JPS6327054B2 - - Google Patents

Info

Publication number
JPS6327054B2
JPS6327054B2 JP56180707A JP18070781A JPS6327054B2 JP S6327054 B2 JPS6327054 B2 JP S6327054B2 JP 56180707 A JP56180707 A JP 56180707A JP 18070781 A JP18070781 A JP 18070781A JP S6327054 B2 JPS6327054 B2 JP S6327054B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
silica gel
general formula
chemically modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56180707A
Other languages
Japanese (ja)
Other versions
JPS5881443A (en
Inventor
Jitsuo Kiji
Hisatoshi Konishi
Tamon Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Original Assignee
Ihara Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Chemical Industry Co Ltd filed Critical Ihara Chemical Industry Co Ltd
Priority to JP56180707A priority Critical patent/JPS5881443A/en
Publication of JPS5881443A publication Critical patent/JPS5881443A/en
Publication of JPS6327054B2 publication Critical patent/JPS6327054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、アルキルベンゼンのp―位に対する
選択性のすぐれた核塩素化用触媒に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for nuclear chlorination having excellent selectivity for the p-position of alkylbenzene.

アルキルベンゼンの核塩素化物は、医薬,農薬
をはじめ各種有機合成化学の原料として有用であ
り、特にp―クロロアルキルベンゼン、例えばp
―クロロトルエンの需要が多い。
Nuclear chlorides of alkylbenzenes are useful as raw materials for various organic synthetic chemicals including medicines and agricultural chemicals, and in particular p-chloroalkylbenzenes, such as p-
-Chlorotoluene is in high demand.

しかるに、従来、一般に行なわれている核塩素
化反応である塩化アンチモン,塩化第二鉄,塩化
アルミニウムなどのルイス酸を触媒として塩素ガ
スで塩素化する方法においては、o―クロロアル
キルベンゼンが主として生成し、さらにm―クロ
ロ体,多塩素置換体なども副生し、40%以上の選
択率でp―クロロアルキルベンゼンを製造するこ
とはできなかつた。
However, in the conventional nuclear chlorination reaction, in which chlorine is chlorinated with chlorine gas using a Lewis acid such as antimony chloride, ferric chloride, or aluminum chloride as a catalyst, o-chloroalkylbenzene is mainly produced. Furthermore, m-chloro derivatives, polychlorinated derivatives, etc. were also produced as by-products, making it impossible to produce p-chloroalkylbenzene with a selectivity of 40% or more.

そこで、p―クロロアルキルベンゼンを収率よ
く製造するために、種々の触媒が開発された。
Therefore, various catalysts have been developed to produce p-chloroalkylbenzene in good yield.

例えば、ルイス酸と硫黄又はセレンを触媒とし
て用いる方法においてはp―クロロ体が45〜52%
の選択率で得られ(例えば、特公昭50−34009号
公報、米国特許第403144号公報等)、ルイス酸と
チアンスレン化合物を触媒として用いる方法にお
いてはp―クロロアルキルベンゼンが55〜60%の
選択率で得られ、例えば、特開昭52−19630号公
報、米国特許第4031147号公報等)、ルイス酸とフ
エノキサチン化合物を触媒として用いる方法にお
いてはp―クロロアルキルベンゼンが50〜64%の
選択率で得られている(例えば、特開昭56−5139
号公報、特開昭56−110630号公報等)。
For example, in a method using Lewis acid and sulfur or selenium as a catalyst, p-chloro form accounts for 45 to 52%.
(for example, Japanese Patent Publication No. 50-34009, U.S. Patent No. 403144, etc.), and p-chloroalkylbenzene can be obtained with a selectivity of 55 to 60% in a method using a Lewis acid and a thianthrene compound as a catalyst. (e.g., JP-A No. 52-19630, U.S. Pat. No. 4,031,147, etc.), p-chloroalkylbenzene can be obtained with a selectivity of 50 to 64% in a method using a Lewis acid and a phenoxatine compound as a catalyst. (For example, Japanese Patent Application Laid-Open No. 56-5139
(Japanese Patent Application Laid-open No. 110630/1983, etc.).

しかしながら、これらの触媒もp―クロロアル
キルベンゼンの選択的な製造触媒としては未だ充
分に満足できるものではなく、さらに高い選択率
を示す触媒の出現が希求されていた。
However, these catalysts are still not fully satisfactory as catalysts for the selective production of p-chloroalkylbenzene, and there has been a desire for a catalyst that exhibits even higher selectivity.

