JPS63271989A - Optoelectronic integrated circuit device and manufacture thereof - Google Patents

Optoelectronic integrated circuit device and manufacture thereof

Info

Publication number
JPS63271989A
JPS63271989A JP10514087A JP10514087A JPS63271989A JP S63271989 A JPS63271989 A JP S63271989A JP 10514087 A JP10514087 A JP 10514087A JP 10514087 A JP10514087 A JP 10514087A JP S63271989 A JPS63271989 A JP S63271989A
Authority
JP
Japan
Prior art keywords
layer
type
transistor
laser
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10514087A
Other languages
Japanese (ja)
Inventor
Hiraaki Tsujii
辻井 平明
Seiji Onaka
清司 大仲
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10514087A priority Critical patent/JPS63271989A/en
Priority to US07/154,214 priority patent/US4956682A/en
Publication of JPS63271989A publication Critical patent/JPS63271989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To lessen the amount of scatter of the current amplification factor and reduce the stray capacity at the circumference of a collector and then, makes it pos sible to operate at great speed by forming a base layer of a transistor before a protrud ing form of a laser part is formed so that both electrodes of the laser part may be taken out from the surface of a substrate by using a semi-insulation substrate. CONSTITUTION:An n-type layer 103 makes possible the epitaxial growth on a semi- insulation substrate 101 and the n-type layer 103 is used as an n-type clad layer of a laser device 1 and also is used as a collector layer of a transistor 2. And an active layer 104 of the laser device and a p-type optical waveguide layer 105 are laminated and among them, the active layer 104 is used as a part of the collector layer and the p-type waveguide layer 105 is used as a base layer in the transistor 2. Then, after forming a p-type clad layer 106 of the laser device, it is selectively etched into the form of a stripe and the laser part 1 is made up and after that, this device allows an emitter layer 111 comprising an extensive transistor to grow and a stripe-like protrusion of the laser device is buried in its layer. As the base layer of this transistor is formed at the first time, it may have uniform characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光素子とトランジスタとを一体化し、かつ集
積化に適した光電子集積回路、とくに材料にInPを用
いた集積回路とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optoelectronic integrated circuit that integrates a light emitting element and a transistor and is suitable for integration, and particularly relates to an integrated circuit using InP as a material and a method for manufacturing the same.

従来の技術 光電子集積回路は発光素子及び電気素子を同一半導体基
板上に集積した装置であシ、小型、低価格かつ高速性に
すぐれている。第3図に従来の光電子集積回路の断面構
造図を示す。第3図(1)に最終形状を示す。レーザ部
分332には、リーク電流の少ない埋込みダブルへテロ
接合レーザ、トランジスタ333としてはエミッタ注入
効率が高く電流増幅率の大きなHB T (Heter
ojunctionBipolar Transist
or )を用いている。
2. Description of the Related Art An optoelectronic integrated circuit is a device in which a light emitting element and an electric element are integrated on the same semiconductor substrate, and is small in size, low in price, and excellent in high speed. FIG. 3 shows a cross-sectional structural diagram of a conventional optoelectronic integrated circuit. Figure 3 (1) shows the final shape. The laser part 332 is a buried double heterojunction laser with low leakage current, and the transistor 333 is a HB
ojunctionBipolar Transist
or) is used.

以下に従来例の製造法について述べる。第3図(a)に
示すように先ずレーザ構造を形成するためn型InP基
板301上にダブルへテロ接合を形成するようにn型I
nP層をおおいエミッタ層324及びベース層をエツチ
ングして、第3図(・)に示すようにトランジスタ部分
3330メサ形状を形成する。
A conventional manufacturing method will be described below. As shown in FIG. 3(a), first, in order to form a laser structure, an n-type I
The emitter layer 324 and base layer are etched over the nP layer to form a mesa shape of the transistor portion 3330 as shown in FIG.

