JPS63271193A - Production of nuclear fuel pellet - Google Patents

Production of nuclear fuel pellet

Info

Publication number
JPS63271193A
JPS63271193A JP62104555A JP10455587A JPS63271193A JP S63271193 A JPS63271193 A JP S63271193A JP 62104555 A JP62104555 A JP 62104555A JP 10455587 A JP10455587 A JP 10455587A JP S63271193 A JPS63271193 A JP S63271193A
Authority
JP
Japan
Prior art keywords
powder
pellets
pellet
nuclear fuel
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104555A
Other languages
Japanese (ja)
Inventor
Masaomi Oguma
小熊 正臣
Hiroshi Masuda
宏 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP62104555A priority Critical patent/JPS63271193A/en
Publication of JPS63271193A publication Critical patent/JPS63271193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To prevent destruction of pellets by thermal stresses and to decrease volumetric expansion and release of corrosive fission product gases by using two kinds of raw material powders having the same compsn. and different bulk densities. CONSTITUTION:A specified amt. is taken from UO2 powder (powder A) of a specified grain size passed through a sieve and sintered powder (power B) of about 50mum average particle size subjected to resintering and pulverizing is prepd. The specified amt. of the powder B is added to the specified amt. of the powder B and the mixture is agitated and mixed. The mixing is so executed at this time that the bulk density of the powder A and the powder B attains, for example, 2g/cc and 6g/cc and that the weight ratio attains 1:1. The mixture is thereafter sintered. Porous structure having fine gaps or cracks around the high-density secondary particles is thereby obtd. and, therefore, the destruction by thermal impact is prevented and the release of the corrosive corrosive fission product gases and the volumetric expansion of the gases are decreased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ウラン酸化物あるいはプルトニウム酸化物等
の核燃料物質、およびガドリニウム、ナイオビウム等核
燃料物質以外の物質を添加した核燃料物質からなる核燃
料ペレットに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to nuclear fuel pellets made of nuclear fuel material such as uranium oxide or plutonium oxide, and nuclear fuel material to which a substance other than nuclear fuel material such as gadolinium or niobium is added. .

[従来の技術] 発電炉として稼動中の軽水炉あるいは高速炉に用いられ
る核燃料棒を構成する核燃料ペレットは、一般に図1に
示すような工程で製作される。すなわち、まず核燃料物
質から成る原料粉末を、粉砕。
[Prior Art] Nuclear fuel pellets constituting nuclear fuel rods used in light water reactors or fast reactors operating as power reactors are generally produced by a process as shown in FIG. That is, first, the raw material powder consisting of nuclear fuel material is pulverized.

造粒、バイダーあるいはボアフォーマ−添加等の粉末処
理を行った後、ペレット状に加圧成形する。
After performing powder processing such as granulation, addition of a binder or a bore former, etc., it is press-molded into pellets.

