JPS6327042B2 - - Google Patents

Info

Publication number
JPS6327042B2
JPS6327042B2 JP55076496A JP7649680A JPS6327042B2 JP S6327042 B2 JPS6327042 B2 JP S6327042B2 JP 55076496 A JP55076496 A JP 55076496A JP 7649680 A JP7649680 A JP 7649680A JP S6327042 B2 JPS6327042 B2 JP S6327042B2
Authority
JP
Japan
Prior art keywords
liquid
reboiler
distillation column
gas
natural circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076496A
Other languages
Japanese (ja)
Other versions
JPS574202A (en
Inventor
Tetsuro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Oil Co Ltd
Original Assignee
Asia Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Oil Co Ltd filed Critical Asia Oil Co Ltd
Priority to JP7649680A priority Critical patent/JPS574202A/en
Publication of JPS574202A publication Critical patent/JPS574202A/en
Publication of JPS6327042B2 publication Critical patent/JPS6327042B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は蒸留塔の運転方法に関する。詳しくは
本発明は自然循環式リボイラーを備えた蒸留塔の
運転方法に関する。 燃料工業又は有機化学工業の種々の工程におい
て、熱サイフオンの原理を利用する自然循環式リ
ボイラーを備えた蒸留塔が使用されている。例え
ば石油留分の水素化脱硫装置、水素化分解装置、
水素化処理装置等において、反応生成物を単離
し、低沸点成分と高沸点成分とを分離し、引火点
を改善し、或いは水分を除去するために、自然循
環式リボイラーを備えた蒸留塔が多く使用されて
いる。 具体例を挙げると、灯軽油の水素化脱硫装置に
おいては、水素化脱硫反応塔からの流出物を気液
分離し、分離された液体は硫化水素ストリツパー
で硫化水素含有ガスを分離した後、自然循環式リ
ボイラーを備えた蒸留塔で製品灯軽油の引火点を
調節するとともに、硫化水素ストリツパー塔底で
吹込まれたスチームの凝縮水からなる水分と低沸
点成分とを塔頂液として分離する。 この種の蒸留塔においては、塔底液(製品灯軽
油等)の引火点、水分含有量等の品質規格を損わ
ない範囲で、塔頂液の還流液量を低減せしめて省
エネルギー化を図ることが行われている。 しかしながら、塔頂液の還流液量を減らし、自
然循環式リボイラーへの熱供給量をあらゆる値以
下にすると、蒸留塔塔底油のリボイラーにおける
沸騰量が減少し、自然循環式リボイラーにおける
循環が定常状態を維持できなくなるので、蒸留塔
への熱供給量が変化して蒸留操作が乱れることと
なる。この場合、製品塔底液の引火点、水分含有
量等が変動し、所定の製品性状を維持することが
できなくなる。即ち、この種の蒸留塔の自然循環
式リボイラーにおいては、それぞれ正常な自然循
環維持のために必要な最小限の熱供給量が存在
し、この最小限の熱供給量以下の熱供給量で安定
に運転をすることは不可能であつた。従来、この
ような場合をも含めて、自然循環式リボイラーに
おける自然循環を安定に維持するための方法がい
くつか提案されてきた。例えばJ.V.Smith,
Chem.Eng.Progr.,vol70,No.7,(1974年)70頁
には、自然循環式リボイラーの安定性を増すため
の方法の1つとして、リボイラーの液入口部に窒
素ガスのようなガスを注入する方法が提案されて
いる。また自然循環式リボイラーの起動時におけ
る自然循環発生を容易にする方法として、起動に
際して塔底成分より低沸点の成分を若干量リボイ
ラーの液出、入口部に供給する方法が提案されて
いる(特開昭51−83880)。 しかしながら、上記J.V.Smithによる方法にお
いては、自然循環式リボイラーを備えた蒸留系の
系外から窒素ガスの如き有価のガスを導入するこ
とが必要であり、また蒸留塔塔頂ガスの中に外部
から導入したガスが混入し、本来の塔頂ガス純度
を低下せしめるという欠点がある。このため、蒸
留塔の定常運転中に継続してこのような外部から
のガスを導入することは運転費用ならびに塔頂ガ
ス成分の純度保持の面から問題点があり、実際の
蒸留塔の定常運転に縦続的にこの方法を採用する
ことは困難であつた。また、特開昭51−83880の
方法は、リボイラーの起動を容易にすることを目
的としており、注入する液体は外部から調達しな
ければならないので、自然循環式リボイラーの定
常運転に縦続的に適用することは出来なかつた。 本発明者は、これらの従来技術の問題点を回避
し、自然循環式リボイラーを備えた蒸留塔の安定
な操業及びリボイラー熱源の節減による省エネル
ギー化を目的としてこの種の蒸留塔の運転特性を
種々解析し、実験を重ねた結果、蒸留塔の塔頂液
又は/及び側留液の1部をリボイラーの循環液中
に供給すると、リボイラー液出口部における循環
液の蒸気圧が上昇し、循環液の蒸発が促進される
こと、また、同時にリボイラー液出口部の気液混
相密度が低下し、リボイラーの液入口付近の循環
液と液出口付近の循環液との密度差が大きくなつ
て、自然循環の駆動力が増大することを見出し、
本発明に到達した。 即ち、本願発明は自然循環式リボイラーを備え
た蒸留塔を少ない熱供給量で安定に運転する方法
を提供することを目的とし、この目的は、自然循
環式リボイラーを備えた蒸留塔の塔頂液又は/及
び側留液の1部を該リボイラーの液入口部又は/
及び液出口部に供給することにより、容易に達成
される。 以下に本発明を詳細に説明する。 本発明を適用することが出来る蒸留塔は、燃料
工業及び有機化学工業、特に石油及び石油化学工
業、に於ける自然循環式リボイラーを備えた蒸留
塔であつて、多成分系原料液から低沸点成分又
は/及び水分を分離することを目的とするものが
適している。このような蒸留塔としては、整合
塔、ストリツパー、再生塔などが挙げられるが、
特に石油精製プラント又は石油化学プラントにお
ける蒸留塔原料液中に存在する低沸点成分の分離
又は除去を目的とする蒸留塔として、具体的には
次のようなものが挙げられる。 灯軽油の水素化脱硫装置の製品油引火点調節
のための蒸留塔 ナフサ又はガソリン留分の蒸気圧の調節のた
めの整合塔 ガス分離装置又はガス回収装置における、吸
収油からガス分を放散させるためのストリツパ
ー 硫化水素、炭酸ガスなどの有害ガスの吸収液
の再生塔ないしストリツパー 原料成分中の水分の除去に用いる脱水塔 芳香族炭化水素等の溶剤抽出装置における抽
出物と溶剤との混合物から溶剤を除去するため
のストリツパー なお本発明は、特に蒸留分離すべき低沸点成分
が水、硫化水素、炭酸ガスなどの非炭化水素ガス
又は軽質炭化水素ガスなどである場合に好適に適
用される。 本発明においては、上記のような蒸留塔の塔頂
液又は/及び側留液の1部をリボイラーの液入口
部又は/及び液出口部に供給することにより、リ
