JPS63271960A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63271960A
JPS63271960A JP10519987A JP10519987A JPS63271960A JP S63271960 A JPS63271960 A JP S63271960A JP 10519987 A JP10519987 A JP 10519987A JP 10519987 A JP10519987 A JP 10519987A JP S63271960 A JPS63271960 A JP S63271960A
Authority
JP
Japan
Prior art keywords
layer
wiring
insulating
wiring layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10519987A
Other languages
Japanese (ja)
Inventor
Takao Maeda
貴雄 前田
Seisaku Yamanaka
山中 正策
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10519987A priority Critical patent/JPS63271960A/en
Publication of JPS63271960A publication Critical patent/JPS63271960A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent such erroneous operations as cross talk by a method wherein an insulating layer wherein a coverage is provided on a wiring layer containing a plurality of leads formed on an insulating substrate, and a conducting layer formed on the insulating layer and to be connected to the ground potential, are provided. CONSTITUTION:A conducting layer 15 is provided through the intermediary of an insulating layer 14 on a wiring layer 8 formed on an insulating substrate 1, and the conducting layer 15 is set at the ground potential. The conducting layer 15 is so formed as to cover all the lines 8' of the wiring layer 8, and the gaps between the lines 8' are filled up with an insulating layer of high permittivity. As the results, the coupling force is relatively weakened between the leads 8' and fluctuation in potential attributable to adjacent lines 8' may be reduced. Such erroneous operations as cross talk is reduced in a device with its wirings highly integrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度化・高速化に適する電気的に安定な半
導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrically stable semiconductor device suitable for higher density and higher speed.

〔従来の技術〕[Conventional technology]

従来の半導体装置のパッケージ構造を、ガラスで封止し
た気密封止型を例にとって、第2図に示した。この気密
封止型半導体装置はピングリッドアレイ(PGA)と呼
ばれるもので、100ピン以上の多ピンを要求されるゲ
ートアレイやマイクロコンビエータの進展と共に多用さ
れてきている。
A conventional package structure of a semiconductor device is shown in FIG. 2, taking as an example a hermetically sealed type package sealed with glass. This hermetically sealed semiconductor device is called a pin grid array (PGA), and has come into widespread use with the development of gate arrays and micro combinators that require a large number of pins of 100 or more.

特に、最近では工10数は益々増大し、数百ビンにも及
ぶことがあるが、’P G Aタイプで多ビン化に対応
する方法は、マルチラミネートセラミックスを応用して
2層以上の多層配線にする方法と、1層で配線密度を上
昇させる方法とに大別される。
In particular, recently the number of man-hours has increased more and more, sometimes reaching hundreds of bottles, but the method to handle the large number of bottles with the 'PGA type is to apply multi-laminate ceramics to create two or more multi-layered bottles. There are two main methods: a method of forming wiring, and a method of increasing wiring density in one layer.

第2図のPGAは後者に該当する配線層が一層のもので
、配線パターンの変更のみでピンのレイアウトや使用ピ
ン数の調整が可能である利点を有している。
The PGA shown in FIG. 2 has a single wiring layer corresponding to the latter type, and has the advantage that the pin layout and the number of pins used can be adjusted simply by changing the wiring pattern.

この様なPGAの基板としては、使用実績の高いアルミ
ナ(A40 )等のセラミックスが主流であるが、気密
封止が不要な用途では安価なガラスエポキシ等の基板も
使用されている。セラミックス基板の場合、スルーホー
ルを設けたグリーンシートを形成し、各スルーホール内
にタングステン等をスクリーン印刷により充填した後、
このグリーンシート3〜5枚を積層して同時焼成する工
程により基板を製造している。
As substrates for such PGAs, ceramics such as alumina (A40), which have a good track record of use, are the mainstream, but inexpensive substrates such as glass epoxy are also used in applications where hermetic sealing is not required. In the case of a ceramic substrate, a green sheet with through holes is formed, and each through hole is filled with tungsten or the like by screen printing.
A substrate is manufactured by a process in which three to five green sheets are laminated and simultaneously fired.

