならない、
又前記の構成にすると、受光端での受光量は小さくなり
、屈折率の感度特性は劣化する。一方、出射光を平行光
線にするために光ファイバ端面にセルフォックレンズ、
球体レンズ、プリズム等の光学素子を設置することも考
えられるが、これら素子による構成が複雑になること及
び被測定媒質の相違による屈折率の変化によって光の屈
折が生じ難くなり、感度特性が劣化する。
Furthermore, it is known that the end face of an optical fiber is cut diagonally with respect to the axial direction, and the emitted light is refracted at the boundary face, so a sensor for detecting the refractive index of the medium using this principle can be considered. The light emitted from the fiber propagates from the end face with a predetermined spread, so in order to receive the refracted light, the fiber must be a considerable distance away from the output end.
Furthermore, with the above configuration, the amount of light received at the light receiving end becomes small, and the sensitivity characteristics of the refractive index deteriorate. On the other hand, a SELFOC lens is installed on the end face of the optical fiber to make the emitted light into parallel light beams.
It is also possible to install optical elements such as spherical lenses and prisms, but these elements complicate the structure and change the refractive index due to differences in the medium to be measured, making it difficult for light to be refracted and degrading sensitivity characteristics. do.

要するに以上記載した様に、従来の光ファイバ型屈折率
センサは、 (1)求める媒質の屈折率近傍の検知感度特性を容易に
得られない。
In short, as described above, conventional optical fiber type refractive index sensors: (1) cannot easily obtain detection sensitivity characteristics near the refractive index of the desired medium;

(2)センサの加工作業が比較的困難であり、多くの種
類の光ファイバを使用できないので特定の光ファイバを
採用せねばならない。
(2) Processing work for the sensor is relatively difficult, and many types of optical fibers cannot be used, so a specific optical fiber must be used.

等の問題点があった。There were problems such as.

(問題点を解決するための手段、作用)本発明は、光の
屈折原理を用い、光ファイバの出射光側の端面を、軸方
向の直角面に対し所定の角度を有するように切断した構
成と光の出射端からの出射光が光の出射端の周囲に存在
する媒質で屈折され、その屈折光は別に設けられた反射
面において、−回以上反射し、その反射光を、出射側光
ファイバと同様に端面加工された光ファイバ又は端面が
光軸に対し直角に形成した光ファイバで受光できる様な
構成を具えた屈折率検出センサを提供することにより容
易に問題点を解決することができる。
(Means and effects for solving the problem) The present invention utilizes the principle of refraction of light, and has a configuration in which the end face of the optical fiber on the outgoing light side is cut at a predetermined angle with respect to a plane perpendicular to the axial direction. The emitted light from the light emitting end is refracted by a medium existing around the light emitting end, and the refracted light is reflected more than - times on a separately provided reflective surface, and the reflected light is converted into the emitting side light. The problem can be easily solved by providing a refractive index detection sensor that is configured to receive light using an optical fiber whose end face is processed like a fiber or an optical fiber whose end face is formed perpendicular to the optical axis. can.

軸方向の直角面に対し所定角度を有する出射光側の光フ
ァイバより出た光は、光の出射端の周囲に存在する媒質
で屈折され、その屈折光は別に設けた反射面で1回以上
反射し、その反射光は受光側光ファイバをへて受光部へ
導かれ、受光部で被測定媒質の屈折率が検出される。
The light emitted from the optical fiber on the output side that has a predetermined angle with respect to the plane perpendicular to the axial direction is refracted by a medium existing around the light output end, and the refracted light is refracted one or more times by a separately provided reflective surface. The reflected light is guided to the light receiving section through the light receiving side optical fiber, and the refractive index of the medium to be measured is detected at the light receiving section.

(実施例) 以下添付図面を参照して本発明に係る実施例を説明する
(Examples) Examples according to the present invention will be described below with reference to the accompanying drawings.