ボイラーの自然循環を促進するものであるが、該
塔頂液又は/及び側留液の平均沸点と蒸留塔塔底
液の平均沸点との差が大きいことが望ましく、好
ましくは50℃以上、更に好ましくは100℃以上で
ある。 なお、このようにリボイラーに蒸留塔の塔頂液
又は/及び側留液を供給する場合には、蒸留塔塔
底液と塔頂液又は/及び側留液の性状が相対的に
近接し、その結果、塔底液の具備すべき引火点、
蒸気圧、軽質ガス含有量、低沸点成分の含有量、
水分含有量などが目標性状値を達成できなくなる
場合があり得る。このような不都合を避けるため
に、本発明を適用するに当つては、蒸留塔塔頂液
又は/及び側留液のリボイラーの液入口部又は/
及び液出口部への供給量は塔底液、塔頂液、側留
液の目標性状を損わない範囲に止めなければなら
ない。 塔頂液又は/及び側留液の適当な供給量は、蒸
留塔の種類及び運転条件(特にリボイラーへの熱
供給量及び塔頂液の還流液量)、塔頂液及び塔底
液の種類(特に両者の沸点差及び密度差)等に依
存するが、通常、塔底液のリボイラー内循環量の
数百分の1程度の少量、例えば1/100〜1/1000程
度、で十分な効果が認められる。該供給量の最適
値は、前記した塔底液性状等への影響にも注意し
つつ、具体的な蒸留系において供給量を増減させ
て蒸留操作を実施することにより、実験的に容易
に決定することができる。 塔頂液及び/又は側留液の供給位置は、リボイ
ラーの液入口部及び液出口部のどちらでもよく、
またこれらの両方に供給してもよい。 次に本発明による蒸留塔の運転方法の具体的態
様の例を示す第1図を参照しながら、本発明につ
きさらに詳細に説明する。 第1図は灯軽油水素化脱硫装置における製品灯
軽油の引火点調節のための蒸留塔を示す工程図で
ある。第1図において、Aは蒸留塔、Bは自然循
環式リボイラー、Cは凝縮器、Dは受槽を表わ
す。 灯軽油水素化脱硫装置では、水素化脱硫反応塔
からの流出物を気液分離し、液体を硫化水素スト
リツパーに送り、そこで硫化水素含有ガスを分離
した後、導管1により蒸留塔Aに送り、そこで含
有される水分及び低沸点成分(主として軽質炭化
水素)を塔頂油として導管2より抜き出す。一
方、塔底からは水及び低沸点成分が除去され、規
格値内の水分含有量及び引火点に調整された灯軽
油を導管10を通じて製品灯軽油として取得す
る。 蒸留塔Aの下部には塔底液に熱を供給するため
に自然循環式リボイラーBが備えられ、導管8に
より蒸留塔下部から抜き出された塔底液はチユー
ブ11内を流れる高温流体により加熱され、導管
9を経て蒸留塔に還流される。リボイラーBはチ
ユーブ11による加熱により内部の循環液が上向
きに流れ、自然に循環する様に設計されている。 さて抜き出された塔頂油は凝縮器Cでその一部
を凝縮させた後、受槽Dに導入して、気液分離す
る。分離された主として軽質炭化水素からなる気
体はガスライン4を経て除去され、一方液体はさ
らに水と軽質炭化水素とに分液され、水は排水ラ
イン5によつて系外に抜き出される。一方軽質炭
化水素はその一部が還流ライン3を通じて還流液
として蒸留塔Aに送られ、さらに一部が供給ライ
ン7を経て、リボイラーBの液入口部に供給さ
れ、残部は抜き出しライン6を経て系外へ抜き出
される。 本発明によれば、リボイラーへの熱供給量が、
従来の運転方法に比較して少量であつても、自然
循環式リボイラーの自然循環量が高水準に維持さ
れ、熱伝達が安定化すると同時に蒸留塔塔頂液還
流量を大幅に減少することが可能となる。その結
果、蒸留塔の操業が安定した状態で、省エネルギ
ー化を実現することが出来る。 即ち、本発明によりリボイラーへの高温流体か
らの熱供給量を低減させることによつて、蒸留塔
系統における熱エネルギー節約が実現できる。余
剰になつた熱量は他の設備に利用することができ
るので、結果として全装置群の省エネルギー化を
図ることができるので、工業的に益する所多大で
ある。 以下、本発明を実施例によりさらに具体的に説
明するが、本発明はその要旨を越えない限り、以
下の実施例によつて何ら限定されるものではな
い。 実施例 1 灯軽油水素化脱硫装置において水素化脱硫反応
塔からの流出物を気液分離して得た液体を硫化水
素ストリツパーに送り、そこで硫化水素含有ガス
を分離して得た粗軽油を、第1図に示す工程によ
り蒸留処理した。即ち、粗軽油を導管1より蒸留
塔Aに導入し、塔頂より水及び低沸点成分を塔頂
液として留出させ、塔底からは製品軽油を取得し
た。塔頂液から分離した軽質炭化水素分の一部は
供給ライン7を通じて、リボイラーBの液入口部
に供給した。この軽質炭化水素分のリボイラーの
供給量が0.5m3/hの時に、最も良好な状態で、
安定して蒸留塔を遅転することができた。 例えば注入量を0.8m3/hにした場合には、塔
頂留出油の平均沸点が上昇し重質化して、塔頂油
と塔底油の分離が悪化し、リボイラー液出口部に
おける循環油の蒸気圧の上昇が少なくなり、リボ
イラー内での循環液の蒸発が抑制され、自然循環
を維持することが困難となつた。逆に、注入量を
0.4m3/h以下に減少せしめた場合には自然循環
維持の効果は不十分であつた。
The present invention relates to a method of operating a distillation column. More specifically, the present invention relates to a method of operating a distillation column equipped with a natural circulation reboiler. Distillation columns with natural circulation reboilers using the thermosiphon principle are used in various processes in the fuel industry or the organic chemical industry. For example, hydrodesulfurization equipment for petroleum fractions, hydrocracking equipment,
In hydrotreating equipment, etc., a distillation column equipped with a natural circulation reboiler is used to isolate reaction products, separate low-boiling point components and high-boiling point components, improve the flash point, or remove water. Used a lot. To give a specific example, in a hydrodesulfurization equipment for kerosene and gas oil, the effluent from the hydrodesulfurization reaction tower is separated into gas and liquid, and the separated liquid is separated from the hydrogen sulfide-containing gas by a hydrogen sulfide stripper, and then released into the natural environment. A distillation column equipped with a circulating reboiler adjusts the flash