JPS63269430A - Vacuum interrupter - Google Patents
Vacuum interrupterInfo
- Publication number
- JPS63269430A JPS63269430A JP10323487A JP10323487A JPS63269430A JP S63269430 A JPS63269430 A JP S63269430A JP 10323487 A JP10323487 A JP 10323487A JP 10323487 A JP10323487 A JP 10323487A JP S63269430 A JPS63269430 A JP S63269430A
- Authority
- JP
- Japan
- Prior art keywords
- shield
- metal
- electrodes
- electrode
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 claims abstract description 59
- 239000010949 copper Substances 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 230000004323 axial length Effects 0.000 claims abstract description 8
- 239000007769 metal material Substances 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/664—Contacts; Arc-extinguishing means, e.g. arcing rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/664—Contacts; Arc-extinguishing means, e.g. arcing rings
- H01H33/6643—Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【発明の詳細な説明】
^ 産業上の利用分野
本発明は、スパイラル電極やコントレート電極に代表さ
れるアーク磁気回転駆動形の電極を備える真空インクラ
ブタに関し、特に、しゃ断性能、耐電圧特性及び耐久性
の向上を図った真空インタラプタに関する。[Detailed description of the invention] ^ Industrial field of application The present invention relates to a vacuum incluctor equipped with an arc magnetic rotation drive type electrode such as a spiral electrode or a contrato electrode, and particularly relates to a vacuum incluctor equipped with an electrode of an arc magnetic rotation drive type such as a spiral electrode or a contrast electrode, and in particular, This invention relates to a vacuum interrupter with improved performance.
B 発明の概要
本発明の真空インタラプタは、アーク磁気回転駆動形の
一対の電極を銅と銅よりも融点が高く且つ硬質の金属と
を含有してなる複合金属材料で形成して設け、一対の電
極を包囲する金属シールドと電極の外周側面との間の間
隙寸法Iと、一対の電極の外周側面間の開極状態での間
隙寸法Gとの関係をj/G=0.5ないし1.0とし、
且つ、金属シールドを板厚が2 mm以上の主シールド
とこの主シールド両端の板厚が2 mm未満の補助シー
ルドとで形成して設け、主シールドの軸方向長さしと間
隙寸法Gとの関係をL/G≧2としたものである。B. Summary of the Invention The vacuum interrupter of the present invention is provided with a pair of electrodes of an arc magnetic rotation drive type made of a composite metal material containing copper and a metal that has a higher melting point than copper and is harder. The relationship between the gap size I between the metal shield surrounding the electrode and the outer peripheral side surface of the electrode and the gap size G in the open state between the outer peripheral side surfaces of the pair of electrodes is expressed as j/G=0.5 to 1. 0,
In addition, the metal shield is formed of a main shield with a plate thickness of 2 mm or more and auxiliary shields with a plate thickness of less than 2 mm at both ends of the main shield, and the axial length of the main shield and the gap dimension G are The relationship is L/G≧2.
C従来の技術
第10図にアーク磁気回転駆動形の電極を備える真空イ
ンクラブタの電極付近の概略構造を示す。C. Prior Art FIG. 10 shows a schematic structure of the area around the electrodes of a vacuum ink club equipped with electrodes driven by arc magnetic rotation.
第10図において、相互に一直線状をなす一対のリード
棒1a、lbの対向内端面に電極2,2を一体的に設け
である。また、これら一対の電極2,2を包囲して円筒
状の金属シールド3を設けである。電112としては、
スパイラル電極やコントレート電極が代表的なものであ
る。In FIG. 10, electrodes 2, 2 are integrally provided on the opposing inner end surfaces of a pair of lead rods 1a, lb that are in a straight line. Further, a cylindrical metal shield 3 is provided to surround the pair of electrodes 2, 2. As electric 112,
Typical examples are spiral electrodes and contrast electrodes.
しゃ断動作としては、アーク4を一対の電極2,2間に
おいて磁気力で回転させることにより電極2,2の周辺
部に移動させ、電流のゼロ点を向えてしゃ断を完了する
ものである。In the cutting operation, the arc 4 is rotated by magnetic force between the pair of electrodes 2, 2 to move it to the periphery of the electrodes 2, 2, and the cutting is completed when the arc 4 reaches the zero point of the current.
D 発明が解決しようとする問題点
ここで1−ク4の回転について考察すると、一対の電極
2,2は金属シールド3で囲まれており、しかもアーク
4は脹れることから、アーク4はその一部が金属シール
ド3に接触した状態で回転することになる。D Problems to be Solved by the Invention Now, considering the rotation of the arc 4, the pair of electrodes 2, 2 are surrounded by the metal shield 3, and since the arc 4 swells, the arc 4 is It will rotate with a part of it in contact with the metal shield 3.
