JPS6312939A - Space coupling type sensor - Google Patents

Space coupling type sensor

Info

Publication number
JPS6312939A
JPS6312939A JP61156230A JP15623086A JPS6312939A JP S6312939 A JPS6312939 A JP S6312939A JP 61156230 A JP61156230 A JP 61156230A JP 15623086 A JP15623086 A JP 15623086A JP S6312939 A JPS6312939 A JP S6312939A
Authority
JP
Japan
Prior art keywords
light
optical fiber
polished
polished surface
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156230A
Other languages
Japanese (ja)
Inventor
Masaharu Mogi
昌春 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61156230A priority Critical patent/JPS6312939A/en
Publication of JPS6312939A publication Critical patent/JPS6312939A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Abstract

PURPOSE:To obtain a space coupling type sensor which is small in size and light in weight, by reflecting a light beam from a light emitting part by an oblique polished surface of the tip of a light sending side optical fiber, leading it to an oblique polished surface of the tip of a light receiving side optical fiber, reflecting it again by this oblique polishing surface, and leading it to a light receiving part. CONSTITUTION:A light sending side optical fiber 12 and a light receiving side optical fiber 13 are placed in parallel. As a result, an emitted light A from a light emitting part in a light sending and receiving circuit 11 is propagated through the inside of the optical fiber 12 and led out to a polished surface 12a. Subsequently, by the polished surface 12a which is polished obliquely to an angle theta1 for reflecting said light to the optical fiber 13, it is brought to total reflection to a polished surface of the optical fiber 13. The light beam A which is made incident on the polished surface 13a is brought to total reflection by the polished surface 13a which is polished obliquely to an angle theta4 for reflecting it to the inside of the optical fiber 13, propagated through the inside of the optical fiber 13 and led into a light receiving part of the circuit 11. In such a way, a space coupling type sensor being small in size and light in weight, for measuring the density, etc. of an object to be measured, between the optical fibers 12, 13 by detecting an output of the light beam A by said light receiving part can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、大気中の微粒子濃度の検出、液体や気体の屈
折率変化、濃度変化等の検出、光電スイッチ等の物体の
有無を検出する際に用いられる空間結合型センサに関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to detecting the concentration of fine particles in the atmosphere, detecting changes in the refractive index of liquids and gases, changes in concentration, etc., and detecting the presence or absence of objects such as photoelectric switches. The present invention relates to a spatially coupled sensor used in such cases.

〈従来の技術〉 一方の光ファイバから出射された光を、他方の光ファイ
バで受光することにより両光ファイバ間の空間に存在す
る被測定物の変化を、光の強度、波長、位相、干渉、側
光、反射、吸収等の変化として計測する空間結合型セン
サは、光ファイバの応用として産業界に広く普及してい
る。従来、この種のセンサは、例えばコンベア上を流れ
る物品の有無を検出する光電スイッチ(第4図参照)や
管内を流れる液体や気体の濃度を検出する濃度センサ(
第5図参照)として使用されている。
<Prior art> Light emitted from one optical fiber is received by the other optical fiber, and changes in the object to be measured existing in the space between the two optical fibers are detected by measuring the intensity, wavelength, phase, and interference of the light. Spatial coupling sensors, which measure changes in side light, reflection, absorption, etc., are widely used in industry as optical fiber applications. Conventionally, this type of sensor includes, for example, a photoelectric switch (see Figure 4) that detects the presence or absence of an article flowing on a conveyor, and a concentration sensor (see Figure 4) that detects the concentration of liquid or gas flowing in a pipe.
(See Figure 5).

つまり、第4図に示した光電スイッチは、不図示の発光
部を有する送光回路からの光を導出する送光側光ファイ
バlと、発光部からの光を受光部を有する受光回路3に
導入する受光側光フプイバ2とを互いに向い合わせて構
成されている。そして、コンベア4を流れる物品5が光
ファイバ1,2の先端間を通過する時に、光ファイバ1
から光ファイバ2に入射する光を遮ることによって光の
強度が変化し、物品5の有無を検出することができる。
In other words, the photoelectric switch shown in FIG. 4 includes a light-transmitting side optical fiber 1 that leads out light from a light-transmitting circuit having a light-emitting section (not shown), and a light-receiving circuit 3 having a light-receiving section that directs the light from the light-emitting section. The light-receiving side optical fibers 2 to be introduced face each other. When the article 5 flowing on the conveyor 4 passes between the tips of the optical fibers 1 and 2, the optical fiber 1
By blocking the light that enters the optical fiber 2, the intensity of the light changes, and the presence or absence of the article 5 can be detected.

