JPS6326931A - Gas plazma x-ray generator - Google Patents

Gas plazma x-ray generator

Info

Publication number
JPS6326931A
JPS6326931A JP61169043A JP16904386A JPS6326931A JP S6326931 A JPS6326931 A JP S6326931A JP 61169043 A JP61169043 A JP 61169043A JP 16904386 A JP16904386 A JP 16904386A JP S6326931 A JPS6326931 A JP S6326931A
Authority
JP
Japan
Prior art keywords
gas
plasma
electrode
rays
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61169043A
Other languages
Japanese (ja)
Inventor
Masaki Yamabe
山部 正樹
Yoshitaka Kitamura
北村 芳隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61169043A priority Critical patent/JPS6326931A/en
Publication of JPS6326931A publication Critical patent/JPS6326931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Abstract

PURPOSE:To prevent a beryllium membrane from damage caused by neutral particles or charged particles by discharging a gas from a gas stream generating means in the direction orthogonal with the direction in which X rays are radiated from pinch plazma. CONSTITUTION:A high speed gas stream generating means 30 is provided, and it is preferable that the second high speed gas valve 32 is opened to discharge a gas in synchronization with the time when pinch plazma 10 is generated. That is, after the time delay caused by a delay circuit 23 during which a pulse current is sent to a valve power source 24 from a trigger source 22, and the first high speed gas valve 7 is opened to discharge Ne-gas via a gas path 8 of a first electrode 4, a pulse is applied to a discharging electrode of a discharging switch 27 by a high voltage trigger source 25 to make it be in discharge condition. And when the resistance of the discharge switch is made zero, the charge charged in a capacitor 26 connected between the first and second electrodes 4 and 3 is discharged so as to make a cylinder-shaped gas 9 be pinch plazma 10 then radiate X rays 11. The time of the second delay circuit 36 is decided so that the second high speed gas valve 32 can be opened at the moment X rays are radiated, not to cause damage to a beryllium membrane.

Description

【発明の詳細な説明】 〔発明の概要〕 本発明は!a積回路製造時のりソグラフィ技術に利用さ
れるガスプラズマX線発生装置に於いて、X線と共に発
生する中性粒子、荷電粒子によってX線取り出し窓を構
成するベリリウム薄膜の破壊を防止するために、X線放
出方向と直交する方向からX線を吸収することのない高
速ガスを放出して中性粒子や荷電粒子を放散させること
でX線のみX線取り出し窓に向かわせるようにしたガス
プラズマX線発生装置を提供するものである。
[Detailed Description of the Invention] [Summary of the Invention] The present invention! To prevent the beryllium thin film that forms the X-ray extraction window from being destroyed by neutral particles and charged particles generated along with X-rays in gas plasma X-ray generators used in lithography technology during the manufacture of A-product circuits. , a gas plasma in which only X-rays are directed toward the X-ray extraction window by emitting high-speed gas that does not absorb X-rays from a direction perpendicular to the X-ray emission direction and dissipating neutral particles and charged particles. The present invention provides an X-ray generator.

〔産業上の利用分野〕[Industrial application field]

本発明はガスプラズマX線発生装置に係り、特に集積回
路用の露光装置に用いられるX線発生装置のX線取り出
し窓のダメージを防止する高速ガス放出手段に関する。
The present invention relates to a gas plasma X-ray generator, and more particularly to a high-speed gas discharge means for preventing damage to an X-ray extraction window of an X-ray generator used in an exposure apparatus for integrated circuits.

半導体築積回路の高集積化、高速化に伴って投影露光限
界が1〜2μmとなり、軟X線の波長4〜12人は紫外
線の波長などに比べて短いため回折、干渉の点で優れ、
X線露光技術の提案がなされているが、X線源、マスク
、レジスト等の開発が必要とされ、X線露光を用いたプ
ロセス技術の確立が要望されている。
With the increasing integration and speed of semiconductor integrated circuits, the projection exposure limit has become 1 to 2 μm, and the wavelength of soft X-rays, which is 4 to 12 μm, is shorter than the wavelength of ultraviolet rays, so it is superior in terms of diffraction and interference.
Although X-ray exposure technology has been proposed, development of X-ray sources, masks, resists, etc. is required, and there is a desire to establish process technology using X-ray exposure.