第1図は光ファイバ型屈折率検出センサの全体構造を示
す一実施例である。
FIG. 1 is an embodiment showing the overall structure of an optical fiber type refractive index detection sensor.

lは基板取付金具で屈折率センサの支持部材である。2
は往路側光ファイバである。又3は光ファイバコネクタ
でその外側に光ファイバコネクタ押さえ金具5を取りつ
け、コネクタ部を形成する。ガイドビン6により出射光
反射金具7とコネフタ部とは連結される。4は復路側光
ファイバである。
Reference numeral 1 denotes a board mounting bracket, which is a support member for the refractive index sensor. 2
is the outbound optical fiber. Reference numeral 3 denotes an optical fiber connector, and an optical fiber connector holding member 5 is attached to the outside thereof to form a connector portion. The emitted light reflecting metal fitting 7 and the connector cover portion are connected by the guide bin 6 . 4 is a return optical fiber.

発光部より発光された光は、往路側光ファイバ2を通っ
て、その端面で屈折され、出射光反射金具7で2回反射
され、復路側光ファイバ4に反射光が達する。あらかじ
め、屈折率n1に調整された出射光反射金具7近傍に屈
折率nlなる媒質があった場合には、復路側光ファイバ
4に多量の光量が達し、光は復路側光ファイバ4を通っ
て受光検出器30で受光される。
The light emitted from the light emitting section passes through the outgoing optical fiber 2, is refracted at its end face, is reflected twice by the emitted light reflecting fitting 7, and the reflected light reaches the incoming optical fiber 4. If there is a medium with a refractive index nl near the emitted light reflecting fitting 7 whose refractive index has been adjusted to n1 in advance, a large amount of light reaches the return optical fiber 4, and the light passes through the return optical fiber 4. The light is received by the light receiving detector 30.

しかし屈折率n2なる媒質が存在する場合は、出射光は
二回の反射で復路側光ファイバに達せず、あるいは達し
てもファイバの入射角度が著しく異なるので、復路側の
ファイバ4中を伝送することはないので、受光部に光は
達することはない。 第2の実施例を第2図に示す、端
面を光軸に対し斜めに切断形成した出射側ファイバlO
から出た光Bは第1反射面12と第2反射面14で光路
を折曲して、その反射光は端面を光軸に斜めに切断形成
した受光側ファイバ16に導かれて、後述する受光検出
器30に到達する。又第3の実施例を第3図に示す、端
面を光軸に対し斜めに切断形成した出射側ファイバ10
から出た光Bは、反射面18で反射して側方へ曲げられ
、・端面を光軸に直角に切断形成した受光側ファイバ2
0に・入射し、受光検出器30へ導かれる。
However, if a medium with a refractive index of n2 exists, the emitted light will be reflected twice and will not reach the return optical fiber, or even if it does reach the fiber, the incident angle of the fiber will be significantly different, so it will not be transmitted through the return fiber 4. Therefore, the light never reaches the light receiving part. The second embodiment is shown in FIG. 2, which is an output side fiber lO whose end face is cut obliquely with respect to the optical axis.
The optical path of the light B emitted from the optical fiber is bent by the first reflective surface 12 and the second reflective surface 14, and the reflected light is guided to the light-receiving fiber 16 whose end face is cut obliquely to the optical axis, as will be described later. The light reaches the light receiving detector 30. A third embodiment is shown in FIG. 3, in which the output side fiber 10 has an end face cut obliquely to the optical axis.
The light B emitted from the light receiving side fiber 2 is reflected by the reflecting surface 18 and bent to the side.
0 and is guided to the light receiving detector 30.

この実施例のように受光側ファイバ20の端面は、光軸
に垂直に形成してもよい。
As in this embodiment, the end face of the light-receiving fiber 20 may be formed perpendicular to the optical axis.