本発明者らは、このような現状に鑑み、p―位
に対する選択性にすぐれたアルキルベンゼンの核
塩素化用触媒を提供すべく鋭意研究を重ねた結
果、意外にもシリカゲルをアニリン誘導体,スル
ホンアミド誘導体またはベンジル誘導体で化学修
飾したものを触媒として用いれば従来の触媒に比
べすぐれた選択率でp―クロロアルキルベンゼン
を製造できることを見出し、この知見に基づいて
本発明を完成するに至つた。
In view of the current situation, the present inventors have conducted intensive research to provide a catalyst for nuclear chlorination of alkylbenzene with excellent selectivity toward the p-position. We have discovered that p-chloroalkylbenzene can be produced with superior selectivity compared to conventional catalysts by using a catalyst chemically modified with a derivative or a benzyl derivative, and based on this knowledge, we have completed the present invention.

すなわち、本発明は、一般式 (式中、Aはシリカゲルを表し、Rは水素原子
またはアルキル基を表し、Xはスルホニル基また
はメチレン基を表す。また、mは0または1の整
数を表し、nは1または2の整数を表す。) で示される化学修飾シリカゲルからなるアルキル
ベンゼンの核塩素化用触媒である。
That is, the present invention provides the general formula (In the formula, A represents silica gel, R represents a hydrogen atom or an alkyl group, and X represents a sulfonyl group or a methylene group. Also, m represents an integer of 0 or 1, and n represents an integer of 1 or 2. This is a catalyst for nuclear chlorination of alkylbenzene made of chemically modified silica gel represented by:

本発明の前記一般式()で示される化学修飾
シリカゲルは、カラムクロマト用シリカゲルにベ
ンゼン等の不活性溶媒中3―(N―アルキル)ア
ミノプロピルトリエトキシシランを反応させ、一
般式 A≡SiCH2CH2CH2NHR () (式中、AおよびRは前記と同一の意味を表
す。) で示される化学修飾シリカゲルを得、次いでこれ
にベンゼン等の不活性溶媒中脱塩酸剤の存在下、
一般式 (式中、Yはハロゲン原子を表し、x,mおよ
びnは前記と同一の意味を表す。) で示されるニトロハロゲン化ベンゼン,ニトロベ
ンゼンスルホニルハライドまたはニトロベンジル
ハライドを反応させることによつて得られる。
The chemically modified silica gel of the present invention represented by the general formula () can be obtained by reacting silica gel for column chromatography with 3-(N-alkyl)aminopropyltriethoxysilane in an inert solvent such as benzene, and has the general formula A≡SiCH 2 A chemically modified silica gel represented by CH 2 CH 2 NHR () (in the formula, A and R represent the same meanings as above) is obtained, and then in the presence of a dehydrochlorination agent in an inert solvent such as benzene,
general formula (In the formula, Y represents a halogen atom, and x, m and n represent the same meanings as above.) Obtained by reacting nitrohalogenated benzene, nitrobenzenesulfonyl halide or nitrobenzyl halide shown by .

本発明の触媒を用いてアルキルベンゼンの核塩
素化を行うには、アルキルベンゼン1モル当り前
記一般式()で示される化学修飾シリカゲルを
20〜200g好ましくは100〜500gの割合で存在さ
せ、反応混合物の沸点以下の温度で塩素ガスを導
入する。温度があまり高い場合には多塩素化物の
生成量が多くなり、p―クロロ体の収率が減り好
ましくない。一方、マイナス数10℃以下の低温で
も反応は行え、p―クロロ体の選択率は高くなる
が、反応速度が遅くなり経済的でないので、通常
は0〜80℃の温度で、工業的には20〜70℃の温度
で行うのが適切である。塩素ガスの圧力は、常
圧,加圧,減圧いずれでもよいが、通常は常圧下
で反応させる。
In order to carry out nuclear chlorination of alkylbenzene using the catalyst of the present invention, chemically modified silica gel represented by the above general formula () is added per mole of alkylbenzene.
The chlorine gas is present in a proportion of 20 to 200 g, preferably 100 to 500 g, and is introduced at a temperature below the boiling point of the reaction mixture. If the temperature is too high, the amount of polychlorinated products produced increases and the yield of p-chloro compound decreases, which is not preferable. On the other hand, the reaction can be carried out at a low temperature of minus several tens of degrees Celsius or lower, and the selectivity for the p-chloro compound is high, but the reaction rate is slow and uneconomical, so it is usually carried out at a temperature of 0 to 80 degrees Celsius, and is not suitable for industrial use. It is suitable to carry out at a temperature of 20-70 °C. The pressure of the chlorine gas may be normal pressure, increased pressure, or reduced pressure, but the reaction is usually carried out under normal pressure.