次に、この成形体(グリーンペレット)を還元性あるい
は弱酸化性雰囲気中で高温加熱して一定寸法の高密度焼
結体すなわちペレットを得る。核燃料棒はこれ等ペレッ
トを端栓で一端を封じた被覆管に装填し、更に充填ガス
やスプリング等の構成材を充填した後、被覆管の他端を
端栓で密封して組立てられる。燃料棒製造時には、ペレ
ットと被覆管との間に一定の隙間(ギャップ)が設けら
れている。これは、原子炉稼動時に高温となるペレット
が、熱膨張で被覆管と強い相互作用(pcBを起こすの
を防ぐためである。このような配慮にも係わらず、燃料
棒稼動中には、ペレット半径方向に2000℃/cm以
上の温度勾配が発生することがあること、また、出力変
動時には局所的にIX 10’W/C!l/ hという
急激な出力変化を経験することかあること等により、セ
ラミックであるペレットは、静的熱応力破壊あるいは熱
衝撃破壊を起し、割れたペレット破片は外側にせり出し
くこれをリロケーションと言う)製造時のギャップを埋
め、結果的に強いPCIを起すことがある。ペレット片
による不規則で局所的なPCIは、被覆管に局所的な応
力ひずみの集中を起し、被覆管の機械的健全性の損傷を
引き起すのみならず、この部位にペレットから放出した
腐食性核分裂生成ガス(FPガス)が化学的に作用する
と応力腐食破損(SCC)を誘引する恐れがある。また
、このようなペレットの割れによるPCIの問題の他に
も、燃焼度が高くなるとペレット内部に蓄積するFPの
量が増加する為、スエリング(FP蓄積による体積膨張
)に起因するギャップの減少からPCIが増大するとい
う問題がある。更に、高温になるペレットでは、結晶粒
の成長等の組織変化が起ることがある。このような組織
変化は、結晶粒内や粒界に滞留していたFPガス原子を
掃引する作用があるため、ペレットのFPガス放出率を
増大させる恐れがある。FPガス放出率増大は、被覆管
内圧上昇を招くだけでなく、ペレット−被覆管ギャップ
熱伝達率を低下させペレット温度の上昇、熱膨張の増大
、PCIの増加と言ったサイクル効果を招くことになる
。このようなことから、核燃料の高性能化、高寿命化を
図れば図る程、ペレットの割れ、スエリング、FPガス
放出の問題の解決が重要な課題となってくる。これ等の
課題に対する従来の技術は例えばペレットの割れに対し
ては、特開昭52−98897号や特開昭53−161
98号に記載されるように、ペレットの外表面あるいは
ペレット内部にSiC等の繊維状物質を分散させ、熱応
力によるペレットの壊滅的(catastrophic
)破壊を防止するもの、特開昭54−25397号や特
開昭56−49988号に記載されるようにペレット外
表面に金属膜や樹脂膜を形成し、リロケーションを抑制
するもの等がある。また、FPガス放出に対しては、例
えばジャーナル・オブ・ニュークリアマテリアルス、9
8(1981年)第21,6頁から第220頁(Jur
nal of Nuclear Materials、
 98 )  (1981)P216−220)に於い
て論じられているように、ペレットを製造する際、原料
核燃料粉末にNb、O,等の金属酸化物を焼結促進剤と
して加えることによりペレット焼結体の結晶粒を粗大化
し、FPガスの放出率を低減するもの等が挙げられる。
Next, this molded body (green pellet) is heated at high temperature in a reducing or slightly oxidizing atmosphere to obtain a high-density sintered body of a certain size, that is, a pellet. Nuclear fuel rods are assembled by loading these pellets into a cladding tube whose one end is sealed with an end plug, and then filling the cladding tube with constituent materials such as filler gas and springs, and then sealing the other end of the cladding tube with an end plug. When manufacturing fuel rods, a certain gap is provided between the pellets and the cladding tube. This is to prevent the pellets, which become hot during reactor operation, from causing strong interaction (pcB) with the cladding tube due to thermal expansion.Despite these considerations, during fuel rod operation, pellets Temperature gradients of 2000°C/cm or more may occur in the radial direction, and when output fluctuates, local rapid output changes of IX 10'W/C!l/h may be experienced. Due to this, the ceramic pellets undergo static thermal stress fracture or thermal shock fracture, and the broken pellet fragments protrude outward (this is called relocation) to fill the manufacturing gap and result in strong PCI. Sometimes. Irregular and localized PCI caused by pellet fragments not only causes localized stress-strain concentrations in the cladding, causing damage to the mechanical integrity of the cladding, but also causes corrosion caused by pellet release in this area. Chemical action of nuclear fission product gas (FP gas) may induce stress corrosion damage (SCC). In addition to the PCI problem caused by pellet cracking, as the burnup increases, the amount of FP that accumulates inside the pellet increases, so the gap decreases due to swelling (volume expansion due to FP accumulation) There is a problem that PCI increases. Furthermore, when pellets are exposed to high temperatures, structural changes such as growth of crystal grains may occur. Such a structural change has the effect of sweeping away the FP gas atoms that have remained within the crystal grains or at the grain boundaries, and therefore may increase the FP gas release rate of the pellet. An increase in the FP gas release rate not only causes an increase in the internal pressure of the cladding tube, but also reduces the pellet-cladding gap heat transfer coefficient, leading to cycle effects such as an increase in pellet temperature, an increase in thermal expansion, and an increase in PCI. Become. For this reason, as efforts are made to improve the performance and longevity of nuclear fuel, solving the problems of pellet cracking, swelling, and FP gas release becomes an important issue. Conventional techniques for solving these problems include, for example, JP-A-52-98897 and JP-A-53-161 for cracking pellets.
As described in No. 98, a fibrous substance such as SiC is dispersed on the outer surface or inside the pellet to prevent catastrophic damage to the pellet due to thermal stress.
) There are those that prevent destruction, and those that suppress relocation by forming a metal film or resin film on the outer surface of the pellet as described in JP-A-54-25397 and JP-A-56-49988. Regarding FP gas release, for example, Journal of Nuclear Materials, 9
8 (1981), pp. 21, 6 to 220 (Jur.
nal of Nuclear Materials,
98) (1981) P216-220), when producing pellets, metal oxides such as Nb, O, etc. are added as sintering accelerators to the raw material nuclear fuel powder to facilitate pellet sintering. Examples include those that coarsen the crystal grains of the body and reduce the release rate of FP gas.