従って、ga電極の外周側面5と金属シールド3との間
の間隙寸法lが小さすぎると、金属シールド3のうちア
ーク4が接触する部分が局所的となるから、数回の大電
流しゃ断で金属シールド3に穴があくという耐久性低下
の問題がある。Therefore, if the gap size l between the outer circumferential side surface 5 of the ga electrode and the metal shield 3 is too small, the portion of the metal shield 3 that the arc 4 comes into contact with will be localized, and the metal There is a problem that the shield 3 has a hole, which reduces its durability.
これを避ける方法に、金属シールド3の板厚を厚くする
方法と、間隙寸法lを大きくする方法とがあるが、板厚
を厚くする方法はコストアップを招くという問題がある
。Methods for avoiding this include increasing the plate thickness of the metal shield 3 and increasing the gap size l, but the method of increasing the plate thickness has the problem of increasing costs.
即ち、金属シールド30両端部は、電界緩和処理として
、絞り加工によって丸み付けを行う必要がある。しかし
、板厚が厚いほど絞り加工を行い難く、特に通常使用し
ているステンレス鋼の場合はその傾向が顕著であり、生
産性が極めて悪い◇
一方、間隙寸法lが大きいと、その分アーク4の全長が
長くなってしまい、しゃ断性能及びw4電圧特性が低下
するという問題がある。That is, both ends of the metal shield 30 need to be rounded by drawing as an electric field relaxation process. However, the thicker the plate, the more difficult it is to draw, and this tendency is especially noticeable in the case of commonly used stainless steel, resulting in extremely poor productivity◇ On the other hand, if the gap size l is large, the arc 4 There is a problem in that the total length of the wire becomes long, and the breaking performance and W4 voltage characteristics deteriorate.
その理由は、アーク全長が長いと、
■ アーク電圧が上昇する、
■ アークエネルギが増大する、
■ アークの蒸気密度が高くなる、
■ 電極のアーク走行部分の消耗が著しく、表面の荒れ
が激しいからである。The reason for this is that when the total length of the arc is long, ■ the arc voltage increases, ■ the arc energy increases, ■ the vapor density of the arc increases, and ■ the arc running part of the electrode wears out significantly, resulting in severe surface roughness. It is.
本発明は上記従来技術の問題点を解消した真空インタラ
プタを提供するものである。The present invention provides a vacuum interrupter that solves the problems of the prior art described above.
E、 F、”1題点を解決するための手段そこで発明
者等は、電極と金属シールドとの間隙を最適なものにす
ることによりしゃ断性能等の向上が図れないか試みると
共に、金属シールドの両端部のみ板厚を薄くして電界緩
和処理の加工性の向上が図れないか試みた。E, F, ``Means for Solving Problem 1'' The inventors therefore attempted to improve the cutting performance by optimizing the gap between the electrode and the metal shield, and also An attempt was made to see if it was possible to improve the workability of electric field relaxation treatment by reducing the plate thickness only at both ends.
く実 験 1〉
第3図に示したコントレート形電極2を備えた真空イン
クラブタについて、電極2の外周側面5と金属シールド
3との間の間隙寸法Iを変えてしゃ断性能を調べた。但
し、対向する電極2,2間の間隙寸法Gl!G=20g
mmと一定にした。他の条件は第1表及び第3図に示す
通りである。また、本実験及び以後のく実験2〉とく実
験3〉では、便宜上、金属シールド3の板厚については
第1図に示す主シールド18、補助シールド19,20
ともに同じ板厚1(1,=12=1)とした。Experiment 1> The breaking performance of the vacuum incretor equipped with the contrast-type electrode 2 shown in FIG. 3 was investigated by changing the gap dimension I between the outer circumferential side surface 5 of the electrode 2 and the metal shield 3. However, the gap size Gl between the opposing electrodes 2, 2! G=20g
It was kept constant at mm. Other conditions are as shown in Table 1 and FIG. In addition, in this experiment and subsequent Experiments 2 and 3, for convenience, the thickness of the metal shield 3 is the same as that of the main shield 18, auxiliary shields 19, 20 shown in FIG.
Both had the same plate thickness of 1 (1,=12=1).
第1表
実験結果は第4図に示す特性fsAの通口であり、材質
的に耐電圧特性の良好なCu −M。The experimental results in Table 1 show the characteristics fsA shown in FIG. 4, and the material is Cu-M, which has good withstand voltage characteristics.
