JPS63268580A - Manufacture of part with inside space - Google Patents

Manufacture of part with inside space

Info

Publication number
JPS63268580A
JPS63268580A JP10117487A JP10117487A JPS63268580A JP S63268580 A JPS63268580 A JP S63268580A JP 10117487 A JP10117487 A JP 10117487A JP 10117487 A JP10117487 A JP 10117487A JP S63268580 A JPS63268580 A JP S63268580A
Authority
JP
Japan
Prior art keywords
materials
pressurizing
joined
hip
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10117487A
Other languages
Japanese (ja)
Inventor
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10117487A priority Critical patent/JPS63268580A/en
Publication of JPS63268580A publication Critical patent/JPS63268580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a product with interior space without using an intervention member and the structure such as a core, etc., by performing the hot pressurizing with the pressurizing force with respect to members to be joined which are constituent materials of the product in the range under the specific yield strength of the members to be joined. CONSTITUTION:A couple of materials 11a and 11b to be joined with symmetrical shapes forming respective grooves 10a and 10b with shapes corresponding to the joining surfaces are incorporated into one and both the grooves 10a and 10b are made to coincide with each other to form the inside space temporarily. Both of these incorporated materials 11a and 11b are charged in a capsule 13 provided with a pipe 12 for vacuum deareation and the capsule 13 is sealed up with the welding sealing, etc., and the vacuum deareation is performed with the pipe 12 which is sealed up and the capsule 13 is put in a hot isotropic pressure device to perform the hot isotropic pressurizing under the high temperature and high pressure. In this case, the pressurizing is performed with the pressurizing force in the range of the yield strength <=0.2% of the materials 11a and 11b to be joined under the processing temperature at the time of performing the same pressurizing. By this method, the inside space is not deformed and crushed at all and the perfect joining and incorporation of both the materials 11a and 11b are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、HIP (熱間等方加圧)手段やホットプレ
ス手段等の熱間加圧手段を用いて、拡散接合により、内
部に特定形状の空間゛を持つ金属部品を製造する手段の
改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for applying heat to the inside by diffusion bonding using hot isostatic pressing means such as HIP (hot isostatic pressing) means or hot press means. This invention relates to improvements in means for manufacturing metal parts with shaped spaces.

(従来の技術) 高温環境内で使用を必要とされる各種の金属部品におい
ては、冷却構造をそれ自身に具備するものが数多くある
が、このさいその冷却構造の形成方式としては、部品に
冷却水またはガス等の冷却流体の通る溝を機械加工によ
り形成し、その外周を冷却流体が洩れないように被覆す
る所謂ジャケット方式と、冷却流体が通過できる導管を
部品に直接取付ける導管方式との両者が存在するが、前
者のジャケット方式においてはその機械加工において多
大の労力が必要とされる不利があり、また導管方式のも
のでは部品の外表から冷却することになるため、冷却効
果や効率の点において不満足があると−いう不利がある
。最近では特により高温下において使用する部品に対す
るニーズが増大しており、これとともにより効率のよい
冷却構造の必要性も生じているのであり、その1例とし
ては、特開昭54−64231号において見られるよう
に、HIP(熱間等方加圧)手段を用い、複雑な冷却孔
(空間部分)を持った複合タービンブレードのような金
属部品を得る製造方法が提案きれており、ここで登場す
るHIP (熱間等方加圧)手段はいうまでもなく、各
種金属粉末を圧縮して所要形状の成形体乃至成形品を得
る熱間加圧手段の1つとして既知の技術であり、かかる
HIP (熱間等方加圧)手段を用いて、内部空間を有
する金属部品を製造する従来技術をモデル化して例示す
れば、第13図に示すようになる。即ち同図において矢
印は工程の進行順を示しているが、図示のようにその接
合面に溝a、 bを形成した一対の対称形状をなす被接
合素材A、 Bを機械加工により製作し、画素材A、 
Bを合体させるとともに和合する一対の溝a。
(Prior art) Many of the various metal parts that need to be used in high-temperature environments are equipped with their own cooling structures. There are two methods: the so-called jacket method, in which grooves are machined to allow cooling fluid such as water or gas to pass through, and the outer periphery of the grooves is covered to prevent the cooling fluid from leaking; and the conduit method, in which a conduit through which the cooling fluid can pass is directly attached to the component. However, the former jacket method has the disadvantage of requiring a large amount of labor in machining, and the conduit method has the disadvantage of cooling from the outside surface of the part, which reduces cooling effectiveness and efficiency. There is a disadvantage if there is dissatisfaction with the results. Recently, there has been an increase in the need for parts that are used especially at higher temperatures, and along with this, there has also been a need for more efficient cooling structures. As can be seen, a manufacturing method for producing metal parts such as composite turbine blades with complex cooling holes (spaces) using HIP (hot isostatic pressing) has been proposed, and is introduced here. Needless to say, HIP (hot isostatic pressing) means is a known technique as one of the hot pressing means for compressing various metal powders to obtain a molded article or a molded article in a desired shape. A conventional technique for manufacturing metal parts having an internal space using HIP (hot isostatic pressing) is modeled and exemplified as shown in FIG. 13. That is, in the figure, the arrows indicate the order of progress of the process, but as shown in the figure, a pair of symmetrically shaped materials A and B with grooves a and b formed on their joint surfaces are fabricated by machining. Image material A,
A pair of grooves a that combine B and harmonize.