point of the product kerosene and gas oil, and separates water and low-boiling components from the water condensed from the steam blown in at the bottom of the hydrogen sulfide stripper column as an overhead liquid. In this type of distillation column, the amount of refluxed top liquid is reduced to the extent that quality standards such as the flash point and moisture content of the bottom liquid (product kerosene, etc.) are not compromised, thereby saving energy. things are being done. However, if the amount of refluxed liquid at the top of the column is reduced and the amount of heat supplied to the natural circulation reboiler is below any value, the amount of distillation column bottom oil boiling in the reboiler will decrease, and the circulation in the natural circulation reboiler will become steady. Since the condition cannot be maintained, the amount of heat supplied to the distillation column changes and the distillation operation becomes disordered. In this case, the flash point, water content, etc. of the product tower bottom liquid vary, making it impossible to maintain predetermined product properties. In other words, in the natural circulation reboiler of this type of distillation column, there is a minimum amount of heat supply required to maintain normal natural circulation, and the amount of heat supply below this minimum amount of heat is stable. It was impossible to drive. In the past, several methods have been proposed for stably maintaining natural circulation in natural circulation reboilers, including in such cases. For example, JV Smith,
Chem.Eng.Progr., vol 70, No. 7, (1974) p. 70 states that one way to increase the stability of natural circulation reboilers is to inject nitrogen gas, such as nitrogen gas, into the liquid inlet of the reboiler. A method of injecting gas has been proposed. In addition, as a method to facilitate the generation of natural circulation when starting up a natural circulation reboiler, a method has been proposed in which a small amount of components with lower boiling points than the bottom components are supplied to the outlet and inlet of the reboiler at the time of startup. (1976-83880). However, in the method by JV Smith mentioned above, it is necessary to introduce a valuable gas such as nitrogen gas from outside the distillation system equipped with a natural circulation reboiler, and it is also necessary to introduce a valuable gas such as nitrogen gas from the outside into the distillation column top gas. There is a disadvantage that the gas mixed in with the top of the column deteriorates the original purity of the top gas. For this reason, continuous introduction of such external gas during steady operation of the distillation column is problematic in terms of operating costs and maintaining the purity of the top gas components, and it is difficult to actually operate the distillation column during steady operation. It was difficult to apply this method continuously. In addition, the method of JP-A-51-83880 aims to facilitate the start-up of the reboiler, and since the liquid to be injected must be procured from outside, it can be applied in series to the steady operation of the natural circulation reboiler. There was nothing I could do. The present inventor has variously modified the operating characteristics of this type of distillation column in order to avoid these problems of the