JPS63270026A - System for comparing and classifying shapes of qrs groups of electrocardiograph - Google Patents

System for comparing and classifying shapes of qrs groups of electrocardiograph

Info

Publication number
JPS63270026A
JPS63270026A JP62105326A JP10532687A JPS63270026A JP S63270026 A JPS63270026 A JP S63270026A JP 62105326 A JP62105326 A JP 62105326A JP 10532687 A JP10532687 A JP 10532687A JP S63270026 A JPS63270026 A JP S63270026A
Authority
JP
Japan
Prior art keywords
qrs
electrocardiogram
section
shapes
qrs complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105326A
Other languages
Japanese (ja)
Inventor
Shigeru Shimizu
清水 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62105326A priority Critical patent/JPS63270026A/en
Publication of JPS63270026A publication Critical patent/JPS63270026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To compare and classify the shapes of QRS groups with high accuracy, by developing time series electrocardiographic data on a frequency region by FET processing. CONSTITUTION:The electrocardiographic signal amplified by an electrocardiograph amplifier 2 is digitalized by an A/D converter part 3 and the position of a QRS group is detected by a QRS group detection part 4. High speed Fourier transform processing is performed on the basis of time sequential electrocardiographic data and the QRS group detecting position in an FFT processing part 5. A statistical processing part 6 calculates the correlation coefficient and regression curve of the frequency/amplitude characteristic being the output of the processing part 5 and the amplitude characteristic of the template QRS group stored in a classification result storing part 8. A shape comparator 7 judges whether the shapes of the template QRS groups coincides with each other from the output of the statistical processing part 6. A result display part 9 displays the incidence number of QRS groups coinciding in shape and the time sequential incidence positions thereof. By this simple constitution, the shapes of the QRS groups can be compared and classified.

Description

【発明の詳細な説明】 [産業上の利用分野] 未発Illは心電図信号処理、特に心電図のQRS群の
波形の比較分類を行う心電図QRS群形状比較分類方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrocardiogram signal processing, particularly to an electrocardiogram QRS complex shape comparison and classification method for comparing and classifying the waveforms of QRS complexes in an electrocardiogram.

[従来の技術] 従来、この種の心電図QRS群形状比較分類方式として
は、第3図に示すようなものがある。
[Prior Art] Conventionally, as this type of electrocardiogram QRS complex shape comparison classification system, there is a system as shown in FIG.

この従来の心電図QRS群形状比較分類方式は、心電図
波形(a)に2次微分処理を行い、2次微分波形(b)
のピーク検出を行うことによって、QRS群の始点QR
Sb及びQRS群の終点QRS eを求め、QRS群の
時間幅QRSw、QRS群の振幅QRSh及びQRS群
の面積QRS群等を算出し比較する方式をとっていた。
This conventional electrocardiogram QRS complex shape comparison classification method performs second-order differential processing on the electrocardiogram waveform (a), and generates the second-order differential waveform (b).
By detecting the peak of the QRS complex, the starting point QR
A method was used in which Sb and the end point QRS e of the QRS complex were determined, and the time width QRSw of the QRS complex, the amplitude QRSh of the QRS complex, the area of the QRS complex QRS complex, etc. were calculated and compared.

[解決すべき聞題点] に記従来の心電図QRSJ7形状比較分類方式にあって
は、心電図波形(a)に2次微分処理を行い、2次微分
波形(b)のピーク検出を行うことによって、QRS群
の始点QRSb及びQRS群の終点QRSeを求め、Q
RS群の時間幅QRSw、QRSJT(7)振幅QRS
h及びQRS群の面MQRSa等を算出し、比較するこ
ととしていたため、QRS群の始点及びQRS群の絆点
を正確に認識することが要求され、種々の波形パターン
を考慮した複雑な認識ロジックが必要となるという欠点
があった。
[Problems to be solved] In the conventional electrocardiogram QRSJ7 shape comparison classification method, the electrocardiogram waveform (a) is subjected to second-order differential processing, and the peak detection of the second-order differential waveform (b) is performed. , find the starting point QRSb of the QRS complex and the ending point QRSe of the QRS complex, and calculate Q
RS group time width QRSw, QRSJT (7) amplitude QRS
h and the surface MQRSa of the QRS complex, etc. were calculated and compared, so it was necessary to accurately recognize the starting point of the QRS complex and the bonding point of the QRS complex, and a complex recognition logic that considered various waveform patterns was required. The disadvantage was that it required

