JPS6327084A - Laser apparatus with differential pressure cell - Google Patents

Laser apparatus with differential pressure cell

Info

Publication number
JPS6327084A
JPS6327084A JP61170421A JP17042186A JPS6327084A JP S6327084 A JPS6327084 A JP S6327084A JP 61170421 A JP61170421 A JP 61170421A JP 17042186 A JP17042186 A JP 17042186A JP S6327084 A JPS6327084 A JP S6327084A
Authority
JP
Japan
Prior art keywords
laser gas
differential pressure
laser
pressure cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61170421A
Other languages
Japanese (ja)
Inventor
Kensho Tokuda
憲昭 徳田
Shinichiro Kawamura
信一郎 河村
Hitoshi Takeuchi
仁 竹内
Hideo Hara
秀雄 原
Hiroyuki Kondo
洋行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP61170421A priority Critical patent/JPS6327084A/en
Publication of JPS6327084A publication Critical patent/JPS6327084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the number of stages of a sealing unit by providing a differential pressure cell separately through a partition wall from a laser gas chamber, projecting the driving shaft of a laser gas circulation fan into the cell, and providing a magnetic fluid seal at a part passing the partition wall. CONSTITUTION:A laser gas circulation fan 10 is rotated by a driving system 16 provided in a differential pressure cell 13 to circulate laser gas cooled in a main discharge area. Since the differential pressure between the pressure in a laser gas chamber 11 and the pressure in the cell 13 is smaller than that between the chamber 11 and the atmospheric pressure, a shaft can be sealed with a magnetic fluid sealer 14 of less number of stages. A motor 16 which forms a driving system is provided in the cell 13, and directly coupled with a driving shaft 15 projected from the sealer 14.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、エキシマレーザ装置のように、高圧下でレ
ーザガスチャンバ内に封入されたレーザガスを内蔵ファ
ンにより循環させるようにしたレーザ装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to a laser device, such as an excimer laser device, in which laser gas sealed in a laser gas chamber under high pressure is circulated by a built-in fan. be.

B、従来の技術 従来のエキシマレーザ装置を示す第2図および第3図に
おいて、2〜3気圧以上に加圧されたレーザガスが封入
されたレーザガスチャンバ1内には、レーザガス循環フ
ァン2.熱交換器3.主放電電極4,5.ピーキングキ
ャパシタ6が内蔵されている。レーザガスは腐食性を有
しているため。
B. Prior Art In FIGS. 2 and 3 showing a conventional excimer laser device, a laser gas circulation fan 2. Heat exchanger 3. Main discharge electrodes 4, 5. A peaking capacitor 6 is built-in. Because laser gas is corrosive.

レーザガス循環ファン2の駆動用モータ16は、第3図
に示すように、レーザガスチャンバ1の外側に置かれて
いる。すなわち、レーザガスチャンバ1の外側に突出し
たレーザガス循環ファン2の軸2aは複数段のポールピ
ースが内蔵された磁性流体シール装置14を貫通し、そ
の先端のプーリ7と駆動用モータ16の出力軸に設けら
れたブー!J8との間にタイミングベルト9が掛は渡さ
れ、これによりレーザガス循環ファン2が駆動される。
A driving motor 16 for the laser gas circulation fan 2 is placed outside the laser gas chamber 1, as shown in FIG. That is, the shaft 2a of the laser gas circulation fan 2 protruding to the outside of the laser gas chamber 1 passes through the magnetic fluid sealing device 14 in which multiple stages of pole pieces are built, and connects to the pulley 7 at the tip and the output shaft of the drive motor 16. Boo set up! A timing belt 9 is passed between the timing belt J8 and the laser gas circulation fan 2, thereby driving the laser gas circulation fan 2.

このような従来のエキシマレーザ装置では、高電圧制御
回路から印加される高電圧により主放電電極4,5間で
放電が行なわれると、この領域にあるレーザガスが劣化
するので、レーザガス循ロファン2でレーザガスを循環
させるとともに、放電励起により昇温したレーザガスを
熱交換器3で冷却する。
In such a conventional excimer laser device, when a discharge occurs between the main discharge electrodes 4 and 5 due to the high voltage applied from the high voltage control circuit, the laser gas in this region deteriorates, so the laser gas circulation fan 2 While circulating the laser gas, the heat exchanger 3 cools the laser gas whose temperature has increased due to discharge excitation.