conventional technology and to achieve stable operation of a distillation column equipped with a natural circulation reboiler and to save energy by reducing the reboiler heat source. As a result of analysis and repeated experiments, we found that when a part of the top liquid and/or side distillate of the distillation column is supplied to the circulating liquid of the reboiler, the vapor pressure of the circulating liquid at the reboiler liquid outlet increases, and the circulating liquid At the same time, the gas-liquid multiphase density at the reboiler liquid outlet decreases, and the density difference between the circulating liquid near the reboiler liquid inlet and the circulating liquid near the liquid outlet increases, resulting in natural circulation. found that the driving force of
We have arrived at the present invention. That is, an object of the present invention is to provide a method for stably operating a distillation column equipped with a natural circulation reboiler with a small amount of heat supply; or/and a part of the side distillate is transferred to the liquid inlet of the reboiler or/
This can be easily achieved by supplying the liquid to the liquid outlet. The present invention will be explained in detail below. A distillation column to which the present invention can be applied is a distillation column equipped with a natural circulation reboiler in the fuel industry and organic chemical industry, especially the petroleum and petrochemical industry, and is a distillation column equipped with a natural circulation reboiler in the fuel industry and organic chemical industry, particularly in the petroleum and petrochemical industry. Those whose purpose is to separate components and/or moisture are suitable. Examples of such distillation columns include matching columns, strippers, regeneration columns, etc.
In particular, the following distillation columns are used for the purpose of separating or removing low-boiling components present in the distillation column raw material liquid in petroleum refining plants or petrochemical plants. Distillation column for adjusting the flash point of product oil in a hydrodesulfurization unit for kerosene and gas oil A matching column for adjusting the vapor pressure of naphtha or gasoline fractions Dissipating gas from absorbed oil in a gas separation unit or gas recovery unit Regeneration tower or stripper for the absorption liquid of harmful gases such as hydrogen sulfide and carbon dioxide Dehydration tower used to remove water from raw material components Solvent from the mixture of extract and solvent in solvent extraction equipment for aromatic hydrocarbons etc. The present invention is particularly preferably applied when the low-boiling component to be separated by distillation is water, hydrogen sulfide, non-hydrocarbon gas such as carbon dioxide gas, or light hydrocarbon gas. In the present invention, natural circulation in the reboiler is promoted by supplying a part of the top liquid and/or side distillate of the distillation column to the liquid inlet and/or outlet of the reboiler. However, it is desirable that the difference between the average boiling point of the top liquid and/or side distillate liquid and the average boiling point of the distillation column bottom liquid is large, preferably 50°C or higher, more preferably 100°C or higher. In addition, when supplying the top liquid and/or side distillate of the distillation column to the reboiler in this way, the properties of the distillation column bottom liquid and the column top liquid or/and side distillate are relatively close, As a result, the flash point that the bottom liquid should have,
