JPS63271118A - Encoder for which coherence luminous flux is utilized - Google Patents

Encoder for which coherence luminous flux is utilized

Info

Publication number
JPS63271118A
JPS63271118A JP10701087A JP10701087A JPS63271118A JP S63271118 A JPS63271118 A JP S63271118A JP 10701087 A JP10701087 A JP 10701087A JP 10701087 A JP10701087 A JP 10701087A JP S63271118 A JPS63271118 A JP S63271118A
Authority
JP
Japan
Prior art keywords
film
semiconductor laser
laser holder
encoder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10701087A
Other languages
Japanese (ja)
Inventor
Susumu Sumikura
角倉 進
Masaaki Tsukiji
築地 正彰
Ippei Sawayama
一平 沢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10701087A priority Critical patent/JPS63271118A/en
Publication of JPS63271118A publication Critical patent/JPS63271118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform insulating film by forming an oxidized film on a semiconductor laser holder and forming a coated film by an electrodeposition painting method directly or via an oxidized film on an insulated or semiconductor laser holder. CONSTITUTION:The anodized film 2 is formed on a metallic base material 1 and further the coated film 3 by the electrodeposition painting is formed in order to provide the surer insulation characteristic thereto. A representative method for forming the oxidized film is an anodic oxidation method. An electric field bath made of a compsn. having 1-20% concn. of the essential component is used and a semiconductor laser holder (metallic base material 1) is placed as an anode with respect to a counter electrode in this liquid, then the anodized film 2 specified above is formed by using a DC or DC/AC power supply with and for the impressed voltage, current and time. The electrodeposition painting method is practiced by diluting an anionic resin component to 1-50%, using the liquid thereof as an electrodeposition painting liquid, placing the above- mentioned semiconductor laser holder as the anode in this liquid and depositing the coated film specified above by using the DC power supply with and for the impressed voltage and time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可干渉性光を利用したエンコーダーにおいて、
可干渉性光の光源としての半導体レーザホルダーとエン
コーダ一本体との絶縁化処理されたエンコーダーに関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an encoder using coherent light,
The present invention relates to an encoder in which a semiconductor laser holder as a light source of coherent light and an encoder body are insulated.

〔従来の技術〕[Conventional technology]

エンコーダーは、所謂、可干渉性光束を利用したリニア
ーエンコーダー、又はロータリーエンコーダーをフロッ
ピーディスクの駆動等のコンピューター機器、プリンタ
ー等の事務機器、あるいはNC工作機械等の回転機構の
回転速度や回転速度変動量を検出するための手段として
利用されているが、いずれの用途でも、エンコーダーを
高密度化することで製品の小型化、機能向上等に直接結
びついている。ところが、半導体レーザホルダーと信号
グランドが接触しているため、エンコーダ一本体に取り
付けた場合、絶縁性が悪いと、例えば工作機械等に取り
付は位置検出器として利用した場合、取り付けられた装
置のフレームグランドに生ずるノイズ成分がエンコーダ
一本体を通じて信号処理回路のグランドに伝播し、誤動
作の原因となる。そのため、従来、エンコーダーの絶縁
手段としては、半導体レーザホルダーとエンコーダ一本
体との間にプラスチック性ワッシャー等を挟み防止して
きたが、この方法では、熱に依る変形で位置ずれを生じ
、絶縁効果は完全ではなく、部品点数の増加で望ましく
なかった。
An encoder is a so-called linear encoder that uses coherent light flux, or a rotary encoder is used to encode the rotational speed or rotational speed fluctuation of a rotating mechanism such as computer equipment such as a floppy disk drive, office equipment such as a printer, or NC machine tool. In both applications, increasing the density of encoders directly leads to smaller products and improved functionality. However, since the semiconductor laser holder and the signal ground are in contact with each other, if the insulation is poor when attached to the encoder body, for example, if it is attached to a machine tool or used as a position detector, the attached device may be damaged. Noise components generated in the frame ground propagate through the encoder body to the ground of the signal processing circuit, causing malfunctions. Conventionally, the encoder has been insulated by inserting a plastic washer or the like between the semiconductor laser holder and the encoder body, but this method causes misalignment due to deformation due to heat, and the insulation effect is reduced. It was not perfect and the number of parts increased, which was undesirable.