〔従 来 の 技 術〕[Traditional techniques]

ガスプラズマX線発生装置に利用されるプラズマ線源は
高温、高密度のプラズマから制動放射、再結合放射等で
発生する軟X線を利用するものでプラズマ形成方法には
レーザ励起、ワ・イー・アレイ等の外にガスプラズマが
用いられている。
The plasma ray source used in gas plasma X-ray generators uses soft X-rays generated from high-temperature, high-density plasma through bremsstrahlung radiation, recombination radiation, etc. Plasma formation methods include laser excitation,・Gas plasma is used outside the array.

このようなガスプラズマX線発生装置の従来の構成を第
4図について詳記する。第4図は従来のガスプラズマX
線発生装置の模式的側断面図であり、1は全体としてガ
スプラズマX線発生装置を示し、真空容r52は通常の
チャンバーと呼ばれるもので円筒状に構成され、上部に
は真空容器2と一体化された低圧電圧が印加される第2
の電極3が真空容器2と同心的に設けられ、リング状の
インシュレータ5を介して第2の電極3の内側に第1の
電極4が気密に′配設されている。該第1の電極は円柱
状部材で構成され、その内部にはガス通路8が設けられ
、ガス導入管6と第1の高速ガスバルブ7を介して円筒
状に形成したガス通路8から第2の主題3内にガスを放
出させる。9は円筒状の第1の電極と中空ノズル4を兼
用したガス通路8から放出されたガスを示し、10は後
述するがピンチプラズマを示している。第2の電(雇3
の底部にはX線11を通過させるためのアパチャー12
が設けられ、更に第2の電極3の下端にはプラズマ反射
手段13が設けられ、該プラズマ反射手段は第2の電極
3の底部に対して傾斜した傾斜部材14が設けられ、同
じくアパチャー15が傾斜部材に穿たれている。プラズ
マ反射手113のアパチャー15を通過したX線11は
真空容器2′の底部に形成されたX線取り出し窓17を
通過し、X線マスク20を通して試:+”−121を露
光する。X線取り出し窓17にはX線を通過する約25
μm以下の薄膜からなるベリリウム膜18が架張され、
X線取り出し窓の入口には荷電粒子除去用の偏向手段1
6が配設されている。
The conventional structure of such a gas plasma X-ray generator will be described in detail with reference to FIG. Figure 4 shows conventional gas plasma
1 is a schematic side sectional view of the ray generator, in which 1 shows the gas plasma X-ray generator as a whole, the vacuum volume R52 is called a normal chamber and is configured in a cylindrical shape, and the upper part is integrated with the vacuum container 2. The second
An electrode 3 is provided concentrically with the vacuum vessel 2, and a first electrode 4 is airtightly disposed inside the second electrode 3 via a ring-shaped insulator 5. The first electrode is composed of a cylindrical member, and a gas passage 8 is provided inside the first electrode, and a gas passage 8 formed in a cylindrical shape is connected to a second gas passage through a gas introduction pipe 6 and a first high-speed gas valve 7. Release gas into subject 3. Reference numeral 9 indicates gas discharged from the gas passage 8 which serves as both the cylindrical first electrode and the hollow nozzle 4, and 10 indicates pinch plasma, which will be described later. Second electricity (hired 3
There is an aperture 12 at the bottom for passing X-rays 11.
Further, a plasma reflecting means 13 is provided at the lower end of the second electrode 3, and the plasma reflecting means is provided with an inclined member 14 that is inclined with respect to the bottom of the second electrode 3, and also has an aperture 15. It is bored into the inclined member. The X-rays 11 that have passed through the aperture 15 of the plasma reflector 113 pass through the X-ray extraction window 17 formed at the bottom of the vacuum container 2' and pass through the X-ray mask 20 to expose the sample +"-121. Approximately 25 mm is placed in the take-out window 17 to pass the X-ray.
A beryllium film 18 made of a thin film of μm or less is stretched,
Deflection means 1 for removing charged particles is installed at the entrance of the X-ray extraction window.
6 are arranged.