vapor pressure, light gas content, content of low-boiling components,
There may be cases where the target property values such as moisture content cannot be achieved. In order to avoid such inconveniences, when applying the present invention, the liquid inlet of the reboiler of the distillation column top liquid or/and side distillate liquid or/and
The amount supplied to the liquid outlet must be kept within a range that does not impair the target properties of the tower bottom liquid, tower top liquid, and side distillate liquid. The appropriate supply amount of the top liquid and/or side distillate liquid depends on the type of distillation column and operating conditions (especially the amount of heat supplied to the reboiler and the amount of reflux of the top liquid), and the types of the top liquid and bottom liquid. Although it depends on factors such as (particularly the boiling point difference and density difference between the two), a small amount of 1/100th of the circulation amount of the bottom liquid in the reboiler, for example, 1/100 to 1/1000, is sufficient for the effect. is recognized. The optimal value of the feed rate can be easily determined experimentally by conducting distillation operations in a specific distillation system by increasing or decreasing the feed rate, while paying attention to the effect on the properties of the bottom liquid as described above. can do. The top liquid and/or side distillate may be supplied to either the liquid inlet or the liquid outlet of the reboiler,
Alternatively, it may be supplied to both of these. Next, the present invention will be explained in more detail with reference to FIG. 1, which shows an example of a specific embodiment of the method of operating a distillation column according to the present invention. FIG. 1 is a process diagram showing a distillation column for adjusting the flash point of product kerosene and gas oil in a kerosene and gas oil hydrodesulfurization apparatus. In FIG. 1, A represents a distillation column, B represents a natural circulation reboiler, C represents a condenser, and D represents a receiving tank. In the kerosene and gas oil hydrodesulfurization equipment, the effluent from the hydrodesulfurization reaction tower is separated into gas and liquid, and the liquid is sent to a hydrogen sulfide stripper, where the hydrogen sulfide-containing gas is separated, and then sent to distillation column A through conduit 1. The water and low boiling point components (mainly light hydrocarbons) contained therein are extracted from the conduit 2 as overhead oil. On the other hand, water and low boiling point components are removed from the bottom of the column, and kerosene whose water content and flash point are adjusted to within standard values is obtained as product kerosene through the conduit 10. A natural circulation reboiler B is provided at the bottom of the distillation column A to supply heat to the bottom liquid, and the bottom liquid extracted from the bottom of the distillation column through the conduit 8 is heated by the high temperature fluid flowing in the