さらに、半導体レーザホルダーをセラミック材料で加工
する手段もあるが、加工性に問題があり所望する形状が
得られなかった。
Furthermore, there is a method of processing the semiconductor laser holder using a ceramic material, but there are problems with the processability and the desired shape cannot be obtained.

〔発明が解決しようとしている問題点〕本発明の目的は
半導体レーザホルダーとエンコーダ一本体との絶縁不良
を生じないエンコーダーを提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide an encoder that does not cause poor insulation between the semiconductor laser holder and the encoder body.

また、本発明は、熱による変形を生じない絶縁効果が得
られる絶縁加工を施したエンコーダーを提供することを
目的とする。
Another object of the present invention is to provide an encoder that has been subjected to an insulation process that provides an insulation effect that does not cause deformation due to heat.

〔問題点を解決するための手段(及び作用)〕本発明の
酸化皮膜および/または伝着塗装被膜が表面に形成され
ている半導体レーザホルダーを有することを特徴とする
可干渉性光束を利用したエンコーダーに関する。
[Means (and effects) for solving the problem] A method using a coherent light beam characterized by having a semiconductor laser holder on whose surface the oxide film and/or transfer coating film of the present invention is formed. Regarding the encoder.

即ち、本発明によるエンコーダーは、半導体レーザホル
ダーに酸化被膜を形成し、絶縁化または半導体ホルダー
表面に直接もしくは酸化被膜を介して、アニオン系、又
は、カチオン系の上の電着塗装法に依り、所定の塗膜を
形成することによって1010Ω/crd以上の絶縁、
化したものである。
That is, the encoder according to the present invention forms an oxide film on the semiconductor laser holder, insulates it, or coats the surface of the semiconductor holder directly or through the oxide film by electrodeposition coating on an anionic or cationic surface. Insulation of 1010Ω/crd or more by forming a prescribed coating film,
It has become.

酸化被膜又は電着塗装によって、半導体レーザホルダー
露出部に均一で、且つ薄い塗膜が形成でき、絶縁精度を
高めることができると共に、半導体レーザホルダーの穴
部にも非常に狭いギャップを通して確実に塗膜を形成す
ることができ、優れた導電防止効果が達成できるもので
ある。
By using oxide film or electrodeposition coating, it is possible to form a uniform and thin coating on the exposed part of the semiconductor laser holder, which improves the insulation accuracy, and also allows the coating to be applied reliably to the hole of the semiconductor laser holder through a very narrow gap. A film can be formed and an excellent conduction prevention effect can be achieved.

本発明に依る半導体レーザホルダーとエンコーダ一本体
との絶縁処理の態様については第1〜3図に示される。
Embodiments of the insulation treatment between the semiconductor laser holder and the encoder body according to the present invention are shown in FIGS. 1 to 3.

第2図は金属基材l上に陽極酸化被膜2を形成した状態
の断面図である。第1,3図はそれぞれ電着塗装にて塗
膜3を形成した態様を示している。第3図は金属基材1
上に直接電着塗装にて塗膜3を形成した断面図である。
FIG. 2 is a cross-sectional view of a state in which an anodic oxide film 2 is formed on a metal base material l. 1 and 3 each show an embodiment in which a coating film 3 is formed by electrodeposition coating. Figure 3 shows metal base material 1
It is a sectional view on which a coating film 3 is formed by direct electrodeposition coating.

第1図は、第2図に示される陽極酸化被膜2上に絶縁性
を一層確実にするために電着塗装にて塗膜3を形成した
断面図である。
FIG. 1 is a sectional view showing a coating film 3 formed by electrodeposition on the anodic oxide coating 2 shown in FIG. 2 to further ensure insulation.

このように、酸化被膜あるいは電着塗装に依り均一な絶
縁性のある被膜層を形成することによって絶縁不良を未
然に防止し、高精度、高信頼のあるエンコーダーが提供
できるものである。
In this way, by forming a uniform insulating film layer using an oxide film or electrodeposition coating, poor insulation can be prevented and a highly accurate and highly reliable encoder can be provided.