その後第3図(f)に示すように全面にシリコン窒化膜
351を堆積後、分離用開孔362を形成し、p型不純
物であるZrxをp製分離層321に達するまで拡散を
行ない、各トランジスタ素子の分離を行う。さらにシリ
コン窒化膜を除去後新たにシリコン窒化膜361を堆積
し、各トランジスタのグラフトベース拡散をZnを不純
物として行ないグラフトベース領域362を形成する(
第3図(q))。
After that, as shown in FIG. 3(f), after depositing a silicon nitride film 351 on the entire surface, an isolation opening 362 is formed, and Zrx, which is a p-type impurity, is diffused until it reaches the p-made isolation layer 321. Separates transistor elements. Further, after removing the silicon nitride film, a new silicon nitride film 361 is deposited, and graft base diffusion of each transistor is performed using Zn as an impurity to form a graft base region 362 (
Figure 3 (q)).

新たにシリコン酸化膜371を堆積して第3図(h)に
示すように各電極を形成する。p型に対してはA u/
Z n /A uを用いてアノード電極372、ベース
電極373、分離電極374を形成する。n型に対して
はAu/Sn/Auを用いてエミッタ電極3了6、コレ
クタ電極376を形成する。さらにレーザ部分332、
トランジスタ部分333を電気的に分離するため第3図
(i)に示すように分離溝を形成し、絶縁用樹脂381
を分離溝に充填して分離する。
A new silicon oxide film 371 is deposited to form each electrode as shown in FIG. 3(h). For p type, A u/
An anode electrode 372, a base electrode 373, and a separation electrode 374 are formed using Z n /A u. For n-type, the emitter electrode 3 and collector electrode 376 are formed using Au/Sn/Au. Further, the laser portion 332,
In order to electrically isolate the transistor portion 333, a separation groove is formed as shown in FIG. 3(i), and the insulating resin 381 is
Fill the separation groove and separate.

(クラッド層)302、その上に活性層303としてI
nGaAsP層を0.2μmの膜厚に形成し、さらにそ
の上にp型InP層(クラッド層)304及びp型In
GaAsP層(キ+ツブ層)306を積層して形成する
。次に、所望の領域にシリコン酸化膜311を形成し、
シリコン酸化膜311をマスク材として、塩酸及び硫酸
、更に臭素とメチルアルコールとの混合液を用いて第3
図(b)に示すような逆メサ形状312を形成する。そ
の後液相エピタキシャル成長法を用いて逆メサ形状を埋
込んで行く。この時埋込み層にトランジスタの各層を作
り込んで行く。埋込み層はp型InPで分離層321と
コレクタ層322としてn型InP、ベース層323と
してp型1nGaAsP、!ミッタ層324としてはベ
ース層323より禁制帯幅の大きなn型InP、エミッ
タ導電層(コンタクト層)326として高濃度のn型I
nGaAsPを順次形成する(第3図(C))。
(cladding layer) 302, and I as an active layer 303 on top of it.
An nGaAsP layer is formed to a thickness of 0.2 μm, and a p-type InP layer (cladding layer) 304 and a p-type InP layer are formed on top of the nGaAsP layer to a thickness of 0.2 μm.
A GaAsP layer (key layer) 306 is laminated and formed. Next, a silicon oxide film 311 is formed in a desired region,
Using the silicon oxide film 311 as a mask material, a third layer is formed using a mixed solution of hydrochloric acid, sulfuric acid, and bromine and methyl alcohol.
An inverted mesa shape 312 as shown in Figure (b) is formed. After that, the inverted mesa shape is filled in using liquid phase epitaxial growth. At this time, each layer of the transistor is built into the buried layer. The buried layer is p-type InP, the isolation layer 321 and collector layer 322 are n-type InP, and the base layer 323 is p-type 1nGaAsP. The emitter layer 324 is n-type InP, which has a wider forbidden band width than the base layer 323, and the emitter conductive layer (contact layer) 326 is n-type I, which has a higher concentration.
nGaAsP is sequentially formed (FIG. 3(C)).