−Cr 、 Cu −Fe −Crからなる電極は、電
極2の外周側面5と金属シールド3との間の間隙寸法4
=10ないし20mの範囲において、略35 kAr、
m、s、以上と漫れたしゃ断性能が得られた。即ち、f
!ai12をMo、 Fe、 Cr等の硬質材料を含有
させて形成すると、アークによる消耗が極めて少なく、
シかも材料自身の耐電圧特性も良好なことから、間隙寸
法4の変化がしゃ断性能に大きく貢献することが良(判
った。-Cr, Cu-Fe-Cr has a gap size 4 between the outer peripheral side surface 5 of the electrode 2 and the metal shield 3.
= approximately 35 kAr in the range of 10 to 20 m,
A wide range of breaking performance of m, s or more was obtained. That is, f
! When ai12 is formed by containing a hard material such as Mo, Fe, or Cr, wear due to arcing is extremely small.
Since the material itself also has good withstand voltage characteristics, it has been found that changes in the gap size 4 greatly contribute to the breaking performance.
なお、第4図中の特性線Bは参考例として接点部6をC
u −0,5Bi金合金、アーク部8をCuで形成した
場合の、同条件での実験結果を示す。これらの材料はい
ずれも軟かい材料であるから、アークによる消耗が比較
的大きく、従って間隙寸法4を変化させても、しゃ断性
能が殆ど向上しないことが判った。Note that the characteristic line B in FIG. 4 shows the contact portion 6 as a reference example.
The experimental results are shown under the same conditions when the u-0,5Bi gold alloy is used and the arc portion 8 is made of Cu. Since all of these materials are soft materials, they are subject to relatively large wear due to arcing, and therefore it has been found that even if the gap size 4 is changed, the breaking performance is hardly improved.
く実 験 2〉
実験1に供した真空インタラプタを分群して調査したと
ころ、アーク走行の跡が金属シールド3の内壁と、アー
ク部8の対向面21の周辺部分とに見出せた。Experiment 2> When the vacuum interrupters used in Experiment 1 were divided into groups and investigated, traces of arc travel were found on the inner wall of the metal shield 3 and around the opposing surface 21 of the arc portion 8.
このことから発明者等は、対向する電攬2゜2の外周側
面5,5間の間隙寸法Gと、金属シールド3と電極2の
外周側面5との間の間隙寸法Iどの間に相関関係がある
のではないかと推察した。From this, the inventors have determined that there is a correlation between the gap size G between the outer circumferential sides 5, 5 of the opposing electric currents 2°2 and the gap size I between the metal shield 3 and the outer circumferential side 5 of the electrode 2. I surmised that there might be.
そこで、間隙寸法lを1 = 15 mmと一定にし、
間隙寸法Gを変化させてしゃ断性能を調べた。他の条件
は第1表と同じである。但し、第5図に示すように、ア
ーク部8の対向面21は平面とし、且つ、アークの移動
を容易にするためアーク部8と接点部6との段差を11
IIIlとした。従って、一対のアーク部間の間隙寸法
GはG = g + 2 (+ms) (gは接点開
極ギャップ)の関係で変化することになる。Therefore, the gap dimension l is set constant at 1 = 15 mm,
The breaking performance was investigated by changing the gap dimension G. Other conditions were the same as in Table 1. However, as shown in FIG. 5, the facing surface 21 of the arc portion 8 is a flat surface, and the step between the arc portion 8 and the contact portion 6 is 11 to facilitate the movement of the arc.
It was set as IIIl. Therefore, the gap size G between the pair of arc parts changes according to the relationship G = g + 2 (+ms) (g is the contact opening gap).
実験結果は第6図に示す通りであり、4=15+++n
+に対してG=15ないし30■の範囲即ちj/G=0
.5〜1.0の範囲で、しゃ断性能が略35 kAr、
m、 s、以上と良好であることが判った。The experimental results are shown in Figure 6, 4=15+++n
+ for G = 15 to 30 ■ range, i.e. j/G = 0
.. In the range of 5 to 1.0, the breaking performance is approximately 35 kAr,
It was found that the performance was good, with a value of m, s, or higher.