酸化被膜の代表的な形成方法は、陽極酸化法であり、硫
酸法、リン酸法、シュウ酸性等の一般に用いられる方法
が適用できる。例えば、電界浴の組成としては1〜20
%の主成分の濃度とし、この液中で対極に対して陽極に
半導体レーザホルダーをおき、直流、または直交流電源
を用いて、印加・電圧・電流と時間に依り所定の被膜を
生成する。
A typical method for forming an oxide film is an anodic oxidation method, and commonly used methods such as a sulfuric acid method, a phosphoric acid method, and an oxalic acid method can be applied. For example, the composition of the electric field bath is 1 to 20
% of the main component, place a semiconductor laser holder at the anode with respect to the counter electrode in this solution, and use a DC or DC power source to form a predetermined film depending on the applied voltage, current, and time.

厚さ通常は、印加電圧10V〜30v1電流密度0.5
〜5A/ c rd、処理時間は10〜90分で5〜4
0μmの好ましい厚さの酸化被膜が生成される。尚、浴
温としてはO〜30 ’Cが好適である。、次いで、水
洗後、そのまま乾燥するか、あるいは封孔処理後乾燥す
る。
Thickness: Normally, applied voltage is 10V to 30v, current density is 0.5
~5A/crd, processing time is 5-4 in 10-90 minutes
An oxide layer with a preferred thickness of 0 μm is produced. Note that the bath temperature is preferably 0 to 30'C. Then, after washing with water, it is dried as it is, or it is dried after a sealing treatment.

電着塗装法としては、アニオン系、又はカチオン系電着
塗装が適用できる。
As the electrodeposition coating method, anionic or cationic electrodeposition coating can be applied.

本発明において好ましく採用される電着可能な樹脂とし
てその代表的なものを挙げればアニオン系では、アクリ
ルアルキッド樹脂系、アルキッド樹脂系、エポキシ樹脂
系、アクリル樹脂系、アクリル変性ポリエステル樹脂系
、メラミン樹脂系、アクリルメラミン樹脂系、ベンジブ
アミン樹脂系、アクリル尿素樹脂系、アクリルエポキシ
樹脂系、アクリルフェノール樹脂系等、またカチオン系
では、エポキシ樹脂系、アクリル樹脂系、ポリエステル
樹脂系、ブタジェンゴム系等で、一般的に用いられる樹
脂をベースとしたものである。
Typical electrodepositable resins preferably employed in the present invention include anionic resins such as acrylic alkyd resins, alkyd resins, epoxy resins, acrylic resins, acrylic modified polyester resins, and melamine resins. acrylic melamine resins, benzibamine resins, acrylic urea resins, acrylic epoxy resins, acrylic phenol resins, etc.Cationic systems include epoxy resins, acrylic resins, polyester resins, butadiene rubbers, etc. It is based on a resin commonly used in

電着塗装法は半導体レーザホルダーの基材又は基材を陽
極酸化被膜を形成したものを前記の樹脂分1〜50%に
稀釈し、電着塗装液として、この液中で対極に対してア
ニオン系では陽極、カチオン系では陰極におき、直流電
源を用いて印加電圧と時間により所定の塗膜を析出する
In the electrodeposition coating method, the base material of the semiconductor laser holder or the base material on which the anodized film has been formed is diluted to the above-mentioned resin content of 1 to 50%, and an anion is applied to the counter electrode in this solution as an electrodeposition coating solution. A predetermined coating film is deposited by applying a voltage and time using a DC power source, using the anode in the case of a cationic system and the cathode in a cationic system.

通常は印加電圧5〜200V、電流密度0.5〜3A/
crd、処理時間は2〜180secで5〜40μmの
好ましい厚さの電着塗膜が得られる。尚、電着塗装液の
pHは、アニオン系では8.0−10.0、カチオン系
では4〜7で浴温は15〜40℃が適当である。
Usually applied voltage is 5-200V, current density is 0.5-3A/
crd, the treatment time is 2 to 180 seconds, and an electrodeposited coating film with a preferable thickness of 5 to 40 μm can be obtained. The appropriate pH of the electrodeposition coating liquid is 8.0 to 10.0 for anionic coatings, and 4 to 7 for cationic coatings, and the bath temperature is 15 to 40°C.