次にレーザ部分332とトランジスタ部分333内のエ
ミッタコンタク領域334とをホトレジスト331でお
おい、エミッタ導電層326をエツチングする(第3図
(d))。新たにホトレジスト341を用いてレーザ部
分332及びトランジスタ部分333、配線金属391
を蒸着後、リフトオフ法により各素子間の配線を行う。
Next, the laser portion 332 and the emitter contact region 334 in the transistor portion 333 are covered with photoresist 331, and the emitter conductive layer 326 is etched (FIG. 3(d)). A new photoresist 341 is used to form a laser part 332, a transistor part 333, and a wiring metal 391.
After vapor deposition, wiring between each element is performed using a lift-off method.

各レーザはウェハをへき開することにより、ファブリペ
ロ共振器を形成する。へき開を容易に行ない、かつチッ
プからの放熱をよくするため、ウエノ・の裏面に研磨を
施し、その後裏面にレーザのカソード電極392として
A u/S n/A uを全面に形成し、第3図(j)
に示すようなレーザとトランジスタとを含有した光電子
集積回路が形成できる。
Each laser cleaves the wafer to form a Fabry-Perot cavity. In order to easily perform cleavage and improve heat dissipation from the chip, the back surface of the wafer was polished, and then A u/S n/A u was formed on the entire surface as the cathode electrode 392 of the laser on the back surface. Diagram (j)
An optoelectronic integrated circuit containing a laser and a transistor as shown in FIG. 1 can be formed.

発明が解決しようとする問題点 以上述べて来た第3図に示すような従来の光電子集積回
路は次のような欠点があった。即ち、トランジスタの各
層は、レーザの逆メサ形状を埋込む際作り込むのである
が、エピタキシャル成長時、逆メサ形状の凸部の影響を
受け、各層の膜厚が逆メサ形状からの距離により変化し
、従ってトランジスタの特性を決定するベース層の膜厚
が不均一となり電流増幅率にバラツキを生じていた。さ
らにレーザの電流はウェハに対して垂直に流れるため基
板は導電性の材料を用いており、各トランジスタの分離
にp型分離層を用いている。従ってコレクタと分離層の
pn接合容量が、コレクタ容量に付加され、トランジス
タの高速動作を阻害していた。
Problems to be Solved by the Invention The conventional optoelectronic integrated circuit as shown in FIG. 3, which has been described above, has the following drawbacks. In other words, each layer of the transistor is formed when embedding the inverted mesa shape of the laser, but during epitaxial growth, the film thickness of each layer changes depending on the distance from the inverted mesa shape due to the influence of the convex part of the inverted mesa shape. Therefore, the thickness of the base layer, which determines the characteristics of the transistor, is non-uniform, causing variations in the current amplification factor. Furthermore, since the laser current flows perpendicularly to the wafer, a conductive material is used for the substrate, and a p-type separation layer is used to separate each transistor. Therefore, the pn junction capacitance between the collector and the separation layer is added to the collector capacitance, which hinders high-speed operation of the transistor.

問題点を解決するための手段 本発明の方法は、基板に半絶縁性半導体を用いるととも
にレーザの両電極を基板表面から取り出せる構造とする
こと、またトランジスタの特性に大きく影響を与えるベ
ース層はレーザ部の凸形状が形成される前にエピタキシ
ャル成長させておくことである。
Means for Solving the Problems The method of the present invention uses a semi-insulating semiconductor for the substrate and has a structure in which both electrodes of the laser can be taken out from the substrate surface, and the base layer, which greatly affects the characteristics of the transistor, is made of a semi-insulating semiconductor. The method is to perform epitaxial growth before the convex shape of the part is formed.

作  用 上記手段による作用は次のようなものである。For production The effects of the above means are as follows.