また、第5図に示した濃度センサは、発光部及び受光部
を内蔵した送受光回路6に発光部からの光を導出する送
光側光ファイバ7と、発光部からの光を受光部に導入す
る受光側光ファイバ8とが一体に備えられている。また
、光ファイバ7.8の先端は液体又は気体が流れる管9
の径方向に互いに向い合わせて配置される為に、光ファ
イバ7.8の先端部は管9を跨ぐようにして湾曲状に形
成されている。
The concentration sensor shown in FIG. 5 also includes a light transmitting side optical fiber 7 that guides light from the light emitting section to a light transmitting/receiving circuit 6 that includes a light emitting section and a light receiving section, and a light transmitting side optical fiber 7 that guides the light from the light emitting section to the light receiving section. A light-receiving side optical fiber 8 to be introduced is integrally provided. The tip of the optical fiber 7.8 is connected to a tube 9 through which liquid or gas flows.
Since the optical fibers 7.8 are arranged facing each other in the radial direction, the distal ends of the optical fibers 7.8 are formed in a curved shape so as to straddle the tube 9.

そして、光ファイバ7.8の先端間を通る液体又は気体
によって光ファイバ7から光ファイバ8に入射する光の
強度が変化することにより、管9内を流れる液体又は気
体の濃度を)食出することができる。
The intensity of the light incident from the optical fiber 7 to the optical fiber 8 changes due to the liquid or gas passing between the tips of the optical fibers 7.8, thereby increasing the concentration of the liquid or gas flowing in the tube 9. be able to.

〈発明が解決しようとする問題点〉 しかしながら、第4図に示した光電スイッチ等の空間結
合型センサは、光ファイバ1゜2の各先端を互いに向い
合わせて配置しその間に被測定物が位置する構成により
、センサが大型になる欠点があった。更に、発光部を有
する送光回路と受光部を有する受光回路は、それぞれ光
ファイバ1.2に別々に取付けられるので送光及び受光
回路系が複雑になる欠点があった。また、第5図で示し
た発光部及び受光部を一体に内蔵した送受光回路6を備
えた濃度センサ等の空間結合型センサは、センサの感度
や出力を上げるには光ファイバ7゜8の径を太くする必
要がある。従って、光ファイバ7.8の湾曲状の先端部
は互いに向い合って配置されるので先端部の曲率半径が
大きくなり、センサが大型になる欠点があった。
<Problems to be Solved by the Invention> However, in the spatially coupled sensor such as the photoelectric switch shown in FIG. This configuration has the disadvantage that the sensor becomes large. Furthermore, since the light transmitting circuit having the light emitting section and the light receiving circuit having the light receiving section are each separately attached to the optical fiber 1.2, there is a drawback that the light transmitting and light receiving circuit system becomes complicated. In addition, a spatially coupled sensor such as a concentration sensor equipped with a light transmitting/receiving circuit 6 that integrates a light emitting part and a light receiving part as shown in FIG. It is necessary to increase the diameter. Therefore, since the curved tips of the optical fibers 7.8 are disposed facing each other, the radius of curvature of the tips becomes large, resulting in a disadvantage that the sensor becomes large.

本発明は上記した問題点を解決する目的でなされ、小型
で軽量な空間結合型センサを提供しようとするものであ
る。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a small and lightweight spatially coupled sensor.