tube 11. and is refluxed via conduit 9 to the distillation column. The reboiler B is designed so that the internal circulating liquid flows upward by heating by the tube 11 and circulates naturally. Now, the extracted tower top oil is partially condensed in a condenser C, and then introduced into a receiving tank D, where it is separated into gas and liquid. The separated gas consisting mainly of light hydrocarbons is removed via gas line 4, while the liquid is further separated into water and light hydrocarbons, and the water is drawn out of the system via drain line 5. On the other hand, part of the light hydrocarbons is sent to the distillation column A as a reflux liquid through the reflux line 3, further part is sent to the liquid inlet of the reboiler B via the supply line 7, and the remaining part is sent to the liquid inlet of the reboiler B via the withdrawal line 6. Extracted from the system. According to the present invention, the amount of heat supplied to the reboiler is
Compared to conventional operation methods, the natural circulation rate of the natural circulation reboiler is maintained at a high level, even if the amount is small, and the heat transfer is stabilized, while at the same time the reflux rate of the distillation column overhead liquid can be significantly reduced. It becomes possible. As a result, energy savings can be achieved while the operation of the distillation column is stable. That is, by reducing the amount of heat supplied from the high-temperature fluid to the reboiler according to the present invention, it is possible to save thermal energy in the distillation column system. Since the surplus heat can be used for other equipment, it is possible to save energy in the entire equipment group, which is of great industrial benefit. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist of the present invention is exceeded. Example 1 In a kerosene and gas oil hydrodesulfurization unit, the liquid obtained by separating the effluent from the hydrodesulfurization reaction tower into gas and liquid is sent to a hydrogen sulfide stripper, where the hydrogen sulfide-containing gas is separated, and the obtained crude gas oil is Distillation treatment was carried out according to the steps shown in FIG. That is, crude light oil was introduced into distillation column A through conduit 1, water and low-boiling components were distilled out as a top liquid from the top of the column, and product light oil was obtained from the bottom of the column. A portion of the light hydrocarbons separated from the top liquid was supplied to the liquid inlet of reboiler B through the supply line 7. The best condition is when the light hydrocarbon reboiler supply rate is 0.5 m 3 /h.
We were able to stably slow down the distillation column. For example, when the injection rate is set to 0.8 m 3 /h, the average boiling point of the distillate oil at the top of the column rises and it becomes heavier, the separation of the top oil and the bottom oil becomes worse, and the circulation at the reboiler liquid outlet increases. The increase in oil vapor pressure was reduced, and evaporation of the circulating fluid in the reboiler was suppressed, making it difficult to maintain natural circulation. Conversely, the injection volume
When it was reduced to 0.4 m 3 /h or less, the effect of maintaining natural circulation was insufficient.