基板としては半絶縁性基板を用いること、その上にn型
層をエピタキシャル成長させるが、このn型層はレーザ
のn型クラッド層として用い、かつトランジスタのコレ
クタ層として用いる。従ってトランジスタは半絶縁性基
板上に形成される。さらにその上にレーザの活性層とp
型の光導波層を積層するが、この2つの層はトランジス
タにおいて、活性層がコレクタ層の一部、pi導波層を
ベース層として用いる。
A semi-insulating substrate is used as the substrate, and an n-type layer is epitaxially grown thereon, and this n-type layer is used as an n-type cladding layer of a laser and as a collector layer of a transistor. The transistor is therefore formed on a semi-insulating substrate. Furthermore, the active layer of the laser and p
These two layers are used in a transistor, with the active layer serving as part of the collector layer and the pi waveguide layer serving as the base layer.

その後さらにその上にレーザのp型クラッド層を形成し
た後、選択的にストライプ状にエツチングしてレーザ部
を構成する。その後、全面トランジスタのエミッタ層を
成長させて、レーザのストライプ状の凸部を埋込む。こ
の凸部はレーザのp型クラッド層の厚さのみであシエビ
タキシャル成長の膜厚に与える影響は小さく、かつトラ
ンジスタの特性を決定するベース層は一回目の成長時に
形成されているため均一な特性にすることができる。
Thereafter, a p-type cladding layer of the laser is further formed thereon, and then selectively etched into stripes to form a laser section. Thereafter, the emitter layer of the full-surface transistor is grown to bury the striped convex portion of the laser. This convex part is only the thickness of the p-type cladding layer of the laser, so it has little effect on the film thickness of the vitaxial growth, and the base layer, which determines the characteristics of the transistor, is formed during the first growth, so it is uniform. characteristics.

実施例 以下本発明の実施例を添付図面を用いて説明する。第1
図は本発明によるレーザ部1とトランジスタ部2とを同
一基板上に集積化した光電子集積回路の断面構造図であ
る。第2図(a)〜偽)は本発明の詳細な説明するため
の各製造工程の断面図である。
Examples Examples of the present invention will be described below with reference to the accompanying drawings. 1st
The figure is a cross-sectional structural diagram of an optoelectronic integrated circuit in which a laser section 1 and a transistor section 2 are integrated on the same substrate according to the present invention. FIG. 2(a) to FIG. 2(a) are sectional views of each manufacturing process for explaining the present invention in detail.

第2図(a)に示すように半絶縁性InP基板101上
にn型高濃度層102として、直列抵抗を低減させるた
めに濃度I X1018cm−3のn型InPを1μm
の厚さに、その上にn型層103として濃度1X10 
cIL のn型1nP層を1μmの厚さに形成する。n
型層103はレーザ部1のn型クラッド層であり、かつ
トランジスタ部2のコレクタ層でもある。n型層103
はトランジスタのコレクタ・ベース間耐圧を大きくする
ためn型高濃度層より低濃度にする。さらにその上にレ
ーザの活性層104として組成波長λy=1.3μmの
InGaAsPを0 、16pmの厚さに、さらにその
上に光導波層105として組成波長λg=1.1μmで
、濃度5X10”cWL−3のp型InGaAsPを0
.2μmの厚さにこの順序で形成する。光導波層105
は、トランジスタのペースでもある。その上にp型クラ
ッド層106として濃度1×1o18cIL−3の!−
を1.2μmの厚さに、p型コンタクト層として組成波
長λy:1.1fimで濃度3X10  cx  のI
nGaAsPをそれぞれこの順序でエピタキシャル成長
させる。
As shown in FIG. 2(a), an n-type heavily doped layer 102 is formed on a semi-insulating InP substrate 101, and n-type InP with a concentration of I×1018 cm−3 is deposited to a thickness of 1 μm in order to reduce series resistance.
with a concentration of 1X10 as an n-type layer 103 on top of it.
An n-type 1nP layer of cIL is formed to a thickness of 1 μm. n
The type layer 103 is an n-type cladding layer of the laser section 1 and is also a collector layer of the transistor section 2. n-type layer 103
is made to have a lower concentration than the n-type high concentration layer in order to increase the breakdown voltage between the collector and base of the transistor. Furthermore, an active layer 104 of the laser is made of InGaAsP with a composition wavelength λy = 1.3 μm and a thickness of 0.16 pm, and an optical waveguide layer 105 is formed on it with a composition wavelength λg = 1.1 μm and a concentration of 5×10” cWL. −3 p-type InGaAsP to 0
.. It is formed in this order to a thickness of 2 μm. Optical waveguide layer 105
is also the pace of transistors. On top of that is a p-type cladding layer 106 with a concentration of 1×1o18cIL-3! −
with a thickness of 1.2 μm, and a p-type contact layer with a composition wavelength λy of 1.1 fim and a concentration of 3×10 cx.
The nGaAsP is epitaxially grown in this order.