く問題点を解決するための手段〉 前記問題点の解決にあたって本発明は、発光部及び受光
部を内蔵した送受光回路と、基端が前記送受光回路に備
えられており前記発光部からの光を導出する送光側光フ
ァイバと、この送光側光ファイバと並んだ状態で基端が
前配送受光回路に備えられており前記受光部に対して光
を導入する受光側光ファイバとからなる空間結合型セン
サであって、前記送光側光ファイバの先端面は、前記発
光部から導出した光を前記受光側光ファイバに向けて反
射させる角度に斜め研磨した研磨面に形成されており、
前記受光側光ファイバの先端面は、前記送光側光ファイ
バの研磨面から反射されてくる光を受けて前記受光側光
ファイバ内に向けて反射する角度に斜め研磨した研磨面
に形成したことを特徴とする。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a light transmitting and receiving circuit that includes a light emitting section and a light receiving section, and a base end of which is provided in the light transmitting and receiving circuit, and a light transmitting and receiving circuit that includes a light emitting section and a light receiving section. A light-transmitting side optical fiber that guides light, and a light-receiving side optical fiber whose base end is provided in the pre-delivery light-receiving circuit in a state lined up with the light-sending side optical fiber and introduces light to the light receiving section. In the spatially coupled sensor, the tip surface of the light-transmitting optical fiber is formed into a polished surface that is obliquely polished to an angle that reflects the light led out from the light-emitting part toward the light-receiving optical fiber. ,
The distal end surface of the light-receiving optical fiber is formed into a polished surface that is obliquely polished to an angle that receives the light reflected from the polished surface of the light-transmitting optical fiber and reflects it into the light-receiving optical fiber. It is characterized by

く作   用〉 発光部からめ光は、送光側光ファイバの先端の斜め研磨
面で反射されて受光側光ファイバの先端の斜め研摩面に
導びかれ、この斜め研磨面で再び反射されて受光部に導
入される。
Effect> The light from the light emitting section is reflected by the obliquely polished surface at the tip of the transmitting side optical fiber, is guided to the obliquely polished surface at the tip of the receiving side optical fiber, is reflected again by this obliquely polished surface, and is received. introduced into the department.

く実 施 例〉 以下、本発明を図示の実施例により詳細に説明する。Example of implementation Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明の一実施例に係る空間結合型センサを示
す斜視図、第2図はその側面図である0両図に示すよう
に、LED等の発光部及びフォ)l−ランジスタ等の受
光部を内蔵した送受光回路11に、発光部からの光を導
出する送光側光ファイバ12と受光部に光を導入する受
光側光ファイバ13とが、間隔tで平行に備えられてい
る。また、各光ファイバ12.13の先端面は斜め研磨
した研磨面12a、t3gに形成され、研磨面128゜
13aは互いに斜めに向い合うように位置決めされてい
る。そして、送受光回路11内の発光部から光フアイバ
12中を伝播して来た光Aが、先端の研磨面12aて光
ファイバ13の研磨面13a方向に全反射されるように
研磨面12aを斜め研磨する(本実施例では研磨角は4
5°)、即ち、光ファイバ12のコアの屈折率n、と研
磨面12aに接している物質すなわち被測定物の屈折率
nt  (ただし、n、<ng)とで決定される光Aの
全反射角(臨界角以上)に研磨する。つまり、スネルの
式 %式%() を満足するように斜め研磨する。ここで、θlは光Aの
研磨面12aでの臨界角、θ、は光Aの被測定物中への
反射角で90’ (sin 90“纒1)となり、(5
)式はn、sinθ8=n!となるので臨界角θ、は、 t となり、θ、≦45°(図ではθ、−45°)の場合、
研磨面12aの研磨角θ、は、θ1≦909−01 と
なるのでθツ≦45”(図ではθ4−!45°)となる
Fig. 1 is a perspective view showing a spatially coupled sensor according to an embodiment of the present invention, and Fig. 2 is a side view thereof. A light transmitting/receiving circuit 11 having a built-in light receiving section is provided with a light transmitting side optical fiber 12 for guiding light from the light emitting section and a light receiving side optical fiber 13 for introducing light into the light receiving section in parallel with an interval t. There is. Further, the tip end face of each optical fiber 12.13 is formed into obliquely polished polished surfaces 12a, t3g, and the polished surfaces 128.degree. 13a are positioned so as to face each other diagonally. The polished surface 12a is polished so that the light A propagating through the optical fiber 12 from the light emitting section in the light transmitting/receiving circuit 11 is totally reflected by the polished surface 12a at the tip toward the polished surface 13a of the optical fiber 13. Diagonal polishing (in this example, the polishing angle is 4)
5°), that is, the total amount of light A determined by the refractive index n of the core of the optical fiber 12 and the refractive index nt of the substance in contact with the polished surface 12a, that is, the object to be measured (where n, < ng). Polish to a reflection angle (above the critical angle). In other words, diagonal polishing is performed to satisfy Snell's formula % formula % (). Here, θl is the critical angle of the light A at the polished surface 12a, θ is the reflection angle of the light A into the object to be measured, which is 90' (sin 90" 1), and (5
) formula is n, sinθ8=n! Therefore, the critical angle θ, becomes t, and when θ, ≦45° (θ, -45° in the figure),
Since the polishing angle θ of the polishing surface 12a satisfies θ1≦909-01, θ≦45” (θ4−!45° in the figure).