[発明が解決しようとする問題点] 従来技術として挙げた上記の例は次のような問題点があ
った。すなわち、従来技術の第−例として挙げた繊維物
質添加ペレットでは、ペレットの熱応力破壊に対しては
効果があるものの、実際には添加する繊維物質は燃料物
質のマトリックスとの共存性が良好なこと、高温に耐え
ること、中性子経済の点で著しい損失がないこと、等の
条件を満す物質でなくてはならないため実用化が難しい
のが現状である。従来技術の第二の例として述べた、ペ
レットを金属膜や樹脂膜で覆うアイデアでは、上記第一
の例で挙げた各条件に加えて、特に被覆管との共存性の
問題や製造技術上の問題、例えばペレット1個当りの核
燃料物質量を大巾に滅すことなく、かつペレットと被覆
管の隙間を減少することなく被覆を形成しなければなら
ない、と言った製造上の問題がある。更に、金属被膜あ
るいは樹脂被膜は、ペレットの熱膨張−収縮サイクルに
十分追従できる展延性を高放射線下で長時間維持しなけ
ればならないという要求があるためこれも未だ実用化に
至っていない、従来技術の第三の例として挙げた。結晶
粒を粗大化するいわゆる大粒径ペレットでは、焼結促進
剤として異種物質を燃料物質に添加・混合するため、ペ
レットの熱伝導率や融点が低下する可能性があること、
また異種物質の燃料マトリックス内への固溶は、マトリ
ックス結晶内に結晶欠陥が形成されることを意味してお
り、FPガス原子のマトリックス内の拡散が一般にこれ
等結晶上の欠陥を介して起きることを考えると、焼結促
進剤の添加がFPガス放出の増加を招く恐れがあるとい
う問題を生じる。
[Problems to be Solved by the Invention] The above-mentioned prior art has the following problems. In other words, although the fibrous substance-added pellets cited as the first example of the prior art are effective against thermal stress fracture of the pellets, in reality the added fibrous substances do not have good coexistence with the fuel material matrix. At present, it is difficult to put it into practical use because the material must meet the following conditions: be able to withstand high temperatures, and not cause significant loss in terms of neutron economy. The idea of covering pellets with a metal film or resin film, which was described as the second example of the conventional technology, in addition to the conditions listed in the first example above, especially the problem of coexistence with the cladding tube and the manufacturing technology. There are manufacturing problems, such as the need to form a cladding without significantly reducing the amount of nuclear fuel material per pellet and without reducing the gap between the pellet and the cladding tube. Furthermore, metal coatings or resin coatings must maintain ductility that can sufficiently follow the thermal expansion-contraction cycle of the pellets for long periods of time under high radiation conditions, so this also has not yet been put into practical use using conventional technology. I gave this as a third example. In the case of so-called large-grain pellets that coarsen the crystal grains, a different substance is added and mixed with the fuel material as a sintering accelerator, which may lower the thermal conductivity and melting point of the pellets.
In addition, the solid solution of foreign substances into the fuel matrix means that crystal defects are formed within the matrix crystal, and the diffusion of FP gas atoms within the matrix generally occurs through these crystal defects. Considering this, a problem arises in that the addition of a sintering accelerator may lead to an increase in FP gas release.