次に第2図(b)に示すようにシリコン窒化膜211と
ホトレジスト212とをストライプ状に残存させ、p型
コンタクト層107およびp型クラッド層106を幅2
μmにエツチングすることにより電流狭さくの効果を持
たし、かつレーザの光のとじ込めができる形状とする。
Next, as shown in FIG. 2(b), the silicon nitride film 211 and the photoresist 212 are left in a stripe shape, and the p-type contact layer 107 and the p-type cladding layer 106 are formed with a width of 2.
By etching to micrometers, the shape has the effect of confining the current and allows the laser light to be contained.

その後、ホトレジスト212、シリコン窒化膜211を
除去し、第2図(p)に示すように、エミッタ層111
として濃度5X10  cIIL のn型InPを0.
6μmの厚さに、さらにその上にn型コンタクト層11
2として濃度2X1018clL−3のn型InGaA
sPを0.2μmの厚さに形成する。
After that, the photoresist 212 and the silicon nitride film 211 are removed, and the emitter layer 111 is removed as shown in FIG. 2(p).
n-type InP with a concentration of 5×10 cIIL was added as 0.
6 μm thick, and an n-type contact layer 11 on top of it.
n-type InGaA with concentration 2X1018clL-3 as 2
sP is formed to a thickness of 0.2 μm.

その後全面にシリコン窒化膜231を堆積させ、ホトレ
ジスト232を用いて、第2図(d)に示すようにトラ
ンジスタのエミッタ部分にホトレジスト232とシリコ
ン窒化膜231を残存させこれらをマスク材として、先
ず硫酸と過酸化水素と水とを混合した第1のエツチング
液にてn型コンタクト層112をエツチング除去し、次
に塩酸とりん酸とを混合した第2のエツチング液に2工
ミツタ層111をエツチング除去する。光導波層105
はInGaAgPであるので!2のエツチング液ではエ
ツチングされず容易に第2図(d)に示すようなメサ構
造を形成することができる。
Thereafter, a silicon nitride film 231 is deposited on the entire surface, and a photoresist 232 is used to leave the photoresist 232 and silicon nitride film 231 on the emitter part of the transistor as shown in FIG. 2(d). The n-type contact layer 112 is etched and removed using a first etching solution containing a mixture of hydrogen peroxide and water, and then the second contact layer 111 is etched using a second etching solution containing a mixture of hydrochloric acid and phosphoric acid. Remove. Optical waveguide layer 105
Since is InGaAgP! With the etching solution No. 2, no etching occurs and a mesa structure as shown in FIG. 2(d) can be easily formed.

ホトレジスト232及びシリコン窒化膜231を除去し
、新たにシリコン窒化膜241を堆積させ、ホトレジス
ト242にてレーザ部1及びトランジスタ部2にのみシ
リコン窒化膜241及びホトレジスト242を残存させ
、第1のエツチング液にて光導波層105及び活性層1
04をエツチング除去する。第1のエツチング液ではI
nPに対するエツチング速度が遅いのでn型導電層10
3(InP)にて、エツチングが停止するため第2図(
e)に示すようなメサ形状が容易に形成できる。
The photoresist 232 and the silicon nitride film 231 are removed, a new silicon nitride film 241 is deposited, the silicon nitride film 241 and the photoresist 242 are left only on the laser part 1 and the transistor part 2 with the photoresist 242, and the first etching solution is applied. The optical waveguide layer 105 and the active layer 1
04 is removed by etching. In the first etching solution, I
Since the etching speed for nP is slow, the n-type conductive layer 10
3 (InP), the etching stops as shown in Figure 2 (
A mesa shape as shown in e) can be easily formed.