さらに、第4実施例を第4図に示す、端面を光軸に対し
斜めに切断した一本のファイバ22を、射出用および入
射用ファイバに共用するものである。光源24から出た
光Bは光軸に対して斜めに形成した光7アイバ22の端
面から、被測定媒質へ射出し、第1反射面2Bに入射し
て何方に曲げられ、光ファイバ22とほぼ平行に配設さ
れ、第1反射面26と対面している第2反射面2Bにほ
ぼ垂直に入射すると同時に第2反射面28で反射した光
Bは、方向を換えて往路を逆行し、再び第1反射面26
で反射し、更に光ファイバ22の斜状端面で屈折して、
光ファイバ22内を通り、ハーフミラ又は分岐器32で
反射して、受光検出器30に到達する。被測定媒質の屈
折率の大小によって、受光検出器30に到達する光量が
変わるので、これより被測定媒質の屈折率を知ることが
できることは、前述の実施例と同様である。
Furthermore, the fourth embodiment is shown in FIG. 4, in which a single fiber 22 whose end face is cut obliquely with respect to the optical axis is commonly used as an output fiber and an input fiber. Light B emitted from the light source 24 is emitted from the end face of the optical fiber 22 formed obliquely with respect to the optical axis to the medium to be measured, enters the first reflecting surface 2B, is bent in any direction, and is connected to the optical fiber 22. The light B that is almost perpendicularly incident on the second reflective surface 2B, which is disposed in parallel and faces the first reflective surface 26, and simultaneously reflected on the second reflective surface 28 changes direction and travels backward on the outward path. The first reflective surface 26 again
, and is further refracted by the oblique end face of the optical fiber 22.
The light passes through the optical fiber 22, is reflected by a half mirror or splitter 32, and reaches the light receiving detector 30. Since the amount of light reaching the light receiving detector 30 changes depending on the magnitude of the refractive index of the medium to be measured, the refractive index of the medium to be measured can be determined from this, as in the previous embodiment.

(作用) 本発明によれば、光ファイバの出射端をファイバの軸方
向と直角面に対し所定角度で切断しであるので、光ファ
イバからの出射光はスネルの屈折の法則に従って屈折す
る。すなわち、 nr  5in01 =n2 sinθ2n1.n2は
:それぞれの物質の屈折率θ1,02は:それぞれの端
面の法線との入射、出射光の角度 今、仮にファイバ切断角度を40″′とし、開口数N、
A = 1.5の光ファイバを使用すると、ファイバの
軸方向の傾き角度−15°〜15″内の光が光ファイバ
中を伝搬する。
(Function) According to the present invention, since the output end of the optical fiber is cut at a predetermined angle with respect to a plane perpendicular to the axial direction of the fiber, the output light from the optical fiber is refracted according to Snell's law of refraction. That is, nr 5in01 = n2 sin θ2n1. n2 is: The refractive index θ1,02 of each substance is: The angle of incidence and output light with respect to the normal line of each end face. Now, suppose the fiber cutting angle is 40'', and the numerical aperture N,
When using an optical fiber with A = 1.5, light within an axial tilt angle of the fiber of -15° to 15'' will propagate through the optical fiber.

この光が光ファイバの端面に達し、媒質例えば空気層に
出射する際に、光ファイバの端面がその軸方向の直角面
と40°傾いた面から出射するので、前述のスネルの法
則により、ファイバケーブル軸方向に対して−0,7°
〜50°の広がりをもって出射する(第8図(A)参照
)、一方Maim  Beamc7)広がりは34.6
°である。
When this light reaches the end face of the optical fiber and is emitted into a medium such as an air layer, the end face of the optical fiber is emitted from a surface inclined at 40 degrees with respect to the plane perpendicular to the axial direction. -0.7° to the cable axis direction
It emits with a spread of ~50° (see Figure 8 (A)), while Maim Beamc7) has a spread of 34.6
°.