この様にして形成した積層セラミックス基板2を用いて
、第2図に示す如く、基板裏面から露出したタングステ
ンのメタライズ4に、金属製のピン3を銀ロウ5で固着
する。ピン3は高強度低熱膨張金属が好ましく、耐食性
及び半田付性を改善するため通常はロウ付部を含めて基
板裏面からのビン3の突出部分にニッケルめっき層6及
びその上に金めつき層7が順次施される。又、基板表面
にはメタライズ4に接続して配線層8を形成する。
Using the laminated ceramic substrate 2 thus formed, metal pins 3 are fixed with silver solder 5 to the tungsten metallization 4 exposed from the back surface of the substrate, as shown in FIG. The pin 3 is preferably made of a high-strength, low-thermal-expansion metal, and in order to improve corrosion resistance and solderability, a nickel plating layer 6 is usually applied to the protruding part of the pin 3 from the back of the board, including the brazed part, and a gold plating layer thereon. 7 are applied sequentially. Furthermore, a wiring layer 8 is formed on the surface of the substrate in connection with the metallization 4.

配線層8はアルミニウム又はアルミニウム合金(例えば
、A/−1%Si)を基板表面に全面被着させた後、フ
ォトリソグラフィーによりパターニングし、エツチング
して形成される。
The wiring layer 8 is formed by depositing aluminum or an aluminum alloy (for example, A/-1% Si) on the entire surface of the substrate, patterning it by photolithography, and etching it.

その後、積層セラミックス基板2のほぼ中央にIC等の
半導体素子9を銀入ガラスペーストを焼成した銀入ガラ
ス10で塔載し、半導体素子9の各電極と配線層8の各
配線はアルミワイヤ11等で結線される。最後に、積層
セラミックス基板2の上にセラミックス製のキャップ1
2を載せ、半導体素子9とアルミワイヤ11を収容する
ようにその周囲を低融点の封止ガラス13で気密封止し
てPGAが構成されている。
Thereafter, a semiconductor element 9 such as an IC is mounted almost in the center of the laminated ceramic substrate 2 with a silver-filled glass 10 made by firing a silver-filled glass paste, and each electrode of the semiconductor element 9 and each wiring of the wiring layer 8 is connected to an aluminum wire 11. etc. are connected. Finally, a ceramic cap 1 is placed on the laminated ceramic substrate 2.
2 is placed thereon, and the periphery thereof is hermetically sealed with a low-melting-point sealing glass 13 so as to accommodate the semiconductor element 9 and aluminum wire 11, thereby forming a PGA.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この種の積層セラミックス基板とセラミックス
製キャップを用いたPGA等の従来の半導体装置では、
LSI等の多I10化に伴ない配線を微細化し高密度化
するほど、構造部材や隣接配線の電位変動の影響を受け
や丁く、クロス・トーク等の誤動作を起す問題があった
However, in conventional semiconductor devices such as PGA using this type of laminated ceramic substrate and ceramic cap,
As wiring becomes finer and more dense as LSIs and the like increase in number of I10s, problems arise in that the wiring becomes more susceptible to potential fluctuations in structural members and adjacent wiring, causing malfunctions such as cross talk.

本発明は、か\る従来の事情に鑑み、配線の高密度化に
よってもクロス・トーク等の誤動作が発生することのな
い半導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional circumstances, it is an object of the present invention to provide a semiconductor device that does not cause malfunctions such as cross talk even when the wiring density is increased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、絶縁基板上に形成した複数の配
線からなる配線層と、配線層を被覆して形成した絶縁層
と、絶縁層上に設けたアース1位に接続される導体層と
を具えていることを特徴とする。
The semiconductor device of the present invention includes a wiring layer made up of a plurality of wirings formed on an insulating substrate, an insulating layer formed by covering the wiring layer, and a conductor layer connected to a ground No. 1 provided on the insulating layer. It is characterized by having the following.