なお、19は真空容器2内を最適な真空状態に保つため
の真空ポンプである。
Note that 19 is a vacuum pump for maintaining the inside of the vacuum container 2 in an optimal vacuum state.

上記の真空容器構造に於いて、第1及び第2の電極4.
3間にはコンデンサ26と放電スイッチ27の直列回路
が接続され、該コンデンサ26は主放電用のキ中バシタ
で放電スイッチ27を閉じることによって第1の電1N
+4と第2の電極3間で放電を起こさせて放電電流を流
すようにする。
In the above vacuum container structure, the first and second electrodes 4.
A series circuit of a capacitor 26 and a discharge switch 27 is connected between the capacitor 26 and the discharge switch 27, and the capacitor 26 discharges the first voltage 1N by closing the discharge switch 27 with a main discharge capacitor.
A discharge is caused between +4 and the second electrode 3 to cause a discharge current to flow.

トリガ源22からの電源によってパルプ電源24が動作
し、第1の高速ガスバルブ7が開かれて矢印Aで示す方
向から導入されたネオン(Ne)ガスの如きガスは第1
の高速ガスバルブ7を通って第1の電極4のガス通路8
から第2の電極3内部にガスを放出する。
The pulp power supply 24 is operated by the power from the trigger source 22, the first high-speed gas valve 7 is opened, and a gas such as neon (Ne) gas introduced from the direction shown by arrow A is supplied to the first high-speed gas valve 7.
The gas passage 8 of the first electrode 4 through the high-speed gas valve 7 of
Gas is released from inside the second electrode 3.

このガス放出と同期してトリガ源22からのトリガが第
1の遅延回路23を介して高電圧トリガ源25に与えら
れた電流に基づいて放電が行われる。すなわち、ガスの
放出と第1及び第2の電極に印加される放電電圧とは間
歇的な動作をおこなう−ごどになる。
In synchronization with this gas release, a trigger from the trigger source 22 is applied to the high voltage trigger source 25 via the first delay circuit 23, and discharge is performed based on the current. That is, the gas discharge and the discharge voltage applied to the first and second electrodes operate intermittently.