なお、近年レーザ発振が高繰り返し化の傾向にあり、こ
れに伴い、レーザガス循環ファン2の回転数も高速化さ
れ1例えば100七発振では3000〜4000rpm
の回転数が要求され、軸封止部材として磁性流体フィー
ドスルーが不可欠である。
In addition, in recent years, laser oscillations have tended to have higher repetition rates, and accordingly, the rotation speed of the laser gas circulation fan 2 has also been increased to 1, for example, 3000 to 4000 rpm for 1007 oscillations.
, and a magnetic fluid feedthrough is essential as a shaft sealing member.

C6発明が解決しようとする問題点 上述したエキシマレーザ装置の如く加圧型レーザ装置で
は、レーザガスチャンバ1の内圧と大気との差圧が大き
いため、磁性流体シール族[14はポールピースの段数
を真空装置用のものに比べて多くしなくてはならず磁性
流体シール装置が大型化し、これに伴い、レーザ装置全
体も大型化してしまう、また、磁性流体シール装置はト
ルク損失が大きく、多段にするとモータを大型の大出力
のものにしなければならない、更に磁性流体シール装置
は高価であり、これを多段の大型のものにするとレーザ
装置のコストアップにつながる。
C6 Problems to be Solved by the Invention In a pressurized laser device such as the excimer laser device described above, the differential pressure between the internal pressure of the laser gas chamber 1 and the atmosphere is large, so the magnetic fluid seal group [14 refers to the number of stages of the pole piece set to a vacuum. The magnetic fluid seal device has to be larger than the one for the equipment, and the size of the magnetic fluid seal device increases, and the entire laser device also increases in size.Furthermore, the magnetic fluid seal device has a large torque loss, and if it is multi-staged, the size of the laser device increases. The motor must be large and have a high output, and the magnetic fluid sealing device is expensive, and if it is large and has multiple stages, the cost of the laser device will increase.

さらに、タイミングベルトとプーリとの摩擦により摩擦
粉が発生するため、塵埃等を嫌う場所、例えば半導体製
造工場で半導体露光装置の光源としてこの種の駆動系を
用いるのが好ましくなかった。
Further, since friction powder is generated due to friction between the timing belt and the pulley, it is not desirable to use this type of drive system as a light source for a semiconductor exposure apparatus in a place where dust and the like are not desired, such as a semiconductor manufacturing factory.

この発明の目的は、上記問題点を解決し段数の少ない小
型の磁性流体シール装置を使用したレーザガス循環ファ
ン駆動系を有するコンパクトなレーザ装置を提供するこ
とにある。
An object of the present invention is to solve the above problems and provide a compact laser device having a laser gas circulation fan drive system using a small magnetic fluid seal device with a small number of stages.

D0問題点を解決するための手段 このような問題は、レーザガスチャンバ11と隔壁12
を隔てて差圧セル13を設け、レーザガス循環ファン1
0の駆動軸15を前記隔壁12を貫通させて前記差圧セ
ル13内に突出させ、駆動軸15が隔壁12を貫通する
部分にレーザガスチャンバ11内のレーザガスを封止す
る磁性流体シール装置14を設け、駆動軸15に動力を
供給する駆動系16を前記差圧セル13内に設けたレー
ザ装置により解決される。
Means for solving the D0 problem This problem is solved by the laser gas chamber 11 and the partition wall 12.
A differential pressure cell 13 is provided across the laser gas circulation fan 1.
The drive shaft 15 of 0 passes through the partition wall 12 and protrudes into the differential pressure cell 13, and a magnetic fluid sealing device 14 for sealing the laser gas in the laser gas chamber 11 is provided at the portion where the drive shaft 15 penetrates the partition wall 12. This problem is solved by a laser device in which a drive system 16 for supplying power to a drive shaft 15 is provided inside the differential pressure cell 13.