又、空気層でなく、他の媒質例えば水の場合には水の屈
折率n = 1.33であるので、出射光の広がり度は
同様にして−11,6°〜27.4°となる(第8図(
B)参照)、 従来の方法では、この様な場合に、これ
ら出射光を直接検知しようとした為、光ファイバの出射
光量分布の変化量を測定することとなり、屈折率の相違
による感度特性は得られなかった。光は反射面に入射し
たとき、反射面の法線と等しい角度をもって反射する。
Also, in the case of other media, such as water, instead of an air layer, the refractive index of water is n = 1.33, so the degree of spread of the emitted light is similarly -11.6° to 27.4°. (Figure 8 (
In the conventional method, in such a case, these emitted lights were directly detected, so the amount of change in the output light amount distribution of the optical fiber was measured, and the sensitivity characteristics due to the difference in refractive index were I couldn't get it. When light enters a reflective surface, it is reflected at an angle equal to the normal to the reflective surface.

従って二つの異なった角度の光が同一法線方向で反射す
るとき、二つの光の角度の差をΔθとすると、反射後の
光路差は大きくなる。
Therefore, when two lights at different angles are reflected in the same normal direction, if the difference between the angles of the two lights is Δθ, the optical path difference after reflection becomes large.

あらかじめ測定する物体の屈折率に合わせて、n回反射
後の反射光を受光できる様に、角度を設定しである反射
面を構成しておけば、極めて近い二つの異なった屈折率
を有する被測定媒質を用いた場合、上記で説明したよう
に被測定媒質の屈折率を測定できる。
By setting the angle and configuring a reflecting surface so that it can receive the reflected light after n times of reflection according to the refractive index of the object to be measured, it is possible to measure two objects with very similar refractive indexes. When a measurement medium is used, the refractive index of the medium to be measured can be measured as described above.

以上説・・明したように、本発明によれば光ファイバか
らの出射光の分布のひろがりがあっても、特定の測定し
たい媒質の屈折率に合わせて、あらかじめ反射体の角度
を設定すれば、その屈折率を有した場合には、受光側光
ファイバは、反射光を受光出来るが、その屈折率に合わ
せない場合には、出射光の光分布置外に反射特性が加わ
るので感度が良好゛となる。
As explained above, according to the present invention, even if the distribution of light emitted from an optical fiber is wide, the angle of the reflector can be set in advance according to the refractive index of the specific medium to be measured. If it has that refractive index, the receiving optical fiber can receive the reflected light, but if it does not match that refractive index, the sensitivity is good because reflection characteristics are added to the light distribution of the emitted light. It becomes ゛.

第7図は、光ファイバの切断角度つまり軸方向の直角面
との角度が40°で反射体の角度が62.3°の場合で
あり、被測定媒質が空気の場合には、光は空気中を伝送
可能なことを示している。
Figure 7 shows the case where the cutting angle of the optical fiber, that is, the angle with the plane perpendicular to the axial direction, is 40° and the angle of the reflector is 62.3°. When the medium to be measured is air, the light is This shows that it is possible to transmit data inside.

更に第9図は光ファイバの切断角度は40’で、反射面
の角度が48°の場合であり、被測定媒質が水である場
合光は伝送可能なことを示している。
Furthermore, FIG. 9 shows a case where the optical fiber is cut at an angle of 40' and the angle of the reflecting surface is 48 degrees, indicating that light can be transmitted when the medium to be measured is water.

(効果) 以上詳細に説明したように、本発明の屈折車検、・出セ
ンサにおいては、 (1)測定する屈折率近くの感度特性を自由に変えられ
ること。
(Effects) As explained in detail above, the refraction vehicle inspection/output sensor of the present invention has the following advantages: (1) Sensitivity characteristics near the refractive index to be measured can be freely changed.

(2)構造が簡単であること。(2) The structure is simple.

(3)製品のロフト間のバラツキが少ないこと。(3) There should be little variation between product lofts.