また心電図信号に混入するハム、節電図及びドリフト等
の3t Bによる影響を受は易い為、QRS群の始点と
終点の認識に誤差が生じQRS群の時間幅、振幅及び面
積の計測精度が低下し、比較を誤るという欠点があった
In addition, since it is easily affected by 3tB such as hum mixed in the electrocardiogram signal, electroconcentration diagram, and drift, errors occur in recognizing the start and end points of the QRS complex, reducing the accuracy of measuring the duration, amplitude, and area of the QRS complex. However, it had the disadvantage of making incorrect comparisons.

[問題点の解決1段] 本発明は、上記従来の問題点を解決するためになしたも
ので、その解決1段として本発明は、時系列心電図信号
におけるQRS群の形状の比較分類を行う心電図QRS
R3状形状比較分類方式いて、心電図信号に高速フーリ
エ変換処理を行う高速フーリエ変換処理部と、前記高速
フーリエ変換処理部の出力である心電図信号の周波数振
幅特性と周波数位相特性に統計処理を行う統計処理部と
、前記統計処理部の結果に基づきQRS群の形状比較処
理を行う形状比較部と、前記形状比較部の結果を格納す
る分類結果格納部とを備える構成としている。
[First step of solving the problem] The present invention was made to solve the above-mentioned conventional problems. As a first step of solving the problem, the present invention performs comparative classification of the shapes of QRS complexes in time-series electrocardiogram signals. electrocardiogram qrs
The R3-shaped shape comparison classification method includes a fast Fourier transform processing section that performs fast Fourier transform processing on an electrocardiogram signal, and a statistic that performs statistical processing on the frequency amplitude characteristics and frequency phase characteristics of the electrocardiogram signal that is the output of the fast Fourier transform processing section. The apparatus is configured to include a processing section, a shape comparison section that performs shape comparison processing of QRS complexes based on the results of the statistical processing section, and a classification result storage section that stores the results of the shape comparison section.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示すブロック図であり、Q
RS群形状比較分類プロセッサl、心電図アンプ2、A
/D変換部3、QRS群検出部4、高速フーリエ変換処
理部(以ドFFT処理部と称す)5、統計処理部6、形
状比較部7、分類結果格納部8、結果表示部9から構成
される。
FIG. 1 is a block diagram showing one embodiment of the present invention.
RS group shape comparison classification processor l, electrocardiogram amplifier 2, A
Consists of /D conversion section 3, QRS complex detection section 4, fast Fourier transform processing section (hereinafter referred to as FFT processing section) 5, statistical processing section 6, shape comparison section 7, classification result storage section 8, and result display section 9. be done.