次にトランジスタ部2のペースを引き出すため、シリコ
ン窒化膜にてベースコンタクトを形成する部分のみ開孔
されたシリコン窒化膜251をマスク材として、InP
に対してp型不純物であるZnを500℃の温度にて1
0分間封管拡散を行いグラフトベース拡散領域252を
形成する(第2図(幻 )。
Next, in order to bring out the pace of the transistor part 2, using the silicon nitride film 251 with holes made only in the part where the base contact will be formed as a mask material, the InP
Zn, which is a p-type impurity, was added at a temperature of 500°C.
A sealed tube diffusion is performed for 0 minutes to form a graft base diffusion region 252 (FIG. 2 (phantom)).

その後レーザ部1とトランジスタ部2との間を電気的に
分離するため、シリコン窒化膜261とTi膜262を
用いて分離溝形成用の開孔を形成し、CCl4ガスによ
るリアクティブイオンエツチング(IIE)により分離
溝263を、半絶縁性のInP基板101に達する深さ
に形成する(第2図(g))。
After that, in order to electrically isolate between the laser section 1 and the transistor section 2, an opening for forming an isolation groove is formed using a silicon nitride film 261 and a Ti film 262, and reactive ion etching (IIE) is performed using CCl4 gas. ), the separation groove 263 is formed to a depth that reaches the semi-insulating InP substrate 101 (FIG. 2(g)).

第2図(h)に示すように分離溝263に絶縁性樹脂2
71を充填し、分離溝を渡って配線が可能とする。その
後A u /S n/A uの金属を用いてアノード電
極272、エミッタ電極273、コレクタ電極274を
形成する。A u/Z n/A uの金属を用いてカソ
ード電極27B、ペース電極276を形成し第1図に示
すようなレーザ部1とトランジスタ部2とが同一基板上
に集積された光電子集積回路装置が形成できる。
As shown in FIG. 2(h), insulating resin 2 is placed in the separation groove 263.
71 to enable wiring across the separation trench. Thereafter, an anode electrode 272, an emitter electrode 273, and a collector electrode 274 are formed using metals of A u /S n /A u. An optoelectronic integrated circuit device in which a cathode electrode 27B and a pace electrode 276 are formed using metals of A u / Z n / A u, and a laser part 1 and a transistor part 2 are integrated on the same substrate as shown in FIG. can be formed.

トランジスタのベース層は第1回目のエピタキシャル形
成時、基板表面が平らな上に形成されるため、均一性に
すぐれ、レーザのnクラッド層。
The base layer of the transistor is formed on a flat substrate surface during the first epitaxial formation, so it has excellent uniformity and is similar to the n-cladding layer of the laser.

活性層、光電波層をトランジスタのコレクタ、ペースと
しても用いるため、従来の光電子集積回路に比べて平坦
化され、分離溝も低くてもよく、配線が容易となり高密
度集積化にも適している。またトランジスタはエミッタ
注入効率が高い、HBTであシかつ、ペース・コレクタ
界面は、ベース層(光導波層1o6)より禁制帯幅の小
さい活性層があるため、p −n接合面が低濃度のコレ
クタ側(活性層1o4)に入り込んでも、禁制帯幅の大
きなp−n接合を形成しないことにより、HBTのコレ
クタへの電子の流入が阻害されず、輸送効率が低下しな
い、従って電流増幅率の大きなHBTを形成することが
できる。
Since the active layer and photoelectric wave layer are also used as the collector and paste of the transistor, the circuit is planar compared to conventional optoelectronic integrated circuits, and the separation trench can be lower, making wiring easier and suitable for high-density integration. . In addition, the transistor is an HBT with high emitter injection efficiency, and the space-collector interface has an active layer with a narrower forbidden band width than the base layer (optical waveguide layer 1o6), so the p-n junction surface has a low concentration. Even if electrons enter the collector side (active layer 1o4), since a p-n junction with a large forbidden band width is not formed, the inflow of electrons to the collector of the HBT is not inhibited, and the transport efficiency does not decrease. A large HBT can be formed.