〔発明が解決しようとする問題点〕 上記した構成によって第1の?Ii+Mのガス通路8か
ら間歇的に放出されるNeガスは円筒状に放出されるが
、この時の放電電流によってガスはフレーミングの法則
による運動で中央に収束し、ピンチプラズマ10を形成
する。このピンチプラズマ10は流入するガスや波長に
よって異なるが直径1龍のプラズマでNeガスを用いて
波長12人で出力150JKrガスを使用し波長7人で
出力25J程度である。ピンチプラズマ10からの制動
あるいは再結合放射でX線11が放出されるが、ピンチ
プラズマ10からのプラズマ飛沫や電極飛散物からなる
中性粒子28及び荷電粒子29が薄膜からなるベリリウ
ム膜18に衝突してダメージを与え、破壊にいたる問題
がある。荷電粒子29についてはX線取り出し窓17の
入口に設けられた偏向手段16によってベリリウム膜1
8に達する前にX線取り出し窓17の側壁に衝突させて
吸収させることで、ある程度荷電粒子除去が可能である
。然し、中性粒子についてはプラズマ反射手段13の傾
斜部材14によって中性粒子28を反射させて吸収させ
ているがアパチャー15を通過した中性粒子28は完全
にベリリウム膜18に当たって充分な除去を行うことが
出来ない欠点があった。
[Problem to be solved by the invention] The above configuration solves the first problem. The Ne gas intermittently released from the Ii+M gas passage 8 is released in a cylindrical shape, but due to the discharge current at this time, the gas converges to the center due to the movement according to the Flaming law, forming a pinch plasma 10. This pinch plasma 10 is a plasma with a diameter of 1 dragon, which uses Ne gas, has a wavelength of 12 people, and an output of 150 JKr gas, and has a wavelength of 7 people, and an output of about 25 J, although it varies depending on the gas flowing in and the wavelength. X-rays 11 are emitted due to braking or recombination radiation from the pinch plasma 10, but neutral particles 28 and charged particles 29 made of plasma droplets and electrode scattering from the pinch plasma 10 collide with the beryllium film 18 made of a thin film. There is a problem in that it causes damage and even destruction. The charged particles 29 are deflected from the beryllium film 1 by the deflection means 16 provided at the entrance of the X-ray extraction window 17.
By colliding with the side wall of the X-ray extraction window 17 and absorbing the charged particles before the charged particles reach 8, it is possible to remove the charged particles to some extent. However, the neutral particles 28 are reflected and absorbed by the inclined member 14 of the plasma reflection means 13, but the neutral particles 28 that have passed through the aperture 15 completely hit the beryllium film 18 and are sufficiently removed. There was a drawback that I couldn't do it.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の欠点に鑑みなされたものであり、そ
の目的とするところは中性粒子がX線取り出し窓に設け
たベリリウム膜を傷つけることのない高速ガス流放出手
段を設け、中性粒子及び荷電粒子をガス流によって飛散
させるようにしたものであり、その手段は真空容器中に
配されたガス注入ノズル兼用の第1の電極と、該第1の
電極と対向配置された第2の電極と、上記第1の電極に
間歇的にガスを注入するガス注入手段と、上記第1と第
2の、電極間に放電を起こす放電手段とを有、シ(゛上
記第1及び第2の電極間にピンチプラズマを生成し、該
ピンチプラズマからの放出X線を上社真空容器に設けた
X線取り出し窓から取り出すX線発生装置に於いて、上
記第2の電極とX線取り出し窓間に配された高速ガス流
発生手段を有し、上記ピンチプラズマからのX線放出方
向と直交する方向に上記ガス流発生手段からガスを放出
させてなることを特徴とするガスプラズマX線発生装置
によって達成される。
The present invention was made in view of the above-mentioned drawbacks of the conventional art, and its purpose is to provide a high-speed gas flow discharge means that prevents neutral particles from damaging the beryllium film provided in the X-ray extraction window, and to The charged particles are scattered by a gas flow, and the means for doing so includes a first electrode that is placed in a vacuum container and also serves as a gas injection nozzle, and a second electrode that is placed opposite to the first electrode. It has an electrode, a gas injection means for intermittently injecting gas into the first electrode, and a discharge means for causing a discharge between the first and second electrodes. In the X-ray generator, a pinch plasma is generated between the second electrode and the X-ray emitted from the pinch plasma is extracted from the X-ray extraction window provided in the above-mentioned vacuum container. Gas plasma X-ray generation characterized in that it has a high-speed gas flow generation means arranged between the gas flow generation means and discharges gas from the gas flow generation means in a direction perpendicular to the X-ray emission direction from the pinch plasma. achieved by the device.

〔作   用〕[For production]

本発明のガスプラズマX線発生装置はピンチプラズマか
ら発生するX線以外の中性粒子、荷電粒子のみを飛散さ
せ、X線は放出ガスによって吸収されないようなヘリウ
ムガス等を選択しであるのでX線はX線取り出し窓から
取り出され、中性粒子や荷電粒子によってベリリウム膜
にダメージを与えることはない。
The gas plasma X-ray generator of the present invention scatters only neutral particles and charged particles other than the X-rays generated from the pinch plasma, and the X-rays are made of helium gas, etc., which is not absorbed by the emitted gas. The rays are extracted through the X-ray extraction window, and the beryllium film is not damaged by neutral or charged particles.