即ち、しゃ断性能に関して、一対の電ws2と金属シー
ルド3との関係において、電極2と金属シールド3との
間隙寸法!は一対の接点同寸法gよりも、一対のアーク
部8,8間寸法Gと大きく関係している乙とが判明し、
アーク回転時に金属シールド3を効果的に利用し、前述
の問題点の理由■〜■として記載したアーク電圧の上昇
、アークエネルギの増大、アーク蒸気密度の増大及び電
極のアーク走行部の消耗と表面荒れを起すことなく、シ
ゃ断することができる。このように、しゃ断に関与する
部材間の関係を最適なものにすることにより、しゃ断性
能の向上を無駄なく行えることを見出した。That is, regarding the breaking performance, in the relationship between the pair of electric current ws2 and the metal shield 3, the gap size between the electrode 2 and the metal shield 3! It was found that B is more closely related to the dimension G between the pair of arc parts 8 and 8 than to the same dimension G of the pair of contacts,
The metal shield 3 is effectively used during arc rotation, and the reasons for the above-mentioned problems are as follows: increase in arc voltage, increase in arc energy, increase in arc vapor density, and wear and tear of the arc running part of the electrode and surface. It can be cut off without causing roughness. In this way, it has been found that by optimizing the relationship between the members involved in shutoff, the shutoff performance can be improved without waste.
以上の実験1,2の結果から、j/G=0.5〜1.0
とし、且つ、Ti極材料を耐電圧特性の良好な材料とす
ることにより、金属シールド3を活用してしゃ断性能の
向上が図れる。From the results of experiments 1 and 2 above, j/G=0.5~1.0
In addition, by making the Ti electrode material a material with good withstand voltage characteristics, the metal shield 3 can be utilized to improve the breaking performance.
く実 験 3〉
以上の結果から金属シールド3をうまく利用してしゃ断
性能の向上が図れることが判明したが、次に耐久性につ
いて調べた。Experiment 3 From the above results, it was found that the metal shield 3 could be used effectively to improve the breaking performance, but next we investigated its durability.
そこで金属シールド3の板厚1(1,=12=1)と耐
久性との関係を、アーク部8と金属シールド3との間の
間隙寸法j = 10 mm 。Therefore, the relationship between the plate thickness 1 (1, = 12 = 1) of the metal shield 3 and the durability is determined by the gap size j = 10 mm between the arc portion 8 and the metal shield 3.
15mmの2つの場合について調べた。構造及び条件は
第3図及び第1表に示したと同じである。Two cases of 15 mm were investigated. The structure and conditions are the same as shown in FIG. 3 and Table 1.
実験結果を第7図に示す。耐久性はしゃ断性能が急激に
低下する時点までのしゃ断回数で評価し、その回数を各
サンプル3個について調べた結果の上限値と下限値を第
7図に示しである。The experimental results are shown in Figure 7. Durability was evaluated by the number of times the device was shut off until the point where the shutoff performance suddenly decreased, and the upper and lower limits of the results of examining the number of times for each of three samples are shown in FIG.
第7図より、板厚tが少なくとも2IIIImであれば
、耐久性が極めて良好になることが判った。実用上はt
=2ないし3鴫とすれば良く、しゃ断電流が大きい場合
には、必要に応じて更に厚くすれば良い。From FIG. 7, it was found that if the plate thickness t was at least 2IIIm, the durability would be extremely good. In practice, t
= 2 to 3 strands, and if the cutoff current is large, the thickness may be further increased as necessary.
〈実 験 4〉
以上の結果から、金属シールド3は板厚がt≧2 mm
であれば耐久性が良好であると判明したが、次に、金属
シールド3の中央部の板厚を2間以上とし、両端部のみ
丸み付けしやすい薄いもの(1mm程度)にできないか
調べた。<Experiment 4> From the above results, the thickness of the metal shield 3 is t≧2 mm.
It was found that the durability was good, but next, we investigated whether it was possible to increase the thickness of the central part of the metal shield 3 to 2 mm or more, and make it thinner (about 1 mm) so that only both ends could be easily rounded. .
そこで第1図に示す金属シールド3の如く、中央の主シ
ールド18の板jXt、を厚<シ、両端の丸みが付いた
補助シールド19,20のみ板厚t2を薄くして、主シ
ールド18の軸方向長さしと耐久性との関係を調べた。Therefore, as in the metal shield 3 shown in FIG. 1, the thickness of the plate j The relationship between axial length and durability was investigated.
ここではt1=2閣、t2=1胴、1=15胴とした。Here, t1=2 cabinets, t2=1 barrel, and 1=15 barrels.
他の構造及び条件は第3図及び第1表に示したと同じで
ある。Other structures and conditions are the same as shown in FIG. 3 and Table 1.
実験結果を第8図に示す。耐久性は、く実験3〉と同様
しゃ断性能が急激に低下する時点までのしゃ断回数で評
価した。また、アークが触れる範囲は一対の電極2,2
の外周側面5,5間の間隙寸法Gに依存するものと考え
、G=20順に対しL/G=1.2,3゜4の4点で実
験を行った。The experimental results are shown in Figure 8. As in Experiment 3, durability was evaluated by the number of interruptions until the interruption performance suddenly decreased. Also, the area that the arc touches is the pair of electrodes 2, 2.