発明の効果 以上述べて来たように本発明によれば、ペースl厚が均
一でその結果電流増幅率にバラツキが少なく、かつコレ
クタ周辺の浮遊容量が小さく、高速動作が可能なトラン
ジスタをレーザと同一基板上に集積した光電子集積回路
装置を形成することができる。
Effects of the Invention As described above, according to the present invention, a transistor with a uniform paste thickness, resulting in little variation in current amplification factor, small stray capacitance around the collector, and capable of high-speed operation can be used as a laser. Optoelectronic integrated circuit devices can be formed on the same substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光電子集積回路装置の断面
図、第2図(a)〜(h)は本発明の一実施例の製造方
法を示す工程断面図、第3図(a)〜(1)は従来の半
導体装置の製造方法を示す工程断面図である。 1・・・・・・レーザ部、2・・・・・・トランジスタ
部、1o1・・・・・・半絶縁性InP基板、102・
・・・・・n型高濃度層、103・・・・・・n型層、
104・・・・・・活性層、105・・・・・・光導波
層、106・・・・・・p型クラッド層、111・・・
・・・エミッタ層。
FIG. 1 is a cross-sectional view of an optoelectronic integrated circuit device according to an embodiment of the present invention, FIGS. 2(a) to (h) are process cross-sectional views showing a manufacturing method according to an embodiment of the present invention, and FIG. ) to (1) are process cross-sectional views showing a conventional method for manufacturing a semiconductor device. DESCRIPTION OF SYMBOLS 1...Laser section, 2...Transistor section, 1o1...Semi-insulating InP substrate, 102.
...N-type high concentration layer, 103...N-type layer,
104... Active layer, 105... Optical waveguide layer, 106... P-type cladding layer, 111...
...Emitter layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性基板上に、トランジスタのコレクタ層で
ありかつレーザのn型クラッド層に相当するn型導電層
と、前記n型導電層より禁制帯幅が小さい前記レーザの
活性層と、禁制帯幅が前記活性層より大きく前記n型導
電型より小さいところの前記トランジスタのベースであ
りかつレーザの光導波層に相当するp型導電層とが、こ
の順序で積層され、前記レーザのp型クラッド層と、前
記トランジスタのn型エミッタ層とが前記p型導電層上
の所望の位置にそれぞれ形成され、前記トランジスタの
コレクタ層、ベース層およびエミッタ層の各層、及び前
記レーザのp型クラッド層とn型クラッド層とにそれぞ
れオーム性接触の金属により電極が形成されている光電
子集積回路装置。
(1) On a semi-insulating substrate, an n-type conductive layer that is a collector layer of a transistor and corresponds to an n-type cladding layer of a laser, and an active layer of the laser whose forbidden band width is smaller than that of the n-type conductive layer; A p-type conductive layer, which is the base of the transistor and whose forbidden band width is larger than that of the active layer and smaller than the n-type conductivity type and corresponds to the optical waveguide layer of the laser, is laminated in this order, and the p-type conductive layer of the laser is laminated in this order. A type cladding layer and an n-type emitter layer of the transistor are formed at desired positions on the p-type conductive layer, respectively, and a collector layer, a base layer, and an emitter layer of the transistor and a p-type cladding layer of the laser are formed at desired positions on the p-type conductive layer. An optoelectronic integrated circuit device in which electrodes are formed on each of the layer and the n-type cladding layer using ohmic contact metal.
(2)半絶縁性基板上に、n型導電層と前記導電層より
禁制帯幅が小さい前記レーザの活性層と、禁制帯幅が前
記活性層より大きく前記n型導電型より小さいp型導電
層と、前記p型導電層より禁制帯幅が大きいp型クラッ
ド層とをこの順序で積層して形成する工程と、前記p型
クラッド層をストライプ状に残して前記p型導電層が表
われるまでエッチング除去する工程と、前記p型導電層
上にn型エミッタ層を新たに形成する工程と、前記n型
エミッタ層を選択的に除去する工程と、前記p型導電層
及び活性層とを選択的に除去する工程と、前記n型導電
層と前記p型導電層と前記n型エミッタ層及び前記p型
クラッド層にオーム性接触を形成する金属にてそれぞれ
の電極を形成する工程とを含む光電子集積回路装置の製
造方法。
(2) On a semi-insulating substrate, an n-type conductive layer, an active layer of the laser whose forbidden band width is smaller than that of the conductive layer, and a p-type conductive layer whose forbidden band width is larger than the active layer and smaller than the n-type conductive type. and a p-type cladding layer having a larger forbidden band width than the p-type conductive layer are stacked in this order, and the p-type conductive layer is exposed while leaving the p-type cladding layer in a stripe shape. a step of newly forming an n-type emitter layer on the p-type conductive layer; a step of selectively removing the n-type emitter layer; and a step of removing the p-type conductive layer and the active layer. selectively removing the layer; and forming respective electrodes of metal forming ohmic contacts with the n-type conductive layer, the p-type conductive layer, the n-type emitter layer, and the p-type cladding layer. A method of manufacturing an optoelectronic integrated circuit device, including:
JP10514087A 1987-04-28 1987-04-28 Optoelectronic integrated circuit device and manufacture thereof Pending JPS63271989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10514087A JPS63271989A (en) 1987-04-28 1987-04-28 Optoelectronic integrated circuit device and manufacture thereof
US07/154,214 US4956682A (en) 1987-04-28 1988-02-10 Optoelectronic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10514087A JPS63271989A (en) 1987-04-28 1987-04-28 Optoelectronic integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63271989A true JPS63271989A (en) 1988-11-09