そして、光ファイバ12の研磨面12aから光ファイバ
13の研磨面13aに入射した光Aが研磨面13aで送
受光回路ll内の受光部方向に全反射されるには、前記
同様に考えて(a)、(b1式より、θ5≧45°(図
ではθ5=a45°)となるように斜め研磨している。
In order for the light A that has entered the polished surface 13a of the optical fiber 13 from the polished surface 12a of the optical fiber 12 to be totally reflected by the polished surface 13a toward the light receiving section in the light transmitting/receiving circuit 11, considering the same as above, ( a), (b) According to formula 1, oblique polishing is performed so that θ5≧45° (θ5=a45° in the figure).

即ち、光Aの研磨面13aでの臨界角θ4は、θ4霧θ
、冨 5in−星(□) となり、θ4(−l θ暮)≦45°(図ではθJ−45°)の場合、研磨面
13aの研磨角θ、は、θ、≧90’−04となるので
05≧45°(図ではθ、−45°)となる、よって、
各光ファイバ12゜13の研磨面12a、13aは、共
に45°の角度で斜め研磨されている。
That is, the critical angle θ4 of the light A at the polishing surface 13a is θ4 fog θ
, depth 5in-star (□), and when θ4 (-l θd)≦45° (θJ-45° in the figure), the polishing angle θ of the polished surface 13a becomes θ,≧90'-04 Therefore, 05≧45° (θ, -45° in the figure). Therefore,
The polished surfaces 12a and 13a of each optical fiber 12 and 13 are both obliquely polished at an angle of 45 degrees.

次に、上記のように構成された本発明の空間結合型セン
サの動作について説明する。尚、本実施例は前述したよ
うに、光ファイバ12゜13の研磨面12a、13aで
の光Aの臨界角θ1.θ4が01−04≦45°(図で
はθ。
Next, the operation of the spatially coupled sensor of the present invention configured as described above will be explained. As described above, in this embodiment, the critical angle θ1 . θ4 is 01-04≦45° (θ in the figure).

−04−45°)の場合である。-04-45°).

送受光回路11内の発光部より出射された光Aは、光フ
アイバ12内を伝播して研磨面12aに導出される。す
ると、研磨角45°で形成した研磨面12aで光ファイ
バ13の研磨面13aへ全反射される。この時、光Aは
その一部が光ファイバ12.13間の被測定物中で損失
し、光ファイバ13の研磨面13aに入射される。そし
て、研磨面13aに入射した光Aは、前記同様に研磨角
45°で形成した研磨面13aで全反射し、光フアイバ
13中を伝播して送受光回路11の受光部に導入され、
受光部での光Aの出力を検出することによって光ファイ
バ12.13間の被測定物の濃度等を測定することがで
きる。
Light A emitted from the light emitting section in the light transmitting/receiving circuit 11 propagates within the optical fiber 12 and is guided to the polished surface 12a. Then, it is totally reflected onto the polished surface 13a of the optical fiber 13 by the polished surface 12a formed at a polishing angle of 45 degrees. At this time, a part of the light A is lost in the object to be measured between the optical fibers 12 and 13, and is incident on the polished surface 13a of the optical fiber 13. The light A incident on the polished surface 13a is totally reflected on the polished surface 13a formed at a polishing angle of 45° in the same manner as described above, propagates through the optical fiber 13, and is introduced into the light receiving section of the light transmitting/receiving circuit 11.
By detecting the output of the light A at the light receiving section, the concentration of the object to be measured between the optical fibers 12 and 13 can be measured.

第3図は本発明の他の実施例である。この実施例は、送
受光回路11と送光側光ファイバ12′と受光側光ファ
イバ13′とが前記実施例と同様に構成されており、光
ファイバ12′。
FIG. 3 shows another embodiment of the invention. In this embodiment, a light transmitting/receiving circuit 11, a light transmitting side optical fiber 12', and a light receiving side optical fiber 13' are constructed in the same manner as in the previous embodiment.