(4)あらゆる光ファイバに適用でき、特に大径のファ
イバにも適用できるため、光量を多く入射可能なこと。
(4) It can be applied to all kinds of optical fibers, especially large-diameter fibers, so a large amount of light can be input.

等の特徴を有し、被測定媒質例えば液体中の不純物の含
有量の測定、液面検出、液体の種別検出等、幅広く応用
できるという利点を有する。
It has the following characteristics and has the advantage that it can be applied to a wide range of applications, such as measuring the content of impurities in a medium to be measured, such as a liquid, detecting the liquid level, and detecting the type of liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光の屈折率検出センサの断面図、
第2図は一実施例の光の屈折率検出センサのファイバ並
びに反射面の配設を示す路線図。 第3図は第2図とは別の実施例のファイバと反射面の配
設路線図、第4図はもう一つの実施例のファイバと反射
面の配設路線図。第5図、第6図は従来例の光ファイバ
を用いた屈折率検出センサの路線図。第7図(A)、(
B)はそれぞれ被測定媒質が空気である場合における軸
方向の直角面に対して光ファイバ端面並びに反射体の形
成する角度を示す路線断面図、第8図(A)は測定媒質
が空気の場合出射光の広がりを示す路線図、同(B)は
測定媒質が水の場合の出射光の広がりを示す路線図、第
9図は被測定媒質が水である場合にそれぞれ軸方向の直
角面に対して光ファイバ端面並びに反射体の形成する角
度を示す路線図。 2・・・往路側光ファイバ、4・・・復路側光ファイバ
、7・・・出射光反射金具、10・・・出射側ファイバ
、12・・・第1反射面、14・・・第2反射面、16
・・・受光側ファイバ、18・・・反射面、20・・・
受光側ファイバ、22・・・光ファイバ、26・・・第
1反射面、28・・・第2反射面、30・・・受光検出
器出  願  人  株式会社デルファイ代理人 弁理
士  小  林    榮第1図 第  3 図 第4図 鶴 5 図           第 6 図g7図 (A)        (B)
FIG. 1 is a cross-sectional view of the optical refractive index detection sensor according to the present invention;
FIG. 2 is a route diagram showing the arrangement of fibers and reflective surfaces of an optical refractive index detection sensor according to an embodiment. FIG. 3 is a layout diagram of the fiber and reflective surface of another embodiment different from that shown in FIG. 2, and FIG. 4 is a layout diagram of the fiber and reflective surface of another embodiment. 5 and 6 are route diagrams of a conventional refractive index detection sensor using an optical fiber. Figure 7 (A), (
B) is a cross-sectional view showing the angle formed by the optical fiber end face and the reflector with respect to the plane perpendicular to the axial direction when the medium to be measured is air, and Fig. 8 (A) is a cross-sectional view when the medium to be measured is air. A route map showing the spread of the emitted light; Fig. 9 (B) is a route map showing the spread of the emitted light when the measurement medium is water; The route map which shows the angle formed by the optical fiber end face and the reflector. 2... Outgoing optical fiber, 4... Returning optical fiber, 7... Outgoing light reflecting fitting, 10... Outgoing fiber, 12... First reflecting surface, 14... Second reflective surface, 16
...Receiving side fiber, 18...Reflecting surface, 20...
Light-receiving side fiber, 22... Optical fiber, 26... First reflecting surface, 28... Second reflecting surface, 30... Light-receiving detector Applicant Delphi Co., Ltd. Agent Patent attorney Eiji Kobayashi Figure 1 Figure 3 Figure 4 Crane 5 Figure 6 Figure g7 (A) (B)

Claims (1)