〔実  施  例〕〔Example〕

以下、本発明の一実施例を第1図乃至第3図について詳
記する。第1図は本発明のガスプラズマX線発生装置の
模式図、第2図はイー発明に用いられる高速ガスバルブ
の一実施例を示す原理的側断面図、第3図は本発明のガ
スプラズマX線発生装置の高速バルブと放電スイッチに
与えるトリガパルスのタイミングを示すタイミング波形
図である。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3. Fig. 1 is a schematic diagram of the gas plasma FIG. 3 is a timing waveform diagram showing the timing of trigger pulses applied to the high-speed valve and discharge switch of the line generator.

第1図の構成で第4図と同一部分には同一符号を付して
重複説明を省略するが、真空容2″J2の側壁部に高速
ガス流発生手段3oを設ける。
In the configuration of FIG. 1, the same parts as those in FIG. 4 are given the same reference numerals and redundant explanation will be omitted, but a high-speed gas flow generating means 3o is provided on the side wall of the vacuum volume 2''J2.

該高速ガス流発生手段30は第2の電1へ3の底部と真
空容器2の底部に形成されたX線取り出し窓17との間
に配設される。該高速ガス流発生1段30はガス槽31
からの例えばHe  (ヘリウム)ガスのようにX線を
吸収しないガスがガス導入管35を通じて第2の高速ガ
スバルブ32を通じてノズル33の透孔34がら放出さ
れる。ノズル33は真空容器2のX線放出通路近傍迄延
設されピンチプラズマ10から飛散する中性粒子28、
荷電粒子2つ、プラズマ飛沫38等を矢印で示すように
吹き飛ばす。このために第2の高速ガスバルブ32を「
オン」させるため第2の遅延回路3Gとバルブ電源3゛
7を通じてトリガ源22の電圧を印加させる。
The high-speed gas flow generating means 30 is disposed between the bottom of the second electrode 1 and the X-ray extraction window 17 formed at the bottom of the vacuum vessel 2. The first stage 30 of high-speed gas flow generation is a gas tank 31
A gas that does not absorb X-rays, such as He (helium) gas, is discharged from the through hole 34 of the nozzle 33 through the gas introduction pipe 35 and the second high-speed gas valve 32 . The nozzle 33 extends to the vicinity of the X-ray emission path of the vacuum container 2 and collects neutral particles 28 scattered from the pinch plasma 10.
Blow away two charged particles, plasma droplets 38, etc. as indicated by the arrows. For this purpose, the second high-speed gas valve 32 is
In order to turn on the valve, the voltage of the trigger source 22 is applied through the second delay circuit 3G and the valve power supply 3'7.

第2の高速ガスバルブ32ば第2図に示すようにガス導
入管35とノズル33間にトラップ部39を有し、該ト
ラップ部内には非磁性体のアルミニウム等からなる円盤
状の弁42が配設されスプリング41によってガス導入
管35を閉塞するような偏倚力が与えられている。パル
プff1N3’yからソレノイド40に電流を流ずこと
で生ずる磁界によって円盤状の弁42に渦電流を生じス
プリング41の偏倚力に抗して一点鎖線で示す方向に弁
42を押圧し、ガス槽31からのHeガスをノズル33
の透孔34から真空容器2内に放出する。
As shown in FIG. 2, the second high-speed gas valve 32 has a trap section 39 between the gas introduction pipe 35 and the nozzle 33, and a disk-shaped valve 42 made of non-magnetic aluminum or the like is disposed within the trap section. A biasing force to close the gas introduction pipe 35 is applied by a spring 41 provided therein. The magnetic field generated by passing a current from the pulp ff1N3'y to the solenoid 40 generates an eddy current in the disc-shaped valve 42, pushing the valve 42 in the direction shown by the dashed line against the biasing force of the spring 41, and opening the gas tank. He gas from 31 is transferred to nozzle 33
It is discharged into the vacuum container 2 through the through hole 34 .