80作用 レーザガス循環ファン10は、差圧セル13内に設けら
れた駆動系16によって回転され、主放電領域に冷却さ
れたレーザガスを循環させる。レーザガスチャンバ11
内の圧力と差圧セル13内の圧力との差圧は、レーザガ
スチャンバ11内と大気との差圧と比べて小さいから、
従来よりも少ない段数の磁性流体シール装置にて軸封止
できる。
80 operation laser gas circulation fan 10 is rotated by a drive system 16 provided within the differential pressure cell 13 and circulates cooled laser gas to the main discharge area. Laser gas chamber 11
Since the pressure difference between the pressure inside the laser gas chamber 11 and the pressure inside the differential pressure cell 13 is smaller than the pressure difference between the inside of the laser gas chamber 11 and the atmosphere,
The shaft can be sealed using a magnetic fluid sealing device with fewer stages than conventional ones.

F、実施例 第1図に、この発明をエキシマレーザ装置に適用した場
合のレーザガス循環ファンの駆動部を示す。
F. Embodiment FIG. 1 shows a driving section of a laser gas circulation fan when the present invention is applied to an excimer laser device.

レーザガス循環ファン10が内蔵されるレーザガスチャ
ンバ11と隣接し、隔壁12を隔てて差圧セル13が設
けられている。隔壁12には磁性流体シール装置14が
貫設され、レーザガス循環ファン10の駆動軸15が磁
性流体シール装置14を貫通して差圧セル13内に突出
している。磁性流体シール族[14はそのフランジ部1
4aが隔壁12にOリング等を介して固定されその部分
で隔壁貫通孔を封止し、また。
A differential pressure cell 13 is provided adjacent to a laser gas chamber 11 in which a laser gas circulation fan 10 is built, with a partition wall 12 in between. A magnetic fluid sealing device 14 is provided through the partition wall 12 , and a drive shaft 15 of the laser gas circulation fan 10 passes through the magnetic fluid sealing device 14 and projects into the differential pressure cell 13 . Magnetic fluid seal group [14 is the flange part 1
4a is fixed to the partition wall 12 via an O-ring or the like, and the partition wall through-hole is sealed at that portion.

内蔵の磁性流体によって駆動軸15が周知の如く封止さ
れる。
The built-in magnetic fluid seals the drive shaft 15 in a well-known manner.

差圧セル13内には駆動系を構成するモータ16が設け
られ、磁性流体シール装置14から突出する駆動軸15
が直結されている。本実施例では、小型化を図るべく薄
型でトルク制御ができ、かつ、高速でも連続運転可能な
ブラシレスDCモータを使用している。
A motor 16 constituting a drive system is provided within the differential pressure cell 13, and a drive shaft 15 protrudes from the magnetic fluid sealing device 14.
are directly connected. In this embodiment, in order to achieve miniaturization, a brushless DC motor is used which is thin, capable of torque control, and capable of continuous operation even at high speeds.

なお、モータ15の回転力を、歯車機端等の適宜な動力
伝達機構を介在してレーザガス循環ファンIOに伝達し
てもよい。17は軸受である。
Note that the rotational force of the motor 15 may be transmitted to the laser gas circulation fan IO through an appropriate power transmission mechanism such as a gear end. 17 is a bearing.

レーザガスチャンバ11には、活性ガスおよび希ガスハ
ライドエキシマレーザの場合は希ガス(Ar。
The laser gas chamber 11 contains an active gas and a rare gas (Ar) in the case of a halide excimer laser.

Kr、Xe)の供給管21と、バッファガス供給管22
の分岐管22aと、排気管23とが接続され、差圧セル
13には、バッファガス供給管22と、排気管23の分
岐管23aとがそれぞれ接続され、容管は電磁弁24〜
27により開閉されて対応する気体の導入、排出を行な
う、運転時は、レーザガスチャンバ11内には、F2や
HCIに代表される活性ガスと、Ar、Kr、Xsに代
表される希ガスと、He ”P N eに代表されるバ
ッファーガス(希ガス)が2〜3気圧下で封入され、差
圧セル13には不活性ガスであるバソファーガスのみが
レーザガスチャンバ11よりもやや高い気圧下で封入さ
れている。なお、バッファガス分岐管22aと排気分岐
管23aには逆止弁28.29が設けられ。
Kr, Xe) supply pipe 21 and buffer gas supply pipe 22
A branch pipe 22a of the exhaust pipe 23 is connected to the differential pressure cell 13, and a buffer gas supply pipe 22 and a branch pipe 23a of the exhaust pipe 23 are connected to the differential pressure cell 13.
During operation, the laser gas chamber 11 contains an active gas such as F2 and HCI, and a rare gas such as Ar, Kr, and Xs. A buffer gas (rare gas) typified by He''P Ne is sealed under a pressure of 2 to 3 atmospheres, and only the bathophore gas, which is an inert gas, is sealed in the differential pressure cell 13 under a pressure slightly higher than that in the laser gas chamber 11. Note that check valves 28 and 29 are provided in the buffer gas branch pipe 22a and the exhaust branch pipe 23a.