そこで、本発明の目的は、上記のような問題を生じるこ
となくペレットの壊滅的な熱応力破壊を防止すると同時
にスエリングやEPガス放出を低減できるような燃料ペ
レットを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fuel pellet that can prevent catastrophic thermal stress fracture of the pellet without causing the above-mentioned problems, and at the same time reduce swelling and EP gas release.

[問題点を解決するための手段] 上記目的は、ペレット製造の粉末調整工程において、原
料粉末と同組成で嵩密度のみが異なる第二粉末を原料粉
末(第一粉末)に適量添加した混合粉末を原料粉末とし
てペレットを製造することにより達成できる。
[Means for solving the problem] The above purpose is to produce a mixed powder in which an appropriate amount of a second powder having the same composition as the raw powder but differing only in bulk density is added to the raw powder (first powder) in the powder adjustment process of pellet production. This can be achieved by manufacturing pellets using raw material powder.

[作用コ 核燃料ペレットの原料粉末は、−次粒子が複数個凝集し
た。いわゆる二次粒子を形成している。
[Working] The raw material powder for the nuclear fuel pellets had a plurality of secondary particles agglomerated. They form so-called secondary particles.

二次粒子の凝集の度合は粉末の嵩密度としてとらえるこ
とができる。そこで主原料粉末と同組成で嵩密度の異る
粉末を、副原料粉末として、主原料粉末に加えた混合粉
末を用いてペレットを焼結すると、焼結過程で二次粒子
密度の異る粉末間では、収縮率(焼しまりの度合)に差
があるため焼き上ったペレットの組織は、高密度二次粒
子の周囲に微細な空隙あるいはクラックを有するいわゆ
る多細孔構造となる。このような多細孔組織をもつペレ
ットは(1)式で表わされるように破壊しん性が高く熱
応力損傷抵抗に優れている。
The degree of aggregation of secondary particles can be understood as the bulk density of the powder. Therefore, if a powder with the same composition as the main raw material powder but different bulk density is used as an auxiliary raw material powder and a mixed powder added to the main raw material powder is used to sinter the pellets, the powder with a different secondary particle density will be produced during the sintering process. Since there is a difference in shrinkage rate (degree of compaction) between the two, the structure of the fired pellet becomes a so-called porous structure with fine voids or cracks around high-density secondary particles. Pellets with such a porous structure have high fracture toughness and excellent thermal stress damage resistance, as expressed by equation (1).