第2の高速ガスバルブ32を開(ためにはピンチプラズ
マ10が生成された時点に同期してガスを放出させるを
可とするすなわち、トリガ源22からバルブ電源24に
第3図(alに示すパルス電流P1を流して第1の高速
ガスバルブ7が開きNeガスが第1の電極4のガス通路
8から放出されるまでの例えば100μ3程度の時間を
第1の遅延回路23でとった後に高電圧トリガ源25か
ら放電スイッチ27の放電極に第3図(b)に示すパル
スP2を加えて放電状態とし放電スイッチの抵抗を零と
することで第1及び第2の電極4.3間にコンデンサ2
6に充電されていた電荷が放電し、円筒状のガス9はピ
ンチプラズマ10となっ°ζX線11を放出する。この
放出された瞬間に第2の高速ガスバルブ32を開くよう
に第2の遅延回路36の遅延量を定める。これらの値は
実験的に求めることになるが100na程度の時間であ
る。すなわち第3図(C)の電流パルスP3によって第
2の高速ガスバルブ32は開かれることになる。
The second high-speed gas valve 32 is opened (in order to enable the gas to be released in synchronization with the point in time when the pinch plasma 10 is generated). After the first delay circuit 23 takes a time of about 100 μ3 for the first high-speed gas valve 7 to open and Ne gas to be released from the gas passage 8 of the first electrode 4 by applying the current P1, the high voltage trigger is activated. A pulse P2 shown in FIG. 3(b) is applied from the source 25 to the discharge electrode of the discharge switch 27 to bring it into a discharge state, and the resistance of the discharge switch is made zero, thereby creating a capacitor 2 between the first and second electrodes 4.3.
The charges stored in the gas 6 are discharged, and the cylindrical gas 9 becomes a pinch plasma 10 and emits °ζ X-rays 11. The amount of delay of the second delay circuit 36 is determined so that the second high-speed gas valve 32 is opened at the moment the gas is released. These values will be determined experimentally, and will take approximately 100 na. That is, the second high-speed gas valve 32 is opened by the current pulse P3 in FIG. 3(C).