Considering that it depends on the gap size G between the outer circumferential side surfaces 5, 5, experiments were conducted at four points of L/G=1.2 and 3°4 for G=20 order.
第8図より、L/G≧2であれば金属シールド3を全て
板厚2+msとしたく実験3〉の4= 15 mmの場
合と同様、安定したしゃ断回数が得られ、耐久性が極め
て良好であることが判った。From Figure 8, if L/G≧2, all the metal shields 3 should have a thickness of 2+ms, and as in the case of 4=15 mm in Experiment 3, a stable number of interruptions could be obtained and the durability would be extremely good. I found out something.
即ち、L/G≧2であれば、補助シールド19.20が
薄くてもそこにアークが移らないので、そこに孔があく
ことがなくなり、これに基因する耐久性低下がなくなる
。That is, if L/G≧2, even if the auxiliary shield 19.20 is thin, the arc will not move there, so there will be no hole there, and there will be no decrease in durability due to this.
従って、金属シールド3をステンレス鋼等で作る場合、
主シールド18は円筒であるからt1≧2 mm、実用
上はt1=2〜3關であっても製造に問題がなく、補助
シールド19゜20は電界緩和処理として先端部に丸み
付けを行うが、これもt (2mm例えばII程度と薄
くて良いから絞り加工も容易になり生産性が向上するこ
とが判った。Therefore, when the metal shield 3 is made of stainless steel or the like,
Since the main shield 18 is cylindrical, t1≧2 mm, and in practice there is no problem in manufacturing even if t1 = 2 to 3 mm, and the tips of the auxiliary shields 19 and 20 are rounded as an electric field mitigation process. , this is also thin (t (2 mm, for example, about II), which makes drawing process easier and productivity improved.
以上の説明はスパイラル電極を備えた真空インクラブタ
についてであるが、これに拘らず、コントレート電極を
備えた真空インクラブタにおいても同様なことが言える
。Although the above description relates to a vacuum incluctor equipped with a spiral electrode, the same applies to a vacuum incluctor equipped with a contrast electrode.
第9図にコントレート電極の一例を示す。FIG. 9 shows an example of a contrast electrode.
第9図において、アークを磁気回転駆動するための傾斜
溝22を外側面に有するカップ状の本体23に、リング
状の接点部24を接合しである。In FIG. 9, a ring-shaped contact portion 24 is joined to a cup-shaped main body 23 having an inclined groove 22 on the outer surface for driving the arc in magnetic rotation.
コントレート電極の場合は、アークは殆ど接点部24上
にて処理されるので、接点部を耐電圧特性の良好な複合
金属材料で形成すれば足りる。もちろん、カップ状本体
23にアークがまわり込むようであれば、本体23も耐
電圧特性の良好な複合金属材料で形成する。In the case of a contrast electrode, since most of the arc is processed on the contact portion 24, it is sufficient to form the contact portion with a composite metal material having good withstand voltage characteristics. Of course, if the arc wraps around the cup-shaped main body 23, the main body 23 is also made of a composite metal material with good voltage resistance characteristics.
本発明は以上の実験結果に基づいてなされたものであり
、本発明による真空インタラプタの構成は、発生したア
ークを磁気回転駆動する一対の電極を備え、且つ、該一
対の電極を包囲する中間電位の金属シールドを備えた真
空インタラプタにおいて、
前記電極を銅と銅よりも融点が高く且つ硬質な金属とを
含有してなる複合金属材料で形成して設け、前記金属シ
ールドと電極の外周側面との間の間隙寸法4と一対の電
極の外周側面間の開極状態での間隙寸法Gとの関係を1
7G=0.5ないし1.0とし、且つ、前記金属シール
ドを板厚が2 mm以上の主シールドとこの主シールド
両端の板厚が2 mm未満の補助シールドとで形成して
設け、主シールドの軸方向長さしと前記間隙寸法Gとの
関係をL/G≧2としたことを特徴とするものである。The present invention has been made based on the above experimental results, and the configuration of the vacuum interrupter according to the present invention includes a pair of electrodes that magnetically rotationally drive a generated arc, and an intermediate potential surrounding the pair of electrodes. In the vacuum interrupter equipped with a metal shield, the electrode is formed of a composite metal material containing copper and a metal having a higher melting point than copper and is harder, and the metal shield and the outer peripheral side surface of the electrode are connected to each other. The relationship between the gap size 4 between the two electrodes and the gap size G in the open state between the outer peripheral sides of the pair of electrodes is expressed as 1
7G=0.5 to 1.0, and the metal shield is formed of a main shield with a plate thickness of 2 mm or more and auxiliary shields with a plate thickness of less than 2 mm at both ends of the main shield, and the main shield It is characterized in that the relationship between the axial length of and the gap size G is set to L/G≧2.