【特許請求の範囲】 1、軸方向に対し直角以下の角度で一端を切断した出射
用光ファイバと、その一端よりの出射光を1回以上反射
させる反射体とを有し、その反射光を受光用光ファイバ
に導き、前記光ファイバの端面近傍に存在する被測定媒
質の屈折率の違いによって、反射光の強弱を検知するこ
とを特徴とする屈折率検出センサ。 2、出射光側、受光側のそれぞれの光ファイバ端面の傾
きを軸方向に対し約10°〜70°に形成してなる特許
請求の範囲第1項記載の屈折率検出センサ。 3、同一の光ファイバを用いて出射並びに反射光の受光
を行うことを可能とする特許請求の範囲第1項記載の屈
折率検出センサ。 4、それぞれ出射又は受光を行う光ファイバを互いに平
行又は直角に配列した特許請求の範囲第1項記載の屈折
率検出センサ。
[Claims] 1. An output optical fiber having one end cut at an angle less than orthogonal to the axial direction, and a reflector that reflects the emitted light from the one end one or more times, and the reflected light is A refractive index detection sensor that detects the strength of reflected light based on a difference in the refractive index of a medium to be measured that is guided into a light-receiving optical fiber and exists near an end face of the optical fiber. 2. The refractive index detection sensor according to claim 1, wherein each of the optical fiber end faces on the emitting light side and the light receiving side are tilted at about 10° to 70° with respect to the axial direction. 3. A refractive index detection sensor as claimed in claim 1, which is capable of emitting light and receiving reflected light using the same optical fiber. 4. A refractive index detection sensor according to claim 1, wherein optical fibers for emitting and receiving light are arranged parallel to each other or at right angles to each other.
JP10813587A 1987-04-30 1987-04-30 Refractive index detecting sensor Pending JPS63273044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10813587A JPS63273044A (en) 1987-04-30 1987-04-30 Refractive index detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10813587A JPS63273044A (en) 1987-04-30 1987-04-30 Refractive index detecting sensor

Publications (1)

Publication Number Publication Date
JPS63273044A true JPS63273044A (en) 1988-11-10

Family

ID=14476819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10813587A Pending JPS63273044A (en) 1987-04-30 1987-04-30 Refractive index detecting sensor

Country Status (1)

Country Link
JP (1) JPS63273044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104846U (en) * 1990-02-09 1991-10-30
JPH03114046U (en) * 1990-03-08 1991-11-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104846U (en) * 1990-02-09 1991-10-30
JPH03114046U (en) * 1990-03-08 1991-11-22

Similar Documents

Publication Publication Date Title
US4818071A (en) Fiber optic doppler anemometer
US4678902A (en) Fiber optic transducers with improved sensitivity
JP5451649B2 (en) Modal metric fiber sensor
US7062125B2 (en) Prismatic reflection optical waveguide device
US5164588A (en) Method and apparatus for sensing ambient conditions at locations along an optical fiber transmission path
US6462808B2 (en) Small optical microphone/sensor
US4380394A (en) Fiber optic interferometer
US5129022A (en) Method and apparatus for providing reference signals from points along an optical fiber transmission path
JPS63132139A (en) Liquid refractive index meter
JPS63273044A (en) Refractive index detecting sensor
RU78947U1 (en) DEVICE FOR MEASURING LINEAR MOVEMENTS OF OBJECTS WITH A FLAT MIRROR-REFLECTING SURFACE
JPS6312939A (en) Space coupling type sensor
JP3384927B2 (en) Transparent long body defect detection device
JPH0234582Y2 (en)
US5335057A (en) Measuring geometry of optical fibre coatings with transverse incident beams
CN85100867B (en) Refractivity measuring and testing system
JPH0635147Y2 (en) Photo detector
US20020171822A1 (en) Thin optical microphone/sensor
JPS6014164Y2 (en) optical measuring device
EP0079945A1 (en) Fiber optic interferometer
JPS63311307A (en) Optical fiber type temperature sensor
RU1774233C (en) Method of determining linear displacement of objects with flat mirror-reflection surface
JPH0255743B2 (en)
JPH02170039A (en) Refractive index measuring sensor
JPH0575086B2 (en)