なお、上記第1図の実施例では第4図に示したプラズマ
反射手段13を設けない場合を説明したが、この手段は
本発明の高速ガス流発生手段と共に必要に応じて設ける
ことも出来る。
In the embodiment shown in FIG. 1, a case has been described in which the plasma reflecting means 13 shown in FIG. 4 is not provided, but this means can be provided together with the high-speed gas flow generating means of the present invention if necessary.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の如く構成し、且つ動作させたのでX線発
生時に生ずる中性粒子や荷電粒子或いはフーラ、ズ47
飛沫を吹き飛ばして、X線取り出し窓のベリリウム膜に
ダメージを与えることのないガスプラズマX線発生装置
が得られる。
Since the present invention is constructed and operated as described above, neutral particles, charged particles, hurrahs, etc. generated when X-rays are generated can be eliminated.
A gas plasma X-ray generator that blows off droplets and does not damage the beryllium film of the X-ray extraction window can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガスプラズマX線発生装置の1莫弐図
、 第2図は本発明に用いられている高速ガスノ<ルブ側断
面図、 第3図(al、 (b)、 (C)は本発明の高速ガス
ノ<)レブと放電スイッチパルスのタイミングを示す波
形図、第4図は従来のガスプラズマX線発生装置の模式
図である。 1・・・ガスプラズマ発生装置、 2・・・真空容器、 3・・・第2の電極、 4・・・第1の電極、 5・・・インシュレータ、 6・・・ガス導入管、 7・・・第1の高速ガスバルブ、 8・・・ガス通路、 9・・・ガス、 10・・・ピンチプラズマ、 11・・・X線、 12・・・アパチャー、7 13・・・プラズマ反射手段、 14・・・1頃斜部材、 15・・・アパチャー、 16・・・偏向手段、 17・・・X線取り出し窓、 18・・・ベリリウム膜、 19・・・真空ポンプ、 20・・・マスク、 21・・・試料、 22・ ・・トリガ源、 23・・・第1の遅延回路、 24・・・パルプ電源、 25・・・高電圧トリガ源、 26・・・コンデンサ、 27・・・放電スイッチ、 28・・・中性粒子、 29・・・荷電粒子、 30・・・高速ガス流発生手段、 31・・・ガス槽、 32・・・第2の高速ガスバルブ、 33・・・ノズル、 34・・・透孔、 35・・・ガス導入管、 36・・・第2の遅延回路、 37・・・パルプ電源、 38・・・プラズマ飛沫、 39・・・トラップ部、 40・・・ソレノイド。 特許出願人   富士通株式会社 ホそ日月の#l遠つ゛スバル7′報′1虐蛸゛命図第2
Fig. 1 is a cross-sectional view of the gas plasma X-ray generator of the present invention, Fig. 2 is a side sectional view of the high-speed gas nozzle used in the present invention, Fig. 3 (al, (b), (C) ) is a waveform diagram showing the timing of the high-speed gas nozzle < ) rev and discharge switch pulse of the present invention, and FIG. 4 is a schematic diagram of a conventional gas plasma X-ray generator. DESCRIPTION OF SYMBOLS 1... Gas plasma generator, 2... Vacuum container, 3... Second electrode, 4... First electrode, 5... Insulator, 6... Gas introduction tube, 7. ...First high-speed gas valve, 8...Gas passage, 9...Gas, 10...Pinch plasma, 11...X-ray, 12...Aperture, 7 13...Plasma reflecting means, 14... Diagonal member around 1, 15... Aperture, 16... Deflection means, 17... X-ray extraction window, 18... Beryllium membrane, 19... Vacuum pump, 20... Mask , 21... Sample, 22... Trigger source, 23... First delay circuit, 24... Pulp power supply, 25... High voltage trigger source, 26... Capacitor, 27... Discharge switch, 28... Neutral particles, 29... Charged particles, 30... High speed gas flow generating means, 31... Gas tank, 32... Second high speed gas valve, 33... Nozzle , 34... Through hole, 35... Gas introduction tube, 36... Second delay circuit, 37... Pulp power source, 38... Plasma droplet, 39... Trap section, 40... ·solenoid. Patent applicant: Fujitsu Limited
figure

Claims (4)