13′の研磨面12a’、13a’での光への臨界角θ
、′、04′が45′以上の場合である(本実施例では
臨界角01′、04′は55°)0例えば、光ファイバ
12’、13’のコアの屈折率1.6200、被測定物
として水の屈折率1.3330とすると、(11式より 1.6200 ・sin  θ+’ −1,3330・
sin  θよ′となる。ここで、01′は光Aの研磨
面12 a’での臨界角、θ、′は光Aの被測定物(水
)中への反射角で90″(sin90’= 1 )とな
るので、臨界角81′は 1.6200 になる、よって、光ファイバ12′の研磨面12 a’
の研磨角θ、′は、θ、′≦90°−θ1′となるので
θ、′≦35°(図ではθx’ −35°)となる、そ
して、光ファイバ12’の研磨面12a′から光ファイ
バ13′の研磨面13a′に入射した光Aが研磨面13
3′で送受光回路11内の受光部方向に全反射される研
磨面133′の研磨角05′は、前記同様に考えて図に
示すように77°以下となる。この際、光ファイバ13
′の研磨面13a′での光Aの臨界角04′は前記tc
+より04′=θl’ −55”となる。
Critical angle θ for light at polished surfaces 12a' and 13a' of 13'
, ', 04' are 45' or more (in this example, the critical angles 01', 04' are 55°) 0 For example, the refractive index of the core of the optical fibers 12', 13' is 1.6200, Assuming that the refractive index of water is 1.3330, (1.6200 ・sin θ+' −1,3330・
sin θyo′. Here, 01' is the critical angle of the light A at the polished surface 12a', and θ,' is the reflection angle of the light A into the object to be measured (water), which is 90''(sin90'=1), so The critical angle 81' is 1.6200, so the polished surface 12a' of the optical fiber 12'
The polishing angle θ,′ is θ,′≦90°−θ1′, so θ,′≦35° (θx′−35° in the figure). The light A incident on the polished surface 13a' of the optical fiber 13'
The polishing angle 05' of the polishing surface 133', which is totally reflected toward the light receiving section in the light transmitting/receiving circuit 11 at 3', is 77 degrees or less, as shown in the figure, considering the same as above. At this time, the optical fiber 13
The critical angle 04' of the light A at the polished surface 13a' is the above-mentioned tc
+, 04'=θl'-55''.

尚、送光及び受光側光ファイバの研磨面の研磨角は、前
記した実施例に限定されることなく、被測定物、光ファ
イバ仕!II (屈折率や構造)等によって最適の値に
調整される。
Note that the polishing angles of the polished surfaces of the light transmitting and receiving optical fibers are not limited to the above-mentioned embodiments, and may vary depending on the object to be measured and the type of optical fiber. II (refractive index, structure), etc. to adjust to the optimum value.

また、送光及び受光側光ファイバの研磨面にアルミニウ
ム蒸着等によって反射膜をコーティングすることにより
、光の反射率を高めることができる。
Further, by coating the polished surfaces of the light transmitting and light receiving side optical fibers with a reflective film by aluminum vapor deposition or the like, the reflectance of light can be increased.

更に、本発明に係るセンサは、送光及び受光側光ファイ
バの取付穴は一ケ所で良い。
Further, in the sensor according to the present invention, only one mounting hole is required for the light transmitting and light receiving side optical fibers.

次に、第1図及び第2図で示した本発明のセンサと、第
6図で示したように送受光回路11と送光側光ファイバ
12“と受光側光ファイバ13とかりなり、先端部を互
いに向い合わせた従来のセンサとの出力比較を行った結
果、表−1で示したような値が得られた。この際、本発
明のセンサと従来のセンサとも同一の光ファイバ(コア
屈折率1,516 、コア径1、8 ta )を使用し
、被測定空間は空気でその距離(は5鶴とする。また、
本発明の光ファイバ12.13の研磨面12a、13a
の研磨角θ5.θ5は共に45°、光の臨界角θ1゜θ
4は41゛とし、従来のセンサの先端部の曲率半径R(
外側)は2龍とする。更に、送受光回路11の発光部に
LEDを使用し、受光部にはフォトトランジスタを使用
する。
Next, the sensor of the present invention shown in FIGS. 1 and 2, as shown in FIG. As a result of comparing the output with a conventional sensor whose parts face each other, the values shown in Table 1 were obtained.In this case, the sensor of the present invention and the conventional sensor both use the same optical fiber (core The refractive index is 1,516, the core diameter is 1,8 ta), the space to be measured is air, and the distance (is 5 ta).Also,
Polished surfaces 12a, 13a of optical fiber 12.13 of the invention
Polishing angle θ5. θ5 are both 45°, critical angle of light θ1°θ
4 is 41°, and the radius of curvature R (
(outside) is 2 dragons. Furthermore, an LED is used for the light emitting part of the light transmitting/receiving circuit 11, and a phototransistor is used for the light receiving part.