心電図アンプ2により増幅された心電図信号は、A/D
変換部3によってデジタル化されるとともにQRS群検
出部4によりQRS群の位置が検出される。FFT処理
部5では、A/D変換部3の出力であるデジタル化され
た時系列心電図データと、QRS群検出部4の出力であ
るQRS群検出位δに基づき、心電図データのQRS群
近傍に対し高速フーリエ変換処理(以下FFT処理と称
す)を行う。FFT処理は、FFT処理対象となる心電
図データの範囲がQRS群を十分にカバーできるよう設
定され、FFT処理のポイント数を決定する0例えば4
謄secサンプリング間隔の場合、QRS群検出位置を
中心として256 m5ecの範囲の心電図データにF
FT処理を行うと、ポイント数は64となる。統計処理
部6ではFFT処理部5の出力である周波数振幅特性(
以下単に振幅特性と称す)A (n)(n=0.1.2
・・・k)と分類結果格納部8に格納されている比較の
対象となるQRS群(以下テンプレートQRS群と記す
)の振幅特性At (n)(n=0.1.2・・・k)
との相関係数γA及び回帰直線y=α0+αI Xの係
数α0及びα1が算出される。但し相関係数及び回帰直
線を求める際は、QRS群の周波数帯域のnについて行
う、統計処理部6ではFFT処理部5の出力である周波
数位相特性(以下、単に位相特性と称す) 0 (n)
 ’(n=0.1.2・・・k)とテンブレー)QRS
群の位相特性It  (n)(n=0.1.2 ・k 
)との差と周波数に対応しているnの相関係数γO及び
回帰直線y=β0+βI Xの係数β0及びβIが算出
される。ここでもQRS群の周波数帯域のnの範囲が対
象となる。
The electrocardiogram signal amplified by the electrocardiogram amplifier 2 is sent to the A/D
The conversion section 3 digitizes the data, and the QRS complex detection section 4 detects the position of the QRS complex. In the FFT processing section 5, based on the digitized time-series electrocardiogram data that is the output of the A/D conversion section 3 and the QRS complex detection position δ that is the output of the QRS complex detection section 4, On the other hand, fast Fourier transform processing (hereinafter referred to as FFT processing) is performed. FFT processing is set so that the range of electrocardiogram data subject to FFT processing sufficiently covers the QRS complex, and the number of points for FFT processing is determined by 0, for example, 4.
In the case of a sec sampling interval, F
When FT processing is performed, the number of points becomes 64. The statistical processing unit 6 calculates the frequency amplitude characteristic (
(hereinafter simply referred to as amplitude characteristic) A (n) (n=0.1.2
...k) and the amplitude characteristic At (n) of the QRS complex to be compared (hereinafter referred to as template QRS complex) stored in the classification result storage unit 8 (n=0.1.2...k )
The correlation coefficient γA and the coefficients α0 and α1 of the regression line y=α0+αIX are calculated. However, when calculating the correlation coefficient and the regression line, the calculation is performed for n of the frequency band of the QRS complex. )
'(n=0.1.2...k) and Tenblay) QRS
Group phase characteristic It (n) (n=0.1.2 ・k
) and the correlation coefficient γO of n corresponding to the frequency and the coefficients β0 and βI of the regression line y=β0+βIX are calculated. Here again, the n range of the frequency band of the QRS complex is targeted.

形状比較部7では統計処理部6の出力であるγ^ 、α
0 、α1 、γ0.β0及びβ1にノ、(づいてテン
プレートQRs群と形状が一致しているかどうか判定さ
れる。第2図に形状比較部7のフローチャートを示す。
In the shape comparison section 7, the outputs of the statistical processing section 6 are γ^ and α.
0, α1, γ0. Based on β0 and β1, it is then determined whether the shapes match the template QRs group. FIG. 2 shows a flowchart of the shape comparing section 7.

分類結果格納部8では入力された時系列心電図データ、
QRS群検出位l、テンブレー)QRS群波形データ及
びそれぞれのテンブレー)QRS群に対応するAt  
(n)、θ1(n)、発生個数及び発生位置が格納され
る。形状比較部7で成るテンプレートQR8群に形状が
一致していると判定された場合は、対応するテンプレー
トQRS群の発生個数が加算され発生位置が登録される
。テンプレートQRS群に形状か−・致していないと判
定された場合は、他のテンブレー)QRS群との形状比
較が行われる。いずれのテンブレー)QRS群にも一致
していないと判定された場合、新たにテンプレートQR
S群として登録され、分類結果格納部8に格納される。
The classification result storage unit 8 stores the input time-series electrocardiogram data,
QRS complex detection position l, Tenbrey) QRS complex waveform data and each Tenbrey) At corresponding to the QRS complex
(n), θ1(n), the number of occurrences, and the location of occurrence. When it is determined by the shape comparing section 7 that the shape matches the template QR8 group, the number of occurrences of the corresponding template QRS group is added up and the occurrence position is registered. If it is determined that the shape does not match the template QRS complex, the shape is compared with other template QRS complexes. If it is determined that the template does not match any of the QRS complexes, a new template QR will be created.
It is registered as group S and stored in the classification result storage section 8.

結果表示部9では、入力された時系列心電図データ、テ
ンブレー)QRS群の波形データ及びそれぞれのテンブ
レーhQRS群と形状が一致したQRS群の発生個数及
び時系列的な発生位置が表示される。
The result display section 9 displays the input time-series electrocardiogram data, the waveform data of the Tenbrey) QRS complexes, and the number and time-series occurrence positions of QRS complexes that match the shape of each Tenbley hQRS complex.