本発明の触媒を用いて核塩素化されるアルキル
ベンゼンとしては、各種の直鎖及び分岐鎖アルキ
ルでモノ置換されたベンゼンをあげることができ
るが、特にアルキル基の炭素数が1〜4のものが
好ましい。
Examples of alkylbenzenes to be nuclear chlorinated using the catalyst of the present invention include benzenes monosubstituted with various straight-chain and branched-chain alkyl groups, and those in which the alkyl group has 1 to 4 carbon atoms are particularly preferred. preferable.

本発明の触媒を用いれば、アルキルベンゼンの
o―位の塩素化を抑えてp―位に効率よく塩素化
することができ、かつm―クロロ体及び多塩素化
物の生成はきわめて少ない。また、本発明の触媒
は繰り返し使用しても活性の低下がなく耐久性に
すぐれ、トルエンなどのアルキルベンゼンのp―
クロロ体を工業的に製造するのに適しており、そ
の工業的価値は高いものである。
By using the catalyst of the present invention, it is possible to suppress the chlorination of the o-position of alkylbenzene and efficiently chlorinate the p-position, and the production of m-chloro and polychlorinated products is extremely small. In addition, the catalyst of the present invention does not lose its activity even after repeated use, and has excellent durability.
It is suitable for industrially producing chloroforms and has high industrial value.

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

〔実施例 1〕 かきまぜ機,温度計,還流冷却管および滴下ロ
ートを備えた30ml反応フラスコにクメン0.6g
(5m mol)および触媒(1)〔前記一般式()
においてR=H,X=CH2,m=1,n=2,置
換位置2,4―のもの〕0.5gを仕込み、撹拌下
30℃で四塩化炭素15mlに塩素0.35g(5m
mol)を溶解した溶液を滴下した後30℃で1時間
反応させた。反応終了後、触媒を除去し、炭酸水
素ナトリウムで洗浄,乾燥後,ガスクロマトグラ
フで分析した結果、生成モノクロロクメンの生成
比は4―クロロクメン/2―クロロクメン比
(p/o)=2.09であつた。
[Example 1] 0.6 g of cumene was placed in a 30 ml reaction flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel.
(5m mol) and catalyst (1) [the above general formula ()
0.5 g of R=H,
Add 0.35 g of chlorine to 15 ml of carbon tetrachloride at 30°C (5 m
mol) was added dropwise, and the mixture was reacted at 30°C for 1 hour. After the reaction was completed, the catalyst was removed, washed with sodium hydrogen carbonate, dried, and analyzed by gas chromatography. As a result, the production ratio of monochlorocumene was 4-chlorocumene/2-chlorocumene ratio (p/o) = 2.09. .

〔比較例1〕 (特開昭56−5139号公報記載の方法) かきまぜ機,温度計,ガス吹込み管,還流コン
デンサーを付した1―四つ口フラスコ中に、ク
メン480g、三塩化アンチモン2g及びフエノキ
サチン2gをとり、かきまぜながら、ウオーター
バスで約50℃に加温し、温度が一定になつた後、
塩素ガスを300ml/minの速度で導入し、ウオー
ターバスで反応温度を50〜55℃に保持する。塩素
ガスを5時間導入して反応を停止し、反応液をガ
スクロマトグラフ法で分析した結果、生成モノク
ロロクメンの組成は、4―クロロクメン/2―ク
ロロクメン比(p/o)=1.76であつた。
[Comparative Example 1] (Method described in JP-A No. 56-5139) 480 g of cumene and 2 g of antimony trichloride were placed in a 1-4 neck flask equipped with a stirrer, a thermometer, a gas blowing tube, and a reflux condenser. Take 2 g of phenoxatin and heat it in a water bath to about 50°C while stirring. After the temperature becomes constant,
Chlorine gas is introduced at a rate of 300 ml/min, and the reaction temperature is maintained at 50-55°C with a water bath. The reaction was stopped by introducing chlorine gas for 5 hours, and the reaction solution was analyzed by gas chromatography. As a result, the composition of the monochlorocumene produced was 4-chlorocumene/2-chlorocumene ratio (p/o) = 1.76.

〔実施例 2〕 実施例1の触媒1を触媒2〔前記一般式()
においてR=H,X=SO2,m=1,n=2,置
換位置2,4―のもの〕に代えた以外は実施例1
と同様の条件で反応を行なつた。ガスクロマトグ
ラフで分析した結果、反応液組成は4―クロロク
メン/2クロロクメン比(p/o)=2.00であつ
た。
[Example 2] Catalyst 1 of Example 1 was replaced with catalyst 2 [the general formula ()
Example 1 except that R=H, X=SO 2 , m=1, n=2, substitution position 2,4-]
The reaction was carried out under the same conditions. As a result of analysis by gas chromatography, the composition of the reaction solution was 4-chlorocumene/2-chlorocumene ratio (p/o) = 2.00.