絶縁基板としては、従来からのガラスエポキシや積層セ
ラミックス基板でもよく、又粉末冶金法に゛よりアルミ
ナ等のセラミックス粉末を一体的に成形し焼結して製造
したセラミックス基板であってもよい。
The insulating substrate may be a conventional glass epoxy or laminated ceramic substrate, or may be a ceramic substrate manufactured by integrally molding and sintering ceramic powder such as alumina using a powder metallurgy method.

又、配線層は高密度配線が可能な高導電性の材料であれ
ばよいが、特に20Cでのシート抵抗が33 mQ10
以下である配線、例えば厚さ1μmのアルミニウム等が
高密度実装しても低抵抗を確保できるので好ましい。
In addition, the wiring layer may be made of a highly conductive material that enables high-density wiring, but in particular, a material with a sheet resistance of 33 mQ10 at 20C is sufficient.
The following wiring, for example aluminum with a thickness of 1 μm, is preferable because low resistance can be ensured even when it is mounted at a high density.

絶縁層としては誘電率の低い物質が好ましく、特に微細
配線を施丁場合には比誘電率12以下であることが望ま
しく、例えば比誘電率9.3のAt 。
The insulating layer is preferably made of a material with a low dielectric constant, and particularly in the case of fine wiring, it is desirable that the dielectric constant is 12 or less, such as At with a dielectric constant of 9.3.

や同4.5のSiOは有効であるが、同14.2のFe
Oでは誤動作防止の効果が少ない。
SiO of 14.2 or 4.5 is effective, but Fe of 14.2 is effective.
O is less effective in preventing malfunctions.

導体層は導電性の材料であればよく、例えば配線層と同
じ材料で形成してもよい。導体層の形態は隙間のない全
面べた状が製造上好ましいが、配線層と同様に複数の線
からなる線状、又は複数の線を互いに交差させた網状な
どであってよい。線状又は網状など全面べた状以外の場
合には、導電性部分の面積比が10%以上であることが
好ましい。
The conductor layer may be made of any conductive material, and may be formed of the same material as the wiring layer, for example. The shape of the conductor layer is preferably solid throughout the entire surface with no gaps, but it may also be in the form of a line made up of a plurality of lines like the wiring layer, or a net shape in which a plurality of lines intersect with each other. In cases where the conductive portion is not entirely solid, such as a linear or net shape, it is preferable that the area ratio of the conductive portion is 10% or more.

配線層が2層以上からなる場合には、配線層毎に絶縁層
を介して夫々導体層を設けるのが好ましいが、全体で1
つの導体層を最上に又は中間に形成するだけでも有効で
ある。その場合、最上層に導体層を形成丁れば、配線層
用のスルーホール等を形成しなくても良いので製造上好
都合である。
When the wiring layer consists of two or more layers, it is preferable to provide a conductor layer for each wiring layer with an insulating layer interposed therebetween.
It is also effective to form only one conductor layer on top or in the middle. In this case, if a conductor layer is formed on the top layer, there is no need to form through holes for wiring layers, which is convenient for manufacturing.

〔作用〕[Effect]

本発明者等は、微細な配線を有するPGAについてクロ
ス・トーク等の誤動作を招く原因について検討した結果
、全ての配線と対向するようなアース電位を近くに設置
丁ればクロス・トーク等を低減でさることを見出した。
As a result of examining the causes of malfunctions such as cross talk in PGAs with fine wiring, the inventors of the present invention found that cross talk can be reduced by installing a ground potential that faces all the wiring nearby. I discovered something strange.

即ち、クロス・トーク等の誤動作をおこ子配線の電位変
動を誘起する原因には、キャップや基板等の近くの構成
物の電位と、隣接配線の電位があるが、一般的には近く
にあるものほど影響が大きい。そこで、これらの影響を
打ち消丁ためには配線の近くにアース電位を設置するこ
とが有効であるとの結論に至ったものである。
In other words, the causes of potential fluctuations in child wiring that cause malfunctions such as cross talk include the potential of nearby components such as caps and substrates, and the potential of adjacent wiring, but in general, The impact is huge. Therefore, we came to the conclusion that it is effective to install a ground potential near the wiring in order to cancel out these effects.