F、 作 用
電極と金属シールドとの間の間隙寸法の最適関係を見出
したことにより、金属シールドを効果的に利用してしゃ
断することができ、また金属シールド中で厚い板厚が必
要な中央部の主シールドの軸方向長さの最適条件を見出
したことにより、丸み付けの必要な両端部の補助シール
ドを薄くすることができ、これによってしゃ断性能、耐
電圧特性、耐久性及び加工性の向上が図れた真空インタ
ラプタを得ることができる。F. By finding the optimal relationship between the gap dimensions between the working electrode and the metal shield, it is possible to effectively utilize the metal shield for disconnection, and also to remove the metal shield from the center where a thick plate is required. By finding the optimal condition for the axial length of the main shield at the end, we were able to make the auxiliary shield at both ends, which require rounding, thinner, which improved the breaking performance, withstand voltage characteristics, durability, and workability. An improved vacuum interrupter can be obtained.
C実施例 以下、本発明を図面に基づいて詳細に説明する。C example Hereinafter, the present invention will be explained in detail based on the drawings.
第1図に本発明の真空インクラブタの一実施例を示す。FIG. 1 shows an embodiment of the vacuum ink cleaner of the present invention.
第1図において、相互に直線状をなす一対のリード棒1
a、lbの対向内端面に、アーク磁気回転駆動形の電極
2,2を一体的に設けである。In Fig. 1, a pair of lead rods 1 are mutually linear.
Arc magnetic rotation drive type electrodes 2, 2 are integrally provided on the opposing inner end surfaces of a and lb.
第1図の電極2はスパイラル電極であり、第2図(al
、 (b)に示すように、リング状の接点部6の裏面に
、多数のスパイラル溝7を有するアーク部8を接合しで
ある。9はペタルである。The electrode 2 in FIG. 1 is a spiral electrode, and the electrode 2 in FIG.
, As shown in (b), an arc portion 8 having a large number of spiral grooves 7 is bonded to the back surface of the ring-shaped contact portion 6. 9 is a petal.
電極2の材料は、銅と銅よりも融点が高く且つ硬質な金
属とを含有してなる複合金属材料であり、本実施例では
接点部6にCu −M。The material of the electrode 2 is a composite metal material containing copper and a metal that has a higher melting point than copper and is harder, and in this embodiment, the contact portion 6 is made of Cu-M.
−Cr(例えば、38Mo 13Cr−残りCu)の
焼結−溶浸型複合金属を用い、アーク部8にCu −F
e −Cr (例えば、20Fe−20Cr−残1)
Cu )の焼結−溶浸型複合金属を用いている。-Cr (e.g., 38Mo 13Cr-remaining Cu) sintered-infiltrated composite metal is used in the arc part 8 with Cu-F
e -Cr (e.g. 20Fe-20Cr-1 remaining)
A sintered-infiltrated composite metal of Cu) is used.
一対のリード棒1a、Ibのうち、一方のリード棒1a
は固定リード棒であり、絶縁筒10の一端に接合した金
属端板11に貫通して固定しである。他方のリード棒1
bは可動リード棒であり、絶縁筒10の他端に接合した
金属端板12に金属ベローズ13を介して連結しである
。可動リード棒1bは図示省略の駆動装置によって軸方
向に往復動し、その結果、一対の電極2,2が開閉する
。One lead rod 1a among the pair of lead rods 1a and Ib
is a fixed lead rod, which penetrates and is fixed to the metal end plate 11 joined to one end of the insulating cylinder 10. Other lead rod 1
b is a movable lead rod, which is connected via a metal bellows 13 to a metal end plate 12 joined to the other end of the insulating cylinder 10. The movable lead rod 1b is reciprocated in the axial direction by a drive device (not shown), and as a result, the pair of electrodes 2, 2 are opened and closed.
絶縁筒10は軸方向に2分割し、金属筒14で連結した
ものであり、絶縁筒10内の真空室15には一対の電極
2,2を包囲する中間電位の円筒状金属シールド3を金
属筒14に固定して設けである。また真空室15内には
、それぞれリード棒1a、lbの基端部を包囲する5U
S304からなるシールド16,17を金属端板11,
12に固定して設けである。The insulating tube 10 is divided into two parts in the axial direction and connected by a metal tube 14, and a cylindrical metal shield 3 with an intermediate potential surrounding the pair of electrodes 2 is placed in a vacuum chamber 15 inside the insulating tube 10. It is fixed to the tube 14. In addition, in the vacuum chamber 15, there are 5U, which surround the base ends of the lead rods 1a and lb, respectively.