・・・・・・・・・・・・・・・・・・・・・・・・(
1)ここで、Sa:熱衝撃を受けた後のセラミックスの
残留強度P:セラミックスの気孔率 N:初期クラック密度 G:破壊エネルギーE:ヤング
率 Eo:気孔率0の場合のヤング率シ:ポアソン比 
    α:熱膨張率ΔTc:臨界熱衝撃温度差 B:
ビオ数出典、  M、OGUMA:Integrity
 Dagradattion of UO,Pe1le
tsSubjected to Thermal 5h
ock;J、Nucl、Mater、、127(198
5)このため、ペレットは出力上昇時の熱衝撃的な熱応
力が生じても、リロケーションの原因となる破壊的な割
れを起すことはない、また、多細孔組織は、FPガスや
固体FPを収容する空間が多いということを意味してい
る。このため、FPガス放出だけでなく固体、気体スエ
リングの減少が可能である。更に、このような微細組織
を持つペレットでは、外荷重を受けた時、結晶粒周囲の
空隙がマトリックスの歪を吸収するため、クリープ変形
性、塑性変形性に富むペレットとなりPCIを軽減する
。または、空隙やクラックに囲まれた孤立した結晶粒、
または二次粒子が全体のマトリックスに分散して存在す
ると、他の結晶粒の成長がそれによって妨害されるため
、このようなペレットは一般に粒成長しにくいペレット
となる。従って、燃料棒の出力急上昇時の粒成長に起因
するFPガス放出を低減できる。尚、同原料粉末の嵩密
度の選択の巾は任意であるが一方は1〜5g/ccであ
り、他方が2〜Log/ccであることが好ましい。
・・・・・・・・・・・・・・・・・・・・・・・・(
1) Here, Sa: Residual strength of ceramics after thermal shock P: Porosity of ceramics N: Initial crack density G: Fracture energy E: Young's modulus Eo: Young's modulus when porosity is 0 S: Poisson ratio
α: Coefficient of thermal expansion ΔTc: Critical thermal shock temperature difference B:
Bio number source, M, OGUMA: Integrity
Dagradation of UO, Pe1le
tsSubjected to Thermal 5h
ock; J, Nucl, Mater, 127 (198
5) For this reason, even if the pellets are subjected to thermal stress such as thermal shock when the output increases, destructive cracks that cause relocation will not occur in the pellets, and the porous structure is This means that there is a lot of space to accommodate. Therefore, it is possible to reduce not only FP gas release but also solid and gas swelling. Furthermore, in a pellet having such a microstructure, when an external load is applied, the voids around the crystal grains absorb the strain in the matrix, resulting in a pellet with excellent creep deformability and plastic deformability, reducing PCI. or isolated grains surrounded by voids or cracks;
Alternatively, if the secondary particles are present dispersed in the entire matrix, the growth of other crystal grains is hindered by the secondary particles, so that such pellets generally become pellets that are difficult to grow. Therefore, it is possible to reduce the release of FP gas due to grain growth when the output of the fuel rod increases. Although the bulk density of the raw material powder can be selected arbitrarily, it is preferable that one is 1 to 5 g/cc and the other is 2 to Log/cc.

[実施例コ 以下、本発明の具体的実施例およびその効果を軽水炉(
LWR)に用いられるUO□ベレットを例にとって述べ
る。
[Example] Hereinafter, specific examples of the present invention and their effects will be explained in a light water reactor (
Let's take the UO□ bullet used in LWR as an example.

図2には、本発明の粉末処理工程を含むペレット製造工
程を示したものである。まず、UO,粉末の一定量を秤
量しくイ)、これをコールドプレス(ロ)してグリーン
ペレットを製作した。このグリーンペレットをメノウ鉢
で顆粒状になるまで粉砕(ハ)した後、ふるいを通して
一定粒度のUO。
FIG. 2 shows the pellet manufacturing process including the powder processing process of the present invention. First, a certain amount of UO powder was weighed (a) and then cold pressed (b) to produce green pellets. The green pellets are crushed (c) in an agate pot until they become granular, and then passed through a sieve to produce UO with a constant particle size.

粉末を得た。(この粉末をA粉末とする。)この粉末か
ら一定量(ニ)を採取し、コールドプレス(ホ)を行い
グリーンペレットを製作した。このグリーンペレットを
電気炉内で水素100%の還元雰囲気のもと、1700
℃4時間焼結(へ)を行った。ペレットの焼結密度は理
論密度比で約96.5%であった。この焼結ペレットを
再び粉砕(ト)ふるい分け(チ)して平均粒子径約50
μmの焼結粉末(この粉末をB粉末とする)を得た0次
に、このB粉末の一定量を秤量し、A粉末の一定量に加
え、V型ブレンダーで十分攪拌混合(す)した、なおA
粉末とB粉末の嵩密度はそれぞれ約2g/cc、6g/
ccp重量比は、1:1であった。
A powder was obtained. (This powder is referred to as powder A.) A certain amount (d) was collected from this powder and cold pressed (e) to produce green pellets. The green pellets were heated in an electric furnace under a reducing atmosphere of 100% hydrogen for 1,700 yen.
Sintering was performed at ℃ for 4 hours. The sintered density of the pellets was approximately 96.5% in terms of theoretical density ratio. The sintered pellets are crushed (g) and sieved (ch) again to have an average particle size of approximately 50.
Next, a certain amount of this B powder was weighed, added to a certain amount of A powder, and thoroughly stirred and mixed with a V-type blender. , and A
The bulk densities of powder and B powder are approximately 2 g/cc and 6 g/cc, respectively.
The ccp weight ratio was 1:1.