b内に、例えばセラミックスあるいは機械加工容易な金
属、金属粉によって形した中子Cを装填し、これを別途
準備したかつ真空脱気用のパイプDを具備したカプセル
E内にその開放状態下に装入し、同カプセルEを溶接シ
ール等により密封して中子C1画素材A、 Bをカプセ
ルE内に封入し、パイプDにより吸引脱気する真空処理
を施行し、次いでパイプDを密閉した装態で既知のHI
P (熱間等方加圧)装置内に入れて熱間加圧処理し、
装置内から取出したカプセルEを剥離して得られた部品
Fにおいて、前記中子Cを例えばセラミックスはアルカ
リ処理による溶出除去その他、また金属の場合は酸溶出
、機械加工その他によって除去し、図例では溝a、 b
の合体による空孔Gの形成された部品Fが得られ、部品
外形に対する若干の機械加工その他によって目的の内部
空間を有する金属部品が得られることになる。既に上記
した技術内容で明らかなように、かかるHIP (熱間
等方加圧)手段によって内部空間を有する金属部品の製
造手段は、熱間加圧手段を用いて拡散接合によって各種
形状の金属部品を得る加工技術の発展的形態の1つに属
し、第14図に示したものはその拡散接合の一般的な工
程の既知例の1つ(公知文献r HOT−l5O3TA
TIC−PRESSING J 、 MCICREPO
RT 11 (1977年)P、第43頁登載)である
が、同図において概略を示すように、金属部品を構成す
る3個の被接合素材1.2.3をHIP (熱間等方加
圧)手段を用い、拡散接合によって一体化させるに当り
、真空脱気用のパイプ5を具備するとともに蓋6を有す
るコンテナ7を準備するとともに、各素材1.2.3を
図示のようにH形に接合一体化させるに当り、最終製品
形状から考えて、後に行なうHIP(熱間等方加圧)処
理によって変形を生じ易い部位に、図のように複数個の
別途製作した中子4を挿入し、この各素材1〜3と中子
4群との組立体を前記コンテナ7内に装入し、M6を被
せて溶接シール等によってコンテナ7を密封して組立体
を封入状態とし、この状態下でパイプ5によりコンテナ
7内を真空脱気処理し、パイプ5を密閉した状態でコン
テナをHIP (熱間等方加圧)装置8内に入れて熱間
加圧処理し、装置8より取出したコンテナ7を剥離除去
し、中子4を酸溶出により除去することにより、各素材
1〜3がH形に一体に接合した部品9を得るものである
A core C made of, for example, ceramics, an easily machinable metal, or metal powder is loaded into the container b, and placed in an open state in a capsule E which is separately prepared and equipped with a pipe D for vacuum degassing. The capsule E was then sealed with a welding seal, etc., the core C1 drawing materials A and B were enclosed in the capsule E, vacuum treatment was carried out by suction and degassing through the pipe D, and then the pipe D was sealed. Known HI with equipment
P (Hot isostatic pressing) Place it in a hot pressurizing device,
In the part F obtained by peeling off the capsule E taken out from the apparatus, the core C is removed, for example, by elution and removal by alkali treatment in the case of ceramics, or by acid elution, machining, etc. in the case of metals. Then grooves a and b
A part F in which a hole G is formed is obtained by combining the parts, and a metal part having a desired internal space is obtained by performing some machining on the outer shape of the part. As is already clear from the above-mentioned technical content, the means for manufacturing metal parts having an internal space by such HIP (hot isostatic pressing) means is to produce metal parts of various shapes by diffusion bonding using hot pressing means. The