The shields 16 and 17 made of S304 are connected to the metal end plate 11,
It is fixedly provided at 12.
中間電位の金属シールド3はそれぞれ5U3304から
なる中央部の主シールド18と、その両端に接合した補
助シールド19.20とで形成しである。The intermediate potential metal shield 3 is formed by a central main shield 18 made of 5U3304, and auxiliary shields 19, 20 joined to both ends thereof.
主シールド18は板厚t1が2胴の円筒であり、補助シ
ールド19,20は板厚むが1 mmで先端部に絞り加
工により丸みを付けた円筒テアリ、いずれもステンレス
fisUs304で作っである。The main shield 18 is a two-cylinder cylinder with a plate thickness t1, and the auxiliary shields 19 and 20 are cylindrical tiles with a plate thickness of 1 mm and rounded tips by drawing, and both are made of stainless steel fisUs304.
また、主シールド18の軸方向長さしは、一対の電$1
2.2の外周側面5,5間の間隙寸法Gに対しL/G=
3となるように、G−20+nm1L=60胴と設定し
である。In addition, the axial length of the main shield 18 is
2. L/G= for the gap dimension G between the outer peripheral sides 5, 5 in 2.
3, G-20+nm1L=60 cylinders is set.
電極2の外周側面5と電極2を包囲する金属シールド3
との間の間隙寸法4は15mm。A metal shield 3 surrounding the outer peripheral side surface 5 of the electrode 2 and the electrode 2
The gap size 4 between the two is 15 mm.
一対の電極2,2の外周側面5,5間の間隙寸法Gは2
0+nmに設定しである。The gap dimension G between the outer peripheral side surfaces 5, 5 of the pair of electrodes 2, 2 is 2
It is set to 0+nm.
上記の構成において、他の条件を前記第1表に示すもの
にして実験したところ、42 kAr、ms。When an experiment was conducted with the above configuration under other conditions shown in Table 1, the result was 42 kAr, ms.
の大電流を70回以上しゃ断でき、前述の実験と同様な
結果が得られることが確認できた。It was confirmed that the large current could be interrupted more than 70 times, and results similar to those in the previous experiment could be obtained.
■3発明の効果
本発明の真空インタラプタによれば、電極を銅と銅より
も融点が高く且つ硬質の金属とを含有する複合金属材料
で形成し、しかも発生したアークを磁気回転駆動する一
対の電極の外周側面間の間隙寸法Gと、f4極の外周側
面と金属シールドとの間の間隙寸法4との関係を、17
G=0.5ないし1.0としたことにより、金属シール
ドを効果的に利用してしゃ断を行うことができ、しゃ断
性能が向上し、且つ耐電圧特性が向上した。■3 Effects of the Invention According to the vacuum interrupter of the present invention, the electrodes are formed of a composite metal material containing copper and a metal that has a higher melting point than copper and is harder, and a pair of electrodes that magnetically rotationally drive the generated arc are provided. The relationship between the gap size G between the outer circumferential surfaces of the electrodes and the gap size 4 between the outer circumferential side surface of the f4 pole and the metal shield is expressed as 17
By setting G to 0.5 to 1.0, it was possible to effectively utilize the metal shield to perform the cutoff, and the cutoff performance and withstand voltage characteristics were improved.
更に、金属シールドの板厚はむやみに厚い必要がなく、
中央の主シールドのみ2關以上にすれば耐久性が極めて
良好であり、両端の補助シールドの板厚を薄くでき電界
緩和処理のための加工の生産性が向上した。Furthermore, the thickness of the metal shield does not need to be unnecessarily thick;
If only the main shield at the center had two or more shields, durability would be extremely good, and the plate thickness of the auxiliary shields at both ends could be made thinner, improving the productivity of processing for electric field relaxation processing.
第1図は本発明の一実施例としての真空インタラプタを
示す断面図、第2図(a)、 (b)はスパイラル電極
の一例を示す平面図及び■−■断面図、第3図及び第5
図はそれぞれ実験に供した真空インタラプタの電極付近
の断面図、第4図、第6図、第7図及び第8図はそれぞ
れ実験結果を示すグラフ、第9図はコントレート電極の
断面図、第10図はアーク磁気回転駆動形電極を備えた
真空インタラプタの電極付近の概略構夷図である。
図面中、2は電極、3は金属シールド、18は主シール
ド、19と20は補助シールドである。FIG. 1 is a sectional view showing a vacuum interrupter as an embodiment of the present invention, FIGS. 5
The figures are cross-sectional views of the vacuum interrupter electrodes used in the experiments, Figures 4, 6, 7, and 8 are graphs showing the experimental results, and Figure 9 is a cross-sectional view of the contrast electrode. FIG. 10 is a schematic diagram of the vicinity of the electrodes of a vacuum interrupter equipped with arc magnetic rotation driven electrodes. In the drawing, 2 is an electrode, 3 is a metal shield, 18 is a main shield, and 19 and 20 are auxiliary shields.