【表】【table】

【表】 上記の結果から、本発明によれば製品軽油の引
火点、水分含有量等の品質性状を損なうことな
く、リボイラーへの熱供給量を減少させ、また塔
頂液還流量を減少させながら、なおかつリボイラ
ー内の循環液の自然循環量を高い水準に維持する
ことができ、従つて、蒸留塔の運転を安定して実
施することができることが明らかである。
[Table] From the above results, it is clear that according to the present invention, the amount of heat supplied to the reboiler and the amount of top liquid reflux can be reduced without impairing the quality properties such as the flash point and water content of the product light oil. However, it is clear that the natural circulation amount of the circulating liquid in the reboiler can be maintained at a high level, and therefore the distillation column can be operated stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸留塔の運転方法の具体
的態様の例を示す工程図である。 図において、A……蒸留塔、B……自然循環式
リボイラー、C……凝縮器、D……受槽。
FIG. 1 is a process diagram showing an example of a specific embodiment of the method for operating a distillation column according to the present invention. In the figure, A...distillation column, B...natural circulation reboiler, C...condenser, D...receiving tank.

Claims (1)

【特許請求の範囲】 1 自然循環式リボイラーを備えた蒸留塔におい
て、塔頂液又は/及び側留液の1部を該リボイラ
ーの液入口部又は/及び液出口部に供給すること
を特徴とする蒸留塔の運転方法。 2 特許請求の範囲第1項に記載の蒸留塔の運転
方法において、塔頂液又は/及び側留液の平均沸
点と塔底液の平均沸点との差が50℃以上であるこ
とを特徴とする方法。
[Claims] 1. A distillation column equipped with a natural circulation reboiler, characterized in that a part of the top liquid and/or side distillate is supplied to the liquid inlet and/or liquid outlet of the reboiler. How to operate a distillation column. 2. The method for operating a distillation column according to claim 1, characterized in that the difference between the average boiling point of the column top liquid and/or side distillate liquid and the average boiling point of the column bottom liquid is 50°C or more. how to.
JP7649680A 1980-06-06 1980-06-06 Operating method for distilling column Granted JPS574202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7649680A JPS574202A (en) 1980-06-06 1980-06-06 Operating method for distilling column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7649680A JPS574202A (en) 1980-06-06 1980-06-06 Operating method for distilling column

Publications (2)

Publication Number Publication Date
JPS574202A JPS574202A (en) 1982-01-09
JPS6327042B2 true JPS6327042B2 (en) 1988-06-01

Family

ID=13606823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7649680A Granted JPS574202A (en) 1980-06-06 1980-06-06 Operating method for distilling column

Country Status (1)

Country Link
JP (1) JPS574202A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102287A (en) * 1978-01-31 1979-08-11 Mitsubishi Heavy Ind Ltd Distilling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102287A (en) * 1978-01-31 1979-08-11 Mitsubishi Heavy Ind Ltd Distilling method

Also Published As

Publication number Publication date
JPS574202A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
CN106459772B (en) The method that aromatic compounds is produced from crude oil
US4058454A (en) Aromatic hydrocarbon separation via solvent extraction
US3310487A (en) Fractionation system
CN107922854B (en) Method for LPG recovery
CA1143688A (en) Twin tower distillation of crude oil
US3301778A (en) Fractional distillation
US4822480A (en) Hydrocarbon product stripping
WO2018005443A1 (en) Crude quality enhancement by simultaneous crude stabilization, sweetening, and desalting via microwave assisted heating
US11952542B2 (en) Simultaneous crude oil dehydration, desalting, sweetening, and stabilization with compression
CA1163596A (en) Separation of aromatic hydrocarbons from petroleum fractions
US2324955A (en) Process for removing water from hydrocarbon vapors
US2309651A (en) Treatment of hydrocarbon oil
US20230348793A1 (en) Gas oil separation plant systems and methods with reduced heating demand
US4666562A (en) Solvent recovery from solvent process material mixtures
CN102876359B (en) A kind of system and method processing condensate oil
CN108473391A (en) Method for the propylene recovery rate for improving FCC recovery units
US4321132A (en) Distillation of crude oil
JPS6327042B2 (en)
US4046676A (en) Aromatic hydrocarbon separation via solvent extraction
US2296992A (en) Separating hydrocarbon fluids
CN104080890A (en) Process for contacting one or more contaminated hydrocarbons
US2073953A (en) Treatment of hydrocarbons
US2306993A (en) Desulphurization of hydrocarbon oils
US3213154A (en) Hydrocarbon treating
US4046675A (en) Aromatic hydrocarbon separation via solvent extraction