然るに、従来のPGA等の半導体装置においては、アー
ス電位が全くないか、若しくは極めて狭い範囲でしか設
置する余裕がなかった。
However, in conventional semiconductor devices such as PGA, there is no ground potential at all, or there is only room to install it in a very narrow range.

本発明では、第1図に示すように、配線層8の上に絶縁
層14を介して導体層15を設け、この導体層15にア
ース電位を設置する。導体層15は配線層8の全配線8
′を覆うように形成するのが好ましい。本発明によれば
、配線層8に最も近接させてアース電位(導体層15)
を設置でき且つ配線8′間を誘電率の高い絶縁物(絶縁
層14)で埋めることができる。その結果、各配線間の
カンプリングを相対的に弱め、隣接配線から受ける電位
変動を低減できるので、配線層を高密度化した。場合に
もクロス・トーク等の誤動作を低減させることができ、
同様の理由で高速素子や高出力素子の塔載が可能になる
In the present invention, as shown in FIG. 1, a conductor layer 15 is provided on the wiring layer 8 via an insulating layer 14, and a ground potential is set on the conductor layer 15. The conductor layer 15 includes all the wiring 8 of the wiring layer 8
′ is preferably formed so as to cover it. According to the present invention, the ground potential (conductor layer 15) is placed closest to the wiring layer 8.
can be installed, and the space between the wiring lines 8' can be filled with an insulator (insulating layer 14) having a high dielectric constant. As a result, it is possible to relatively weaken compression between each wiring and reduce potential fluctuations received from adjacent wiring, thereby increasing the density of the wiring layer. It can also reduce malfunctions such as cross talk,
For similar reasons, it becomes possible to mount high-speed devices and high-output devices.

〔実施例〕〔Example〕

第1図に示すように、スルーホール内にメタライズ4を
形成した通常のAt Oの絶縁基板1の表面上に、通常
の方法に従って厚さ3μmのAlの配線8′を最小配線
幅100μm及び最小配線間隔100μmにて形成し、
この配線層8を覆って厚さ10mのA40  の絶縁層
14を蒸着させた。更に、絶縁層14上の全面に厚さ3
μmのAIを蒸着し、この導体層15を絶縁基板1の1
つのメタライズ4に接続させた。
As shown in FIG. 1, on the surface of an ordinary AtO insulating substrate 1 with metallization 4 formed in the through holes, an Al wiring 8' with a thickness of 3 μm is formed using a conventional method with a minimum wiring width of 100 μm and a minimum width of 100 μm. Formed with a wiring interval of 100 μm,
An insulating layer 14 of A40 having a thickness of 10 m was deposited to cover the wiring layer 8. Furthermore, the entire surface of the insulating layer 14 is coated with a thickness of 3
A conductor layer 15 is deposited on one side of the insulating substrate 1.
It was connected to two metallized 4.

100 MHz駆動の高速半導体素子を所定位置に塔載
してから、通常の如く半導体素子の各電極と配線層8の
各配線8′とをアルミワイヤで結線した。
After mounting a high-speed semiconductor element driven at 100 MHz at a predetermined position, each electrode of the semiconductor element and each wiring 8' of the wiring layer 8 were connected with aluminum wire as usual.

最後に半導体素子及びアルミワイヤを収容する金属製キ
ャップを封止ガラスで通常の如く気密封止して、208
ピンのP G A 20個を製造した。
Finally, the metal cap containing the semiconductor element and aluminum wire is hermetically sealed with sealing glass as usual.
Twenty PG A pins were manufactured.