Claims (1)
且つ、該一対の電極を包囲する中間電位の金属シールド
を備えた真空インタラプタにおいて、 前記電極を銅と銅よりも融点が高く且つ硬質な金属とを
含有してなる複合金属材料で形成して設け、前記金属シ
ールドと電極の外周側面との間の間隙寸法lと一対の電
極の外周側面間の開極状態での間隙寸法Gとの関係をl
/G=0.5ないし1.0とし、且つ、 前記金属シールドを板厚が2mm以上の主シールドとこ
の主シールド両端の板厚が2mm未満の補助シールドと
で形成して設け、主シールドの軸方向長さLと前記間隙
寸法Gとの関係を L/G≧2としたことを特徴とする真空インタラプタ。[Claims] A device comprising a pair of electrodes that magnetically rotationally drive a generated arc,
Further, in the vacuum interrupter equipped with a metal shield having an intermediate potential that surrounds the pair of electrodes, the electrodes are formed of a composite metal material containing copper and a metal that has a higher melting point than copper and is harder. , the relationship between the gap size l between the metal shield and the outer peripheral side surface of the electrode and the gap size G in the open state between the outer peripheral side surfaces of the pair of electrodes is expressed as l
/G=0.5 to 1.0, and the metal shield is formed of a main shield with a plate thickness of 2 mm or more and auxiliary shields with a plate thickness of less than 2 mm at both ends of the main shield, A vacuum interrupter characterized in that the relationship between the axial length L and the gap size G is L/G≧2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10323487A JPH0777106B2 (en) | 1987-04-28 | 1987-04-28 | Vacuum interrupter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10323487A JPH0777106B2 (en) | 1987-04-28 | 1987-04-28 | Vacuum interrupter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63269430A true JPS63269430A (en) | 1988-11-07 |
JPH0777106B2 JPH0777106B2 (en) | 1995-08-16 |
Family
ID=14348762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10323487A Expired - Lifetime JPH0777106B2 (en) | 1987-04-28 | 1987-04-28 | Vacuum interrupter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0777106B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111613477A (en) * | 2020-05-20 | 2020-09-01 | 宁波益舜电气有限公司 | Shielding cylinder and production process thereof |
-
1987
- 1987-04-28 JP JP10323487A patent/JPH0777106B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111613477A (en) * | 2020-05-20 | 2020-09-01 | 宁波益舜电气有限公司 | Shielding cylinder and production process thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0777106B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002334641A (en) | Vacuum circuit breaker electrode and manufacturing method of the same | |
US4695689A (en) | Vacuum circuit breaker | |
JPS63269430A (en) | Vacuum interrupter | |
US4088860A (en) | Vacuum interrupter for high voltage application | |
JPS63269429A (en) | Vacuum interrupter | |
JPH04101315A (en) | Vacuum valve | |
US3469049A (en) | High voltage vacuum device with improved means for inhibiting sparkover adjacent the edge of a tubular metal part | |
EP0155584A1 (en) | Method for processing vacuum switch | |
US4736078A (en) | Method for processing vacuum switch and vacuum switch processed by the method | |
JPS59186219A (en) | Slender contact structure | |
JP2762510B2 (en) | Magnetically driven electrodes for vacuum interrupters | |
JPS63150823A (en) | Vacuum interruptor | |
JPH04155721A (en) | Vacuum bulb | |
JPS63160122A (en) | Vacuum interruptor | |
JPS63150824A (en) | Vacuum interruptor | |
JP2689568B2 (en) | Magnetically driven electrodes for vacuum interrupters | |
JPH0492327A (en) | Contact point material for vacuum bulb | |
JPH0244623A (en) | Electrode for vacuum interrupter | |
JPH02201833A (en) | Magnetic driving type electrode for vacuum interrupter | |
JPH0239325Y2 (en) | ||
JP2004014240A (en) | Vacuum valve | |
JPH07111856B2 (en) | Vacuum interrupter | |
JPS5855606B2 (en) | vacuum interrupter | |
JP2881794B2 (en) | Magnetically driven electrodes for vacuum interrupters | |
JPH06103861A (en) | Vacuum interrupter |