く表−1〉 このように、本発明のセンサは、先端部を互いに向い合
わせた従来のセンサに比べて出力、損失とも良好な値が
得られた。また、上記した本発明のセンサの各研磨面1
2a。
Table 1> As described above, the sensor of the present invention obtained better values for both output and loss than the conventional sensor in which the tips faced each other. In addition, each polished surface 1 of the sensor of the present invention described above
2a.

13aに、50μのアルミニウム蒸着をほどこしたとこ
ろ光の出力は1.2V(損失は一10dB)へ向上した
When 50 μm of aluminum was vapor-deposited on 13a, the optical output was improved to 1.2 V (loss was -10 dB).

〈発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、送光及び受光側光ファイバの先端部を互いに湾曲
させて配置することなく、送受光回路に各光ファイバを
並べた状態で配置することができる為、被測定物の測定
空間の距離と各光ファイバの直径骨のスペースがあれば
実装することができ、センサの小型化及び軽量化を図る
ことができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, each optical fiber can be connected to the light transmitting/receiving circuit without arranging the ends of the light transmitting and light receiving side optical fibers to be curved with respect to each other. Since they can be arranged side by side, they can be mounted as long as there is space for the measurement space of the object to be measured and the diameter of each optical fiber, and the sensor can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る空間結合型センサを示す斜視図、
第2図はその側面図、第3図は本発明の他の実施例を示
す側面図、第4図〜第6図はいずれも従来の空間結合型
センサを示す概略図である。 図  面  中、 11は送受光回路、 12.12’は送光側光ファイバ、 13.13’は受光側光ファイバ、 12a、  12a’、  13a、  13a’は研
磨面、θ3.θ2’r  Sr  θ囁′は研磨角であ
る。 θ
FIG. 1 is a perspective view showing a spatially coupled sensor according to the present invention;
FIG. 2 is a side view thereof, FIG. 3 is a side view showing another embodiment of the present invention, and FIGS. 4 to 6 are schematic diagrams showing a conventional spatially coupled sensor. In the figure, 11 is a light transmitting/receiving circuit, 12.12' is a light transmitting side optical fiber, 13.13' is a light receiving side optical fiber, 12a, 12a', 13a, 13a' are polished surfaces, θ3. θ2′r Sr θwhis′ is the polishing angle. θ

Claims (3)

【特許請求の範囲】[Claims] (1)発光部及び受光部を内蔵した送受光回路と、基端
が前記送受光回路に備えられており前記発光部からの光
を導出する送光側光ファイバと、この送光側光ファイバ
と並んだ状態で基端が前記送受光回路に備えられており
前記受光部に対して光を導入する受光側光ファイバとか
らなる空間結合型センサであって、前記送光側光ファイ
バの先端面は、前記発光部から導出した光を前記受光側
光ファイバに向けて反射させる角度に斜め研磨した研磨
面に形成されており、前記受光側光ファイバの先端面は
、前記送光側光ファイバの研磨面から反射されてくる光
を受けて前記受光側光ファイバ内に向け反射する角度に
斜め研磨した研磨面に形成したことを特徴とする空間結
合型センサ。
(1) A light transmitting/receiving circuit incorporating a light emitting section and a light receiving section, a light transmitting side optical fiber whose base end is provided in the light transmitting/receiving circuit and guiding light from the light emitting section, and this light transmitting side optical fiber. and a light-receiving side optical fiber whose base end is provided in the light transmitting/receiving circuit and introduces light to the light receiving section in a state in which the base end is arranged in line with The surface is formed into a polished surface that is obliquely polished to an angle that reflects the light led out from the light emitting part toward the light receiving optical fiber, and the tip surface of the light receiving optical fiber is formed in a polished surface that A space-coupled sensor is formed on a polished surface that is obliquely polished to an angle that receives light reflected from the polished surface and is reflected into the light-receiving optical fiber.
(2)前記各研磨面は、前記発光部からの光が前記各研
磨面で全反射する角度に研磨したことを特徴とする特許
請求の範囲第1項記載の空間結合型センサ。
(2) The spatially coupled sensor according to claim 1, wherein each of the polished surfaces is polished at an angle such that the light from the light emitting section is totally reflected on each of the polished surfaces.
(3)前記各研磨面に反射膜をコーティングしたことを
特徴とする特許請求の範囲第1項記載の空間結合型セン
サ。
(3) The spatially coupled sensor according to claim 1, wherein each of the polished surfaces is coated with a reflective film.
JP61156230A 1986-07-04 1986-07-04 Space coupling type sensor Pending JPS6312939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156230A JPS6312939A (en) 1986-07-04 1986-07-04 Space coupling type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156230A JPS6312939A (en) 1986-07-04 1986-07-04 Space coupling type sensor