次いで水洗後、約100〜180℃で20〜30分程度
で焼付して完成する。その後、完成された半導体レーザ
ホルダーにレーザを取り付け、次いで、エンコーダ一本
体に固定ねじにより取り付ける。
Then, after washing with water, it is baked at about 100 to 180°C for about 20 to 30 minutes to complete the process. Thereafter, the laser is attached to the completed semiconductor laser holder, and then attached to the encoder body using a fixing screw.

レーザホルダー基材用金属としては鉄、銅、亜鉛、ニッ
ケル、アルミニウム、チタン、タングステン、クロム等
の金属、あるいはこれらの中のものを含む合金など任意
の金属を用いることができる。
As the metal for the laser holder base material, any metal such as iron, copper, zinc, nickel, aluminum, titanium, tungsten, chromium, or an alloy containing any of these metals can be used.

〔実施例〕〔Example〕

以下本発明を実施例に従って、より具体的に説明する。 The present invention will be described in more detail below with reference to Examples.

実施例1 レーザホルダー(材質アルミ材)を前処理後硫酸20%
液を用いて、陽極酸化条件を浴温25℃±1℃、20V
、2人/Cイ、60分にて30μmの被膜を得て水洗後
、アニオン系電着塗装液(ハニー化成社製、商品名ハニ
ーライトAL80ON、アクリル系)を用いて、電着塗
装条件を樹脂分20%、浴温20〜30℃、200V、
2分にて15μmの塗膜を析出し、水洗後、180℃3
0分間焼付けし完成した。
Example 1 20% sulfuric acid after pretreatment of laser holder (aluminum material)
The anodic oxidation conditions were a bath temperature of 25°C ± 1°C and 20V.
, 2 people/C, 60 minutes to obtain a 30 μm coating, and after washing with water, use an anionic electrodeposition coating liquid (manufactured by Honey Kasei Co., Ltd., trade name: Honeylight AL80ON, acrylic) to adjust the electrodeposition coating conditions. Resin content 20%, bath temperature 20-30℃, 200V,
A coating film of 15 μm was deposited in 2 minutes, washed with water, and heated at 180°C3.
Baked for 0 minutes and completed.

その後、半導体レーザを取り付け、次いで固定ねじでエ
ンコーダ一本体に取り付は特性を確認したところ、20
個全て、絶縁性は10′6Ω/ c rdで良好であっ
た。
After that, the semiconductor laser was attached, and then the fixing screw was used to attach it to the encoder body.
The insulation properties of all of them were good at 10'6 Ω/crd.

〔他の実施例〕[Other Examples]

実施例2 レーザホルダーを前処理後、硫酸5%液を用いて陽極酸
化条件を浴温5℃±1℃、30V、4人/crd、50
分にて20μm被膜を得て、水洗後、カキオン系電着塗
装液(神東塗料社製、商品名シントーケミトロン5TR
−R−5200)を用いて、電着塗装条件を樹脂分10
%、浴温20〜30℃、100V、10秒にて5μmの
座繰を形成し、水洗後、150℃、30分間焼付し完成
した。
Example 2 After pretreatment of the laser holder, anodizing conditions were set using a 5% sulfuric acid solution: bath temperature 5°C ± 1°C, 30V, 4 people/crd, 50
A 20 μm film was obtained in minutes, and after washing with water, a cationic electrodeposition coating solution (manufactured by Shinto Toyo Co., Ltd., trade name: Shinto Chemitron 5TR) was applied.
-R-5200), the electrodeposition coating conditions were set to 10% by resin content.
%, a 5 μm counterbore was formed at a bath temperature of 20 to 30° C. and 100 V for 10 seconds, and after washing with water, it was baked at 150° C. for 30 minutes to complete.