Family

ID=14399446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10514087A Pending JPS63271989A (en) 1987-04-28 1987-04-28 Optoelectronic integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63271989A (en)

Similar Documents

Publication Publication Date Title
US4956682A (en) Optoelectronic integrated circuit
EP0177246B1 (en) Heterojunction bipolar transistor and method of manufacturing the same
KR900000585B1 (en) Semiconductor integrated circuit device and method for producing same
JP3905929B2 (en) Semiconductor device
JPS63271989A (en) Optoelectronic integrated circuit device and manufacture thereof
JPS59124183A (en) Light emitting semiconductor device
CN113991419B (en) Buried heterojunction device and preparation method thereof
JPS63299375A (en) Photoelectron integrated circuit and manufacture thereof
JPH0350252B2 (en)
Wen et al. Multilayer vapor-phase epitaxial silicon millimeter-wave IMPATT diodes
KR100311459B1 (en) Method for manufacturing laser diode
KR100192543B1 (en) Manufacturing method of bipolar transistor
JPS63120487A (en) Photoelectron integrated circuit
KR910005392B1 (en) Manufacturing method of double-hetero junction type led with junction current limited region
JPS63120488A (en) Manufacture of photoelectron integrated circuit
JP2598044B2 (en) Semiconductor semi-insulation method
JPH0236584A (en) Optoelectronic integrated circuit and manufacture thereof
JPS6318874B2 (en)
JPH01143384A (en) Optoelectronic integrated circuit and manufacture thereof
JPH11121869A (en) Semiconductor laser element and its manufacture
JPS63151077A (en) Opto-electric integrated circuit device
JPH01111393A (en) Semiconductor laser
JPH02194688A (en) Semiconductor laser
JPS62229892A (en) Semiconductor device and manufacture thereof
JPH06120615A (en) Manufacture of semiconductor laser element