【特許請求の範囲】[Claims] (1)真空容器2中に配されたガス注入ノズル兼用の第
1の電極4と、 該第1の電極と対向配置された第2の電極3と、上記第
1の電極4に間歇的にガスを注入するガス注入手段と、 上記第1と第2の電極間に放電を起こす放電手段とを有
し、 上記第1及び第2の電極間にピンチプラズマ10を生成
し、 該ピンチプラズマ10からの放出X線11を上記真空容
器2に設けたX線取り出し窓17から取り出すX線発生
装置に於いて、 上記第2の電極3とX線取り出し窓17間に配された高
速ガス流発生手段30を有し、上記ピンチプラズマ10
からのX線放出方向と直交する方向に上記ガス流発生手
段30からガスを放出させてなることを特徴とするガス
プラズマX線発生装置。
(1) A first electrode 4 which also serves as a gas injection nozzle and which is placed in the vacuum container 2, a second electrode 3 which is placed opposite to the first electrode, and which is intermittently connected to the first electrode 4. It has a gas injection means for injecting a gas, and a discharge means for generating a discharge between the first and second electrodes, generates a pinch plasma 10 between the first and second electrodes, and generates a pinch plasma 10 between the first and second electrodes. In the X-ray generator which extracts the emitted X-rays 11 from the means 30, said pinch plasma 10
A gas plasma X-ray generator characterized in that gas is emitted from the gas flow generating means 30 in a direction perpendicular to the direction in which the X-rays are emitted.
(2)前記高速ガス流発生手段30から放出させるガス
と前記第1の電極4に間歇的に注入するガスを同期して
流す同期手段を有することを特徴とする特許請求の範囲
第1項記載のガスプラズマX線発生装置。
(2) A synchronizing means is provided for synchronously flowing the gas discharged from the high-speed gas flow generating means 30 and the gas intermittently injected into the first electrode 4. Gas plasma X-ray generator.
(3)前記高速ガス流発生手段30から放出するガスは
前記ピンチプラズマ10から発生するX線11を吸収し
ないガスであることを特徴とする特許請求の範囲第1項
記載のガスプラズマX線発生装置。
(3) Gas plasma X-ray generation according to claim 1, characterized in that the gas discharged from the high-speed gas flow generating means 30 is a gas that does not absorb the X-rays 11 generated from the pinch plasma 10. Device.
(4)前記X線11を吸収しないガスがヘリウムガスで
あることを特徴とする特許請求の範囲第3項記載のガス
プラズマX線発生装置。
(4) The gas plasma X-ray generator according to claim 3, wherein the gas that does not absorb the X-rays 11 is helium gas.
JP61169043A 1986-07-19 1986-07-19 Gas plazma x-ray generator Pending JPS6326931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61169043A JPS6326931A (en) 1986-07-19 1986-07-19 Gas plazma x-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61169043A JPS6326931A (en) 1986-07-19 1986-07-19 Gas plazma x-ray generator

Publications (1)

Publication Number Publication Date
JPS6326931A true JPS6326931A (en) 1988-02-04

Family

ID=15879259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169043A Pending JPS6326931A (en) 1986-07-19 1986-07-19 Gas plazma x-ray generator

Country Status (1)

Country Link
JP (1) JPS6326931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189454A (en) * 2020-06-03 2021-12-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv radiation source, insert for euv radiation source, and insert for insert for euv radiation source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189454A (en) * 2020-06-03 2021-12-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv radiation source, insert for euv radiation source, and insert for insert for euv radiation source
US11550225B2 (en) 2020-06-03 2023-01-10 Carl Zeiss Smt Gmbh EUV radiation source, insert for an EUV radiation source and insert for an insert for an EUV radiation source

Similar Documents

Publication Publication Date Title
TW393662B (en) Laser plasma X-ray source and semiconductor lithography apparatus using the same and a method thereof
US4752946A (en) Gas discharge derived annular plasma pinch x-ray source
US4771447A (en) X-ray source
US6452194B2 (en) Radiation source for use in lithographic projection apparatus
JP4195071B2 (en) Irradiation source for lithographic projection equipment
EP0153648B1 (en) X-ray source and x-ray lithography method
JP5758153B2 (en) Radiation source apparatus, lithographic apparatus, radiation generation and delivery method, and device manufacturing method
US4589123A (en) System for generating soft X rays
Lee et al. Electron lithography using a compact plasma focus
JPS61158656A (en) Filter apparatus and method for using x ray equipment
Shelkovenko et al. Accelerated electrons and hard X-ray emission from X-pinches
US7809115B2 (en) Diode for flash radiography
JPS6326931A (en) Gas plazma x-ray generator
US7075096B2 (en) Injection pinch discharge extreme ultraviolet source
Newman et al. Production of hard x rays in a plasma focus
JP2001217096A (en) Laser plasma x-ray source
JPH0744020B2 (en) X-ray extractor for plasma X-ray source
JPH0373100B2 (en)
US7034322B2 (en) Fluid jet electric discharge source
JP2572787B2 (en) X-ray generator
JPH06119998A (en) Atomic oxygen beam generating device
Borghesi et al. Propagation issues and energetic particle production in laser–plasma interactions at intensities exceeding 1019 W/cm2
US11822259B2 (en) Acoustic particle deflection in lithography tool
JPS61206142A (en) X-ray generating device
JPH0373101B2 (en)