混合粉末(これをC粉末と言う)にバインダー。Add a binder to the mixed powder (this is called C powder).

潤滑剤を所定量加え(オ)再び攪拌した後、コールドプ
レス(力)してグリーンペレットを製作した。このグリ
ーンペレットをまず脱脂工程にかけ(ヨ)、バインダー
等を除去した後、1750℃。
After adding a predetermined amount of lubricant (e) and stirring again, green pellets were produced by cold pressing. The green pellets were first subjected to a degreasing process (Y) to remove binders, etc., and then heated to 1750°C.

4時間還元雰囲気で焼結した(夕)、得られた焼結ペレ
ットの密度は約95.5%であった。ペレットの断面組
織検査を走査型電子顕微鏡を用いて行った。検査結果の
一部を模式図として第3図に示す、高密度粒子2 (B
粉末の焼結によって形成された2次粒子群)の周辺には
、半月状の空隙3、あるいはA粉末焼結粒子1の粒界に
沿って微細クラック3′の存在が認められた。このよう
にして製作されたペレットの熱衝撃特性を調べるため、
試料を電気炉内で一定温度、一定時間加熱した後、水槽
に落下急冷する方法で熱衝撃実験を行った。
Sintered in a reducing atmosphere for 4 hours (evening), the density of the obtained sintered pellets was about 95.5%. Cross-sectional microstructural examination of the pellets was performed using a scanning electron microscope. High-density particles 2 (B
The presence of semicircular voids 3 or fine cracks 3' along the grain boundaries of the sintered particles 1 of the A powder was observed around the secondary particles formed by sintering the powder. In order to investigate the thermal shock properties of the pellets produced in this way,
Thermal shock experiments were conducted by heating the sample in an electric furnace at a certain temperature for a certain period of time, and then dropping it into a water tank to rapidly cool it.

試料は本発明に基づき製作したペレットの他に、従来の
方法で製作した同一密度(95,5%)のペレットも比
較のため試験に供した。熱衝撃によるペレット上の損傷
の程度は、試料の試験前後の破壊強度の変化から評価し
た。第4図に、その結果の代表例を示す、従来の方法で
製作したペレット4は本発明によるペレット5に比べ、
初期の破壊強度が高い(ΔT=Oに於けるfの値)、シ
かし、従来ペレットでは、熱衝撃温度差ΔTがΔT=Δ
Tcになると破壊強度が急激に低下し。
In addition to the pellets produced according to the present invention, pellets of the same density (95.5%) produced by a conventional method were also tested for comparison. The degree of damage on the pellet due to thermal shock was evaluated from the change in fracture strength of the sample before and after the test. FIG. 4 shows a representative example of the results. Pellet 4 produced by the conventional method has a lower temperature than pellet 5 according to the present invention.
However, in conventional pellets with high initial fracture strength (value of f at ΔT=O), the thermal shock temperature difference ΔT is ΔT=Δ
When Tc is reached, the fracture strength decreases rapidly.

ΔT;ΔTxでほとんど強度は失われてしまう。ΔT: Most of the intensity is lost at ΔTx.

これは、ΔT=ΔTcで大きなりラックがペレットの内
部に発生したこと、そしてΔT=ΔTxではクラックが
十分大きくなり試料がかろうじてその形状を止めている
にすぎない状態であることを示している。これに反して
、本発明からなるペレットでは、初期強度は低いものの
、熱衝撃条件では強度の低下は従来ペレットに比べ、極
めて小さく、ΔTの増加に対してクラックの進展が非常
に緩まんであることを示している。ΔT=ΔTxでもペ
レットの強度は初期のそれと大きく変わっていない、こ
の結果から分かるように、本発明によるペレットは、熱
応力破壊に対する抵抗が大きい。
This shows that a large rack was generated inside the pellet when ΔT=ΔTc, and that the crack was sufficiently large when ΔT=ΔTx that the sample could barely hold its shape. On the other hand, although the pellets made of the present invention have low initial strength, the decrease in strength under thermal shock conditions is extremely small compared to conventional pellets, and the growth of cracks is extremely slow as ΔT increases. It shows. Even when ΔT=ΔTx, the strength of the pellet is not significantly different from that at the initial stage.As can be seen from this result, the pellet according to the present invention has a high resistance to thermal stress fracture.