Publications (1)

Publication Number Publication Date
JPS6312939A true JPS6312939A (en) 1988-01-20

Family

ID=15623209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156230A Pending JPS6312939A (en) 1986-07-04 1986-07-04 Space coupling type sensor

Country Status (1)

Country Link
JP (1) JPS6312939A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506567A (en) * 1989-07-10 1992-11-12 フラッダ,ゲルト,ハインリッヒ Measuring device and method
WO2000031514A1 (en) * 1998-11-24 2000-06-02 Otsuka Electronics Co., Ltd. Instrument for measuring light scattering
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
JP2010025940A (en) * 2008-07-21 2010-02-04 Ancosys Gmbh Optical sensor
US20120113411A1 (en) * 2010-11-09 2012-05-10 Nellcor Puritan Bennett Llc Optical fiber sensors
JP2013205145A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Dynamic light scattering measuring method and dynamic light scattering measuring device employing low coherence light source
JP2016017884A (en) * 2014-07-09 2016-02-01 日本精工株式会社 Sensor and sensor manufacturing method
WO2016021647A1 (en) * 2014-08-06 2016-02-11 日本精工株式会社 Sensor and sensor manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04506567A (en) * 1989-07-10 1992-11-12 フラッダ,ゲルト,ハインリッヒ Measuring device and method
WO2000031514A1 (en) * 1998-11-24 2000-06-02 Otsuka Electronics Co., Ltd. Instrument for measuring light scattering
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
JP2010025940A (en) * 2008-07-21 2010-02-04 Ancosys Gmbh Optical sensor
US20120113411A1 (en) * 2010-11-09 2012-05-10 Nellcor Puritan Bennett Llc Optical fiber sensors
JP2013205145A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Dynamic light scattering measuring method and dynamic light scattering measuring device employing low coherence light source
JP2016017884A (en) * 2014-07-09 2016-02-01 日本精工株式会社 Sensor and sensor manufacturing method
WO2016021647A1 (en) * 2014-08-06 2016-02-11 日本精工株式会社 Sensor and sensor manufacturing method

Similar Documents

Publication Publication Date Title
US4678902A (en) Fiber optic transducers with improved sensitivity
US6075635A (en) Bidirectional optical transceiver assembly
EP0362208A1 (en) Optical coupling device.
CA1267790A (en) Fiber optic doppler anemometer
US5796899A (en) Bidirectional optical transceiver assembly with reduced crosstalk
US5838859A (en) Bidirectional optical transceiver assembly
JPH1082925A (en) Coupling structure of optical waveguide and photodetector
JPS6312939A (en) Space coupling type sensor
EP1139072A1 (en) Small optical microphone/sensor
CA2424820A1 (en) Prismatic reflection optical waveguide device
JPH0359439A (en) Optical fiber sensor
JPS63132139A (en) Liquid refractive index meter
JPS58106413A (en) Light reflecting sensor
JP2650998B2 (en) Optical fiber for detecting liquid, gas, etc.
JPH09257696A (en) Surface plasmon resonance sensor
JPH0234582Y2 (en)
JPH02141709A (en) Optical fiber line monitor
JPS63273044A (en) Refractive index detecting sensor
US11549885B2 (en) Optical chemical analysis apparatus
JPS6161018A (en) Optical fiber sensor
JPS63253907A (en) Optical incident/exit device for collating optical fiber core
JPS6267409A (en) Encoder using optical fiber
JPS618648A (en) Optical fiber detector
JP2551998Y2 (en) Light reflective plug
JP4012473B2 (en) Optical coupler