この様にして製造したPGA試作品20個について、導
体層15にアース電位を接続した後、初期動作特性を調
べたところ不良率は0/20であった。更に温度サイク
ル(高温+150C及び低温−65C)を100回連続
して施した後、再び動作特性を調べたが不良率はやはり
O/20であった。
After connecting the conductor layer 15 to the ground potential, the initial operating characteristics of the 20 PGA prototypes manufactured in this manner were examined, and the failure rate was 0/20. After 100 consecutive temperature cycles (high temperature +150C and low temperature -65C), the operating characteristics were examined again, and the defective rate was still O/20.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配線を高密度化してもクロス・トーク
等の誤動作がなく安定した動作性能を有する半導体装置
を提供することができ、高速素子や高出力素子並びに多
重10化素子等に極めて有効である。
According to the present invention, it is possible to provide a semiconductor device that has stable operating performance without malfunctions such as cross talk even when the wiring density is increased, and is extremely suitable for high-speed elements, high-output elements, multiplexed 10 elements, etc. It is valid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の要部を示した概略断面図
であり、第2図は従来の半導体装置の断面図である。 1・・絶縁基板 2・・積層セラミックス基板4・・メ
タライズ 8・・配線層 8′・・配線9・・半導体素
子 11・・アルミワイヤ12・・キャップ 13・・
封止ガラス14・・絶縁層 15・・導体層 罷1図 第2図
FIG. 1 is a schematic sectional view showing essential parts of a semiconductor device of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor device. 1... Insulating substrate 2... Laminated ceramic substrate 4... Metallization 8... Wiring layer 8'... Wiring 9... Semiconductor element 11... Aluminum wire 12... Cap 13...
Sealing glass 14... Insulating layer 15... Conductor layer 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成した複数の配線からなる配線層
と、配線層を被覆して形成した絶縁層と、絶縁層上に設
けたアース電位に接続される導体層とを具えたことを特
徴とする半導体装置。
(1) A wiring layer consisting of a plurality of wirings formed on an insulating substrate, an insulating layer formed by covering the wiring layer, and a conductor layer provided on the insulating layer and connected to a ground potential. Characteristic semiconductor devices.
JP10519987A 1987-04-28 1987-04-28 Semiconductor device Pending JPS63271960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10519987A JPS63271960A (en) 1987-04-28 1987-04-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10519987A JPS63271960A (en) 1987-04-28 1987-04-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63271960A true JPS63271960A (en) 1988-11-09

Family

ID=14400996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10519987A Pending JPS63271960A (en) 1987-04-28 1987-04-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63271960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191099A (en) * 1989-12-20 1991-08-21 Hitachi Ltd Method and device for descaling stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191099A (en) * 1989-12-20 1991-08-21 Hitachi Ltd Method and device for descaling stainless steel

Similar Documents

Publication Publication Date Title
JP3014503B2 (en) Package for integrated circuit
CN100350602C (en) High performance, low cost microelectronic circuit package with interposer
US5227583A (en) Ceramic package and method for making same
JP3283007B2 (en) Multilayer ceramic capacitor and method for manufacturing metal vias of the multilayer ceramic capacitor
US5828093A (en) Ceramic capacitor and semiconductor device in which the ceramic capacitor is mounted
JPS6348172B2 (en)
JPH05129463A (en) Semiconductor chip carrier and module mounted therewith and electronic equipment said module incorporating
JPS62216259A (en) Manufacture and structure of hybrid integrated circuit
JPH07263619A (en) Semiconductor device
US5258575A (en) Ceramic glass integrated circuit package with integral ground and power planes
US8059420B2 (en) Surface mountable device
JP3167141B2 (en) Package for integrated circuit
KR19990072029A (en) Microwave hybrid integrated circuit
US5134246A (en) Ceramic-glass integrated circuit package with integral ground and power planes
US5669136A (en) Method of making high input/output density MLC flat pack
JPS63271960A (en) Semiconductor device
JPH0645401A (en) Package for semiconductor device
JPS63261860A (en) Hermetic seal type semiconductor device
JP7433766B2 (en) Circuit boards, electronic components and electronic modules
JPH11126853A (en) Production of thick-film circuit board
JPS63253656A (en) Semiconductor device
JPH0225276B2 (en)
JPS6322615B2 (en)
JPS63261862A (en) Semiconductor device
JPS63111697A (en) Wiring board and manufacture of the same