[発明の効果] 以を説明したように本発明の心電図QRS群形状比較分
類方式は、FFT処理によって時系列心電図データを周
波数領域に展開することとしているため、心電図信号に
混入しているハム、節電図及びドリフトといった雑音成
分を容易に分離でき、雑音に影響されることなく高精度
にQRS群形状比較分類を行うことができるという効果
がある。また、QRS群の始点及び終点を認識する為の
複雑なロジックを必要とせず、簡単な構成でQRS群形
状比較分類を行うことができるという効果がある。
[Effects of the Invention] As explained below, the electrocardiogram QRS complex shape comparison and classification method of the present invention expands time-series electrocardiogram data into the frequency domain by FFT processing, so that the hum mixed in the electrocardiogram signal, This has the advantage that noise components such as power saving diagrams and drift can be easily separated, and QRS complex shape comparison and classification can be performed with high accuracy without being affected by noise. Further, there is an effect that QRS complex shape comparison and classification can be performed with a simple configuration without requiring complicated logic for recognizing the starting point and ending point of the QRS complex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の心電図QRS群形状比較分類方式の一
実施例を示すブロック図、第2図は第1図中の形状比較
部の構成を示すフローチャート、第3図は従来例の心電
図波形と2次微分波形の模式図である。 4 :QRS群検出部  5二FFT処理部6:統計処
理部    7:形状比較部8:分類結果格納部 9:結果表示部
FIG. 1 is a block diagram showing an embodiment of the electrocardiogram QRS complex shape comparison and classification method of the present invention, FIG. 2 is a flowchart showing the configuration of the shape comparison section in FIG. 1, and FIG. 3 is an electrocardiogram waveform of a conventional example. FIG. 3 is a schematic diagram of a second-order differential waveform. 4: QRS complex detection section 52 FFT processing section 6: Statistical processing section 7: Shape comparison section 8: Classification result storage section 9: Result display section

Claims (1)

【特許請求の範囲】[Claims] 時系列心電図信号におけるQRS群の形状の比較分類を
行う心電図QRS群形状比較分類方式において、心電図
信号に高速フーリエ変換処理を行う高速フーリエ変換処
理部と、前記高速フーリエ変換処理部の出力である心電
図信号の周波数振幅特性と周波数位相特性に統計処理を
行う統計処理部と、前記統計処理部の結果に基づきQR
S群の形状比較処理を行う形状比較部と、前記形状比較
部の結果を格納する分類結果格納部とを備えることを特
徴とする心電図QRS群形状比較分類方式。
In an electrocardiogram QRS complex shape comparison classification method for comparing and classifying the shapes of QRS complexes in time-series electrocardiogram signals, a fast Fourier transform processing section that performs fast Fourier transform processing on the electrocardiogram signal, and an electrocardiogram that is the output of the fast Fourier transform processing section a statistical processing section that performs statistical processing on the frequency amplitude characteristics and frequency phase characteristics of the signal; and a QR processing section based on the results of the statistical processing section.
An electrocardiogram QRS complex shape comparison and classification method, comprising: a shape comparison section that performs shape comparison processing of the S group; and a classification result storage section that stores the results of the shape comparison section.
JP62105326A 1987-04-28 1987-04-28 System for comparing and classifying shapes of qrs groups of electrocardiograph Pending JPS63270026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105326A JPS63270026A (en) 1987-04-28 1987-04-28 System for comparing and classifying shapes of qrs groups of electrocardiograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105326A JPS63270026A (en) 1987-04-28 1987-04-28 System for comparing and classifying shapes of qrs groups of electrocardiograph

Publications (1)

Publication Number Publication Date
JPS63270026A true JPS63270026A (en) 1988-11-08

Family

ID=14404593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105326A Pending JPS63270026A (en) 1987-04-28 1987-04-28 System for comparing and classifying shapes of qrs groups of electrocardiograph

Country Status (1)