〔実施例 3〕 実施例1の触媒1を触媒3〔前記一般式()
においてR=H,m=0,n=2,置換位置2,
4―のもの〕に代えた以外は実施例1と同様の条
件で反応を行なつた。ガスクロマトグラフで分析
した結果、反応液組成は4―クロロクメン/2―
クロロクメン比(p/o)=1.56であつた。
[Example 3] Catalyst 1 of Example 1 was replaced with catalyst 3 [the general formula ()
In R=H, m=0, n=2, substitution position 2,
The reaction was carried out under the same conditions as in Example 1, except that the reaction mixture was replaced with [4-]. As a result of gas chromatograph analysis, the reaction solution composition was 4-chlorocumene/2-
The chlorocumene ratio (p/o) was 1.56.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特許請求の範囲の化学修飾シリカゲル
の構造の模式図である。第2図は実施例1におけ
る化学修飾シリカゲル触媒によるクメンと塩素の
反応の模式図である。
FIG. 1 is a schematic diagram of the structure of the chemically modified silica gel claimed in the claims. FIG. 2 is a schematic diagram of the reaction between cumene and chlorine using a chemically modified silica gel catalyst in Example 1.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Aはシリカゲルを表し、Rは水素原子
またはアルキル基を表し、Xはスルホニル基また
はメチレン基を表す。またmは0または1の整数
を表し、nは1または2の整数を表す。) で示される化学修飾シリカゲルからなるアルキル
ベンゼンの核塩素化用触媒。
[Claims] 1. General formula (In the formula, A represents silica gel, R represents a hydrogen atom or an alkyl group, X represents a sulfonyl group or a methylene group, m represents an integer of 0 or 1, and n represents an integer of 1 or 2. ) Catalyst for nuclear chlorination of alkylbenzene consisting of chemically modified silica gel.
JP56180707A 1981-11-11 1981-11-11 Catalyst for chlorinating nucleus of alkylbenzene Granted JPS5881443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180707A JPS5881443A (en) 1981-11-11 1981-11-11 Catalyst for chlorinating nucleus of alkylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180707A JPS5881443A (en) 1981-11-11 1981-11-11 Catalyst for chlorinating nucleus of alkylbenzene

Publications (2)

Publication Number Publication Date
JPS5881443A JPS5881443A (en) 1983-05-16
JPS6327054B2 true JPS6327054B2 (en) 1988-06-01

Family

ID=16087902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180707A Granted JPS5881443A (en) 1981-11-11 1981-11-11 Catalyst for chlorinating nucleus of alkylbenzene

Country Status (1)

Country Link
JP (1) JPS5881443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642457U (en) * 1987-06-23 1989-01-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642457U (en) * 1987-06-23 1989-01-09

Also Published As

Publication number Publication date
JPS5881443A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
EP0248931B1 (en) Process for producing p-chlorobenzenes
EP0118851A1 (en) Process for producing a chlorohalobenzene
EP0112722A1 (en) Process for preparation of nuclear halides of monoalkylbenzenes
JP3876464B2 (en) Method for producing diphenylethane bromide
EP0163230B1 (en) Process for producing aromatic chlorine compounds
JPS6327054B2 (en)
JPH024580B2 (en)
EP0450584B1 (en) Bromination method
JPS58222040A (en) Preparation of m-chlorobenzotrifluoride
US4210766A (en) Process for producing 2-halo-4-bromophenols
JPS6330292B2 (en)
JP2590246B2 (en) Process for producing 3-trifluoromethylbenzenesulfonyl chlorides
US4306103A (en) Process for the manufacture of 1,3,5-trichlorobenzene
JPH10511310A (en) Parachlorination of aromatic compounds
JPH04305544A (en) Method of preparing paradichlorobenzene
EP0063384B1 (en) Process for the nuclear chlorination of toluene
JPH0780798B2 (en) Method for producing halogenated benzene derivative with improved zeolite catalyst
JP3857369B2 (en) Method for producing chlorinated hydrocarbons
JPS6242656B2 (en)
JP4731062B2 (en) Method for chlorinating alkyl aromatic hydrocarbons
KR880000200B1 (en) Process for the preparation of p-chlorobenzene
JPH0327334A (en) Production of 2,5-dihalogenated benzotrichlorides
SU654600A1 (en) Method of obtaining dichlorbenzols
JPH0267234A (en) Production of fluorobromoalkane
KR800001589B1 (en) Process for the preparation of cloro sulfonyl benzyl cloride