BWR燃料を例にとると、最初の出力上昇時にペレット
が経験するΔTは約450℃程度と推定される。この熱
衝撃条件では、従来ペレットは破砕しりロケーションを
生じるのに対し、本発明によるベレン・トでは、ΔTが
約600℃までは熱衝撃に耐えることが確認されてNす
る。
Taking BWR fuel as an example, the ΔT experienced by the pellet at the time of the first increase in power is estimated to be about 450°C. Under these thermal shock conditions, conventional pellets would suffer from fractures, whereas the pellets according to the present invention were confirmed to withstand thermal shock up to a ΔT of about 600°C.

次に、このペレットのスエリング特性を調べるため、炉
外スエリング模擬試験を行った。この実験手法′は、焼
結ペレットをCo、/Co混合ガス中で加熱し、結晶粒
果に気泡を形成させるものである。結果の一例を第5図
に示す。この結果から、本発明の多細孔ペレットは、気
体スエリングに対しても低減効果がかなりあることが確
認された。
Next, in order to investigate the swelling characteristics of these pellets, an out-of-furnace swelling simulation test was conducted. In this experimental method, sintered pellets are heated in a Co/Co mixed gas to form bubbles in the grains. An example of the results is shown in FIG. From this result, it was confirmed that the multi-porous pellets of the present invention have a considerable effect of reducing gas swelling.

なお、本実施例ではA粉末のB粉末に対する混合比は5
0%であったが1本実施例にとられれることなく、この
混合比を5〜95%の範囲とすることができる。これは
、5%から95%の混合比の範囲では多細孔組織が容易
に得られるのに対しこれ以外の混合比では、共に十分な
多細孔組織を得ることが難しいためである。
In this example, the mixing ratio of powder A to powder B was 5.
Although the mixing ratio was 0%, this is not limited to this embodiment, and the mixing ratio can be set in the range of 5 to 95%. This is because a porous structure can be easily obtained at a mixing ratio of 5% to 95%, whereas it is difficult to obtain a sufficient porous structure at a mixing ratio other than this range.

[発明の効果] 本発明のペレットは従来のペレットに比較して。[Effect of the invention] The pellets of the present invention compared to conventional pellets.

燃料棒出力上昇時のペレットの熱衝撃破壊を防ぐ効果が
大きい。また従って、リロケーションによるPCI増大
の問題、スエリングの問題は、本発明のペレットを用い
ることにより大巾に改善することができる。
It is highly effective in preventing thermal shock destruction of pellets when fuel rod output increases. Furthermore, the problem of PCI increase due to relocation and the problem of swelling can be greatly improved by using the pellets of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の燃料ペレット製造工程を示す図、第2
図は1本発明の燃料ペレット製造工程を示す図、第3図
は1本発明で製作したUO,ペレットの微細組織の模式
図、第4図は、本発明で製作したUO□ペレットの熱衝
撃損傷抵抗に関する実験結果。 第5図は1本発明で製作したUO□ペレットの気泡スエ
リング特性に関する実験結果、である。 符号の説明 1・・・原料粉末の焼結結晶体、2・・・原料粉末と同
組成、密度の異る粉末の焼結結晶体、3・・・空隙また
はクラック、4・・・従来UO,ペレットの熱衝撃特性
、5・・・本発明のUO,ペレットの熱衝撃特性、6・
・・従来UO,ペレットの気泡スエリング、7・・・本
発明のUO2ペレットの気泡スエリング。
Figure 1 is a diagram showing the conventional fuel pellet manufacturing process;
Figure 1 shows the manufacturing process of fuel pellets according to the present invention. Figure 3 is a schematic diagram of the microstructure of UO pellets manufactured according to the present invention. Figure 4 shows the thermal shock of UO□ pellets manufactured according to the present invention. Experimental results on damage resistance. FIG. 5 shows experimental results regarding bubble swelling characteristics of UO□ pellets produced according to the present invention. Explanation of symbols 1...Sintered crystal of raw material powder, 2...Sintered crystal of powder with the same composition and different density as the raw material powder, 3...Void or crack, 4...Conventional UO , Thermal shock properties of pellets, 5... UO of the present invention, Thermal shock properties of pellets, 6.
... Bubble swelling of conventional UO and pellets, 7... Bubble swelling of UO2 pellets of the present invention.

Claims (1)

【特許請求の範囲】 1、核燃料物質の原料粉末をプレス成型したものを焼結
するようにしたものにおいて、同一組成で嵩密度が異な
る2種類の原料粉末を混合して使用することを特徴とす
る核燃料ペレットの製造方法。 2、特許請求の範囲第1項の発明において、2種類の原
料粉末の一方に対する他方の混合割合を5乃至95%と
したことを特徴とする核燃料ペレットの製造方法。
[Scope of Claims] 1. A press-molded raw material powder of nuclear fuel material is sintered, characterized in that two types of raw material powders having the same composition but different bulk densities are mixed and used. A method for producing nuclear fuel pellets. 2. The method for producing nuclear fuel pellets according to the invention of claim 1, characterized in that the mixing ratio of one of the two types of raw material powder to the other is 5 to 95%.
JP62104555A 1987-04-30 1987-04-30 Production of nuclear fuel pellet Pending JPS63271193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104555A JPS63271193A (en) 1987-04-30 1987-04-30 Production of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104555A JPS63271193A (en) 1987-04-30 1987-04-30 Production of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPS63271193A true JPS63271193A (en) 1988-11-09

Family

ID=14383714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104555A Pending JPS63271193A (en) 1987-04-30 1987-04-30 Production of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPS63271193A (en)

Similar Documents

Publication Publication Date Title
US20220139578A1 (en) Method for fabricating a composite moderator
CN108335760B (en) Preparation method of high-uranium-loading-capacity dispersed fuel pellet
CN108028080A (en) The manufacture method of full ceramics micropackaging nuclear fuel
CN103214231B (en) For improvement performance oxide ceramics core body and the preparation method of thermal reactor
KR20130140752A (en) Fully ceramic nuclear fuel and related methods
US8989340B2 (en) Uranium dioxide nuclear fuel containing Mn and Al as additives and method of fabricating the same
US2814857A (en) Ceramic fuel element material for a neutronic reactor and method of fabricating same
US11424042B2 (en) Nuclear-fuel sintered pellets based on oxide in which fine precipitate material is dispersed in circumferential direction and method of manufacturing same
KR101574224B1 (en) oxide nuclear fuel pellet and the method for manufacturing thereof
US3344081A (en) Sintered uranium dioxide containing yttrium oxide
Battistini et al. Residual stresses in as-manufactured TRISO Coated Particle Fuel (CPF)
WO2019107655A1 (en) Sintered nuclear fuel pellets having excellent oxidation resistance, and manufacturing method therefor
JPS63271193A (en) Production of nuclear fuel pellet
US2900263A (en) Method of preparing a fuel element for a nuclear reactor
KR102068901B1 (en) Neutron absorber for nuclear fuel storage and manufacturing method of the same
US5590393A (en) Neutron-absorbing material and its production process
US3438858A (en) Fuel elements
US3439073A (en) Method of manufacturing fuel elements
EP3743926A2 (en) Composite moderator for nuclear reactor systems
Durand et al. Preliminary developments of MTR plates with uranium nitride
US6334963B1 (en) Absorbent neutronic composite material and method for producing same
Radford et al. Fabrication development and application of an annular Al2O3-B4C burnable absorber
KR101107294B1 (en) Uranium dioxide nuclear fuel containing Ti and Mg-compounds as additives and method of manufacturing the same
KR101474153B1 (en) Fission products capture Uranium dioxide nuclear fuel containing metal microcell and method of manufacturing the same
Mizuta et al. Study of SiC-matrix fuel element for HTGR