Country Link
JP (1) JPS63270026A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266741A (en) * 1991-02-21 1992-09-22 Nec Corp Vpc detecting system
JPH05207985A (en) * 1991-11-29 1993-08-20 Nec Corp Electrocardiogram waveform recognizing system
JPH06237909A (en) * 1993-02-19 1994-08-30 Nippon Koden Corp Electrocardiogram data processor
JPH0767843A (en) * 1990-03-19 1995-03-14 Del Mar Avionics Method and equipment for spectrum analysis of electrocardiogram signal
JPH08322952A (en) * 1995-05-31 1996-12-10 Medtronic Inc Method and device for discriminating arhythmia which can be applied to implanting type defibrillator
JP2007531602A (en) * 2004-04-05 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Cardiac diagnostic system and method
US7412283B2 (en) 2001-11-28 2008-08-12 Aaron Ginzburg Method and system for processing electrocardial signals
JP2018175631A (en) * 2017-04-19 2018-11-15 日本光電工業株式会社 Biological information waveform processing method, storage medium, program, and biological information waveform processing device
EP4098198A3 (en) * 2021-06-03 2022-12-28 Ablacon Inc. Methods, systems, devices, and components for extracting atrial signals from qrs and qrst complexes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767843A (en) * 1990-03-19 1995-03-14 Del Mar Avionics Method and equipment for spectrum analysis of electrocardiogram signal
JPH04266741A (en) * 1991-02-21 1992-09-22 Nec Corp Vpc detecting system
JPH05207985A (en) * 1991-11-29 1993-08-20 Nec Corp Electrocardiogram waveform recognizing system
JPH06237909A (en) * 1993-02-19 1994-08-30 Nippon Koden Corp Electrocardiogram data processor
JPH08322952A (en) * 1995-05-31 1996-12-10 Medtronic Inc Method and device for discriminating arhythmia which can be applied to implanting type defibrillator
US7412283B2 (en) 2001-11-28 2008-08-12 Aaron Ginzburg Method and system for processing electrocardial signals
JP2007531602A (en) * 2004-04-05 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Cardiac diagnostic system and method
JP2018175631A (en) * 2017-04-19 2018-11-15 日本光電工業株式会社 Biological information waveform processing method, storage medium, program, and biological information waveform processing device
EP4098198A3 (en) * 2021-06-03 2022-12-28 Ablacon Inc. Methods, systems, devices, and components for extracting atrial signals from qrs and qrst complexes

Similar Documents

Publication Publication Date Title
Varghees et al. Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope
EP0925758B1 (en) Device for recording skin galvanic reactions
Sadhukhan et al. R-peak detection algorithm for ECG using double difference and RR interval processing
Fraden et al. QRS wave detection
Karvounis et al. An automated methodology for fetal heart rate extraction from the abdominal electrocardiogram
JP2002301039A5 (en)
Babu et al. Automatic identification of S1 and S2 heart sounds using simultaneous PCG and PPG recordings
JPS63270026A (en) System for comparing and classifying shapes of qrs groups of electrocardiograph
Lastre-Dominguez et al. Denoising and features extraction of ecg signals in state space using unbiased fir smoothing
Soman et al. Classification of stress of automobile drivers using radial basis function kernel support vector machine
Hamdi et al. Real time QRS complex detection using DFA and regular grammar
JP2014151010A (en) Biological information acquisition apparatus and biological information acquisition method
JPH0322770B2 (en)
Mondal et al. Boundary estimation of cardiac events S1 and S2 based on Hilbert transform and adaptive thresholding approach
JPH0326233A (en) Method and device for detecting qrs
Safari et al. A novel method for R-peak detection in noisy ECG signals using EEMD and ICA
Kannathal et al. Analysis of electrocardiograms
US20130211273A1 (en) Method and apparatus for heart rate measurement
JPH05261071A (en) On-vehicle heart beat detector
JP2001346771A (en) R-wave recognizing method, r-r interval measuring method, heartbeat measuring method, r-r interval measuring device, and heatbeat measuring device
Abdelliche et al. Complex fractional and complex Morlet wavelets for QRS complex detection
Liao et al. A mixed approach for fetal QRS complex detection
CN109009058B (en) Fetal heart monitoring method
JP2000276463A (en) Method and device for data analysis and recording medium for recording data analysis processing program
JPH04253843A (en) Electrocardiogram analyzer