レーザガスチャンバ11から差圧セル13への逆流が防
止される(なお1図中の逆止弁シンボルは、三角形の頂
部方向にのみガスが流れることを意味する)。また、排
気分岐管23aは排気管23よりも管のコンダクタンス
を小さくして排気時にもレーザガスチャンバ11と差圧
セル13の差圧を形成する。
Backflow from the laser gas chamber 11 to the differential pressure cell 13 is prevented (note that the check valve symbol in Figure 1 means that gas flows only towards the top of the triangle). Further, the exhaust branch pipe 23a has a conductance smaller than that of the exhaust pipe 23, so that a pressure difference is formed between the laser gas chamber 11 and the differential pressure cell 13 even during exhaust.

以上の構成のエキシマレーザ装置において、レーザガス
チャンバ11と差圧セル13内に所定圧力でガスを封入
する手順について説明する。
In the excimer laser device having the above configuration, a procedure for filling gas at a predetermined pressure into the laser gas chamber 11 and the differential pressure cell 13 will be explained.

まず、レーザガスチャンバ11および差圧セル13内を
排気する場合について説明する0図示しない真空ポンプ
を駆動せずに電磁弁25を開放すると、レーザガスチャ
ンバ11および差圧セル13の加圧状態のガスが大気圧
との圧力差を利用して放出される。その後、真空ポンプ
を駆動してチャンバ11および差圧セル13を真空に引
くと、管のコンダクタンスは分岐管23aの方が小さい
から、到達圧力は差圧セル13の方が高くなり、従って
、差圧セル13の圧力がチャンバ11の圧力よりも高い
。この圧力差は、後述するチャンバ11に活性ガスおよ
び希ガスハライドエキシマレーザの場合はAr、Kr、
Xe等の希ガスを導入した際のチャンバ11内のガス全
圧よりも高く設定される。所定の真空引き終了後は電磁
弁25を閉成する。
First, the case of evacuating the inside of the laser gas chamber 11 and the differential pressure cell 13 will be explained. When the electromagnetic valve 25 is opened without driving the vacuum pump (not shown), the pressurized gas in the laser gas chamber 11 and the differential pressure cell 13 will be evacuated. It is released using the pressure difference with atmospheric pressure. After that, when the vacuum pump is driven to evacuate the chamber 11 and the differential pressure cell 13, since the conductance of the pipe is smaller in the branch pipe 23a, the ultimate pressure is higher in the differential pressure cell 13, and therefore the differential pressure cell 13 is lowered. The pressure in the pressure cell 13 is higher than the pressure in the chamber 11. This pressure difference is caused by Ar, Kr,
It is set higher than the total gas pressure in the chamber 11 when a rare gas such as Xe is introduced. After completing the predetermined evacuation, the solenoid valve 25 is closed.