一方、陽極酸化処理後のレーザホルダーを電着塗装せず
、乾燥し、完成した。その後、前記二種類のレーザホル
ダーに半導体レーザを取り付け、次いでエンコーダ一本
体に取り付け、特性を確認したところ、各20個全て、
絶縁性はloI′Ω/crrrで良であった。
On the other hand, the laser holder after anodizing was dried and completed without electrodeposition coating. After that, semiconductor lasers were attached to the two types of laser holders, and then attached to the encoder body, and when the characteristics were confirmed, all 20 of each type were
The insulation was good at loI'Ω/crrr.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、従来技術に比して、絶縁不良の
発生がまったくなく、また高精度に維持した高い信頼を
有するエンコーダーを提供することができるものである
As described above, the present invention can provide a highly reliable encoder that is free from insulation defects and maintains high precision compared to the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、基材上陽極酸化被膜を生成し、その上に電着
塗膜を形成した状態の本発明による半導体レーザホルダ
ーの部分断面図である。 第2図は基材上陽極酸化被膜を生成した状態の本発明に
よる半導体レーザホルダーの部分断面図である。 第3図は基材上に直接電着塗膜を形成した状態の本発明
による半導体レーザホルダーの部分断面図である。
FIG. 1 is a partial sectional view of a semiconductor laser holder according to the present invention in which an anodic oxide film is formed on a base material and an electrodeposited film is formed thereon. FIG. 2 is a partial sectional view of the semiconductor laser holder according to the present invention with an anodic oxide film formed on the base material. FIG. 3 is a partial sectional view of a semiconductor laser holder according to the present invention in which an electrodeposited coating film is directly formed on a base material.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化被膜および/または電着塗装被膜が表面に形
成されている半導体レーザホルダーを有することを特徴
とする可干渉性光束を利用したエンコーダー。
(1) An encoder using a coherent light beam characterized by having a semiconductor laser holder having an oxide film and/or an electrodeposited film formed on its surface.
(2)伝着塗装被膜が酸化被膜の上に形成されている特
許請求の範囲第1項記載の可干渉性光束を利用したエン
コーダー。
(2) An encoder using a coherent light beam according to claim 1, wherein the transfer coating film is formed on the oxide film.
JP10701087A 1987-04-28 1987-04-28 Encoder for which coherence luminous flux is utilized Pending JPS63271118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10701087A JPS63271118A (en) 1987-04-28 1987-04-28 Encoder for which coherence luminous flux is utilized

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10701087A JPS63271118A (en) 1987-04-28 1987-04-28 Encoder for which coherence luminous flux is utilized

Publications (1)

Publication Number Publication Date
JPS63271118A true JPS63271118A (en) 1988-11-09

Family

ID=14448211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10701087A Pending JPS63271118A (en) 1987-04-28 1987-04-28 Encoder for which coherence luminous flux is utilized

Country Status (1)

Country Link
JP (1) JPS63271118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same

Similar Documents

Publication Publication Date Title
EP0048406A2 (en) Heat dissipating printed-circuit board
US4431707A (en) Plating anodized aluminum substrates
US3454376A (en) Metal composite and method of making same
JPS6211408B2 (en)
JPH05271986A (en) Aluminum-organic polymer laminate
JPS63271118A (en) Encoder for which coherence luminous flux is utilized
US2346658A (en) Corrosion resistant coating
US2391039A (en) Method of coating metal articles
US2356575A (en) Process for the cathodic treatment of metals
US5332486A (en) Anti-oxidant coatings for copper foils
JPH0741992A (en) Surface treatment of aluminum or its alloy
US3639215A (en) Method of joining parts by plating
JPS6214040B2 (en)
JPS59123297A (en) Method of forming substrate for printed circuit board
JPS6392005A (en) Coil with fine pattern
JP2723305B2 (en) Electroplating method
JPH041079B2 (en)
JPH05317807A (en) Production of resin coated copper-based material
JPS63186888A (en) Production of copper foil
US2429655A (en) Selenium element and treatment
JPH03183136A (en) Manufacture of semiconductor device
SU1002413A1 (en) Method for anodizing aluminium and its alloys
SU1381739A1 (en) Method of producing contact land on aluminium or aluminium alloy backing
JPS62266176A (en) Fluidized immersion insulating method
JPS61148899A (en) Manufacture of substrate for circuit