次に、レーザガスを供給するが、最初に電磁弁24を開
放して活性ガス供給管21からレーザガスチャンバ11
に活性ガスを供給する。更に、希ガスハライドエキシマ
レーザの場合はAr、Kr、Xe等の希ガスを導入する
。このときレーザガスチャンバ11内に導入したガスの
全圧は、上記圧力差よりも小さい0次いで、電磁弁26
.27を開放して、バッファガス供給管22およびその
分岐管22aからバッフ7ガスをレーザガスチャンバ1
1および差圧セル13の両方に供給する0等圧力にてバ
ッファガスを供給した後、電磁弁27を閉成して差圧セ
ル13にのみバッファガスを少量追加供給して差圧セル
13内の圧力をレーザガスチャンバll内の圧力よりも
僅かに高くする。
Next, the laser gas is supplied, but first the solenoid valve 24 is opened and the active gas supply pipe 21 is supplied to the laser gas chamber 11.
Supply active gas to. Furthermore, in the case of a rare gas halide excimer laser, a rare gas such as Ar, Kr, or Xe is introduced. At this time, the total pressure of the gas introduced into the laser gas chamber 11 is 0, which is smaller than the above pressure difference.
.. 27 is opened, and the buffer 7 gas is supplied to the laser gas chamber 1 from the buffer gas supply pipe 22 and its branch pipe 22a.
1 and the differential pressure cell 13, the solenoid valve 27 is closed, and a small amount of buffer gas is additionally supplied only to the differential pressure cell 13. The pressure in the laser gas chamber II is made slightly higher than the pressure in the laser gas chamber II.

このようにしてチャンバ11および差圧セル13内にガ
スを供給すると、差圧セル13内はHe、Ne等の不活
性ガスのみで満たされ、しかも磁性流体シール装置のポ
ールピースの段数を少なくでき、しかも、差圧セル13
内のモータ16等が腐食性を有する活性ガスにおかされ
ることはない。
By supplying gas into the chamber 11 and the differential pressure cell 13 in this manner, the interior of the differential pressure cell 13 is filled only with inert gas such as He and Ne, and the number of stages of pole pieces of the magnetic fluid seal device can be reduced. , Moreover, the differential pressure cell 13
The motor 16 and the like inside will not be exposed to corrosive active gas.

また1本実施例では、駆動軸15がモータ16と直結さ
れラジアル方向の力が作用しないから、磁性流体シール
装置にはラジアル方向の負荷がかからず、従来問題とな
ることが多かった寿命を長くすることができる。
Furthermore, in this embodiment, since the drive shaft 15 is directly connected to the motor 16 and no radial force is applied, no radial load is applied to the magnetic fluid sealing device, which reduces the service life, which has often been a problem in the past. It can be made longer.

なお、本発明はエキシマレーザ装置以外の加圧型ガスレ
ーザ装置にも適用できる。
Note that the present invention can also be applied to pressurized gas laser devices other than excimer laser devices.

G0発明の詳細 な説明したように、この発明に係るレーザ装置によれば
、レーザガスチャンバと差圧セルの内圧差はレーザガス
チャンバの内圧と大気圧との差に比べて小さく、磁性流
体シール袋打により封止する圧力差が小さくなるので、
そのポールピースの段数を減らすことができ、コスト低
減、小型化に寄与する。また、磁性流体シール装置によ
るトルク損失も小さくなるから、モータ出力を小さくで
き、モータの小型化が可能となり、よりmm装置全体の
小型化に寄与する。
As described in detail of the G0 invention, according to the laser device according to the present invention, the internal pressure difference between the laser gas chamber and the differential pressure cell is smaller than the difference between the internal pressure of the laser gas chamber and the atmospheric pressure, and the magnetic fluid seal bag is used. Since the pressure difference for sealing becomes smaller,
The number of pole pieces can be reduced, contributing to cost reduction and downsizing. Furthermore, since the torque loss caused by the magnetic fluid seal device is also reduced, the motor output can be reduced, making it possible to downsize the motor, which further contributes to downsizing the entire mm device.

さらに、駆動系が差圧セル内に内蔵されているから、粉
塵等がレーザ装置の外部に飛散せず、11埃を嫌う半導
体の製造工場等でも支障なく使用することができる。
Furthermore, since the drive system is built into the differential pressure cell, dust and the like are not scattered outside the laser device, and the laser device can be used without any problems in semiconductor manufacturing factories and the like where dust is averse.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るレーザ装置のレーザガスチャン
バの一部断面図、第2図はエキシマレーザ装置の概略図
、第3図は従来のレーザ装置のレーザガスチャンバの一
部を断面し、レーザガス循環ファンの駆動系を説明する
図である。 10:レーザガス循環ファン 11:レーザガスチャンバ 12:隔壁         13:差圧セル14:磁
性流体シール装置 15:駆動軸 16:モータ(駆動系)
FIG. 1 is a partial cross-sectional view of a laser gas chamber of a laser device according to the present invention, FIG. 2 is a schematic diagram of an excimer laser device, and FIG. 3 is a partial cross-sectional view of a laser gas chamber of a conventional laser device, showing the laser gas circulation. FIG. 3 is a diagram illustrating a fan drive system. 10: Laser gas circulation fan 11: Laser gas chamber 12: Partition wall 13: Differential pressure cell 14: Magnetic fluid seal device 15: Drive shaft 16: Motor (drive system)

Claims (1)

【特許請求の範囲】 レーザガスチャンバ内のレーザガスを内蔵ファンで循環
させるレーザ装置において、 レーザガスチャンバと隔壁を隔てて差圧セルを設け、前
記ファンの駆動軸を前記隔壁を貫通させて前記差圧セル
内に突出させ、駆動軸が隔壁を貫通する部分にレーザガ
スチャンバ内のレーザガスを封止する磁性流体シール装
置を設け、駆動軸に動力を供給する駆動系を前記差圧セ
ル内に設けたことを特徴とする差圧セルを設けたレーザ
装置。
[Claims] A laser device in which laser gas in a laser gas chamber is circulated by a built-in fan, wherein a differential pressure cell is provided between the laser gas chamber and a partition wall, and a drive shaft of the fan is passed through the partition wall to circulate the laser gas in the differential pressure cell. A magnetic fluid sealing device that protrudes inside and seals the laser gas in the laser gas chamber at a portion where the drive shaft penetrates the partition wall is provided, and a drive system that supplies power to the drive shaft is provided in the differential pressure cell. A laser device equipped with a characteristic differential pressure cell.
JP61170421A 1986-07-20 1986-07-20 Laser apparatus with differential pressure cell Pending JPS6327084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61170421A JPS6327084A (en) 1986-07-20 1986-07-20 Laser apparatus with differential pressure cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61170421A JPS6327084A (en) 1986-07-20 1986-07-20 Laser apparatus with differential pressure cell

Publications (1)

Publication Number Publication Date
JPS6327084A true JPS6327084A (en) 1988-02-04

Family

ID=15904610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61170421A Pending JPS6327084A (en) 1986-07-20 1986-07-20 Laser apparatus with differential pressure cell

Country Status (1)

Country Link
JP (1) JPS6327084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022696A (en) * 1988-06-16 1990-01-08 Fanuc Ltd Laser oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022696A (en) * 1988-06-16 1990-01-08 Fanuc Ltd Laser oscillator

Similar Documents

Publication Publication Date Title
JPS62291479A (en) Vacuum exhaust device
JPH08144977A (en) Compound dry vacuum pump
JPS6327084A (en) Laser apparatus with differential pressure cell
JPH07227777A (en) Carrier and processing device for article to be processed
JPS63285987A (en) Laser oscillator and method of sealing of laser gas in said oscillator
JP3117365B2 (en) Scroll type vacuum pump
EP0798463A2 (en) Oil-free scroll vacuum pump
JP2000213488A (en) Shaft seal mechanism and vacuum pump
JP4633370B2 (en) Vacuum equipment
JPH0932766A (en) Screw fluid machine and screw gear
JP3343402B2 (en) Vertical heat treatment equipment
JP3221018B2 (en) Gas circulation type laser oscillator
JPS63228692A (en) Highly repetitive pulsed laser oscillation device
JP2902454B2 (en) Driving method of rotating body provided with shaft sealing device
JPH11145531A (en) Gas circulation equipment
JP3884101B2 (en) Oil-free scroll vacuum pump
JPS63185896A (en) Discharge apparatus for molding machine for pulling up silicon single crystal
JPH0518378A (en) Two-stage screw vacuum pump
JPH0750856Y2 (en) Vacuum processing device
JPH0726625B2 (en) 2-stage screw vacuum pump
JP2000223757A (en) Gas laser
JP3006780B2 (en) Rotary introduction device
JPH03285377A (en) Gas laser device
JP2003045941A (en) Positioning apparatus
JPH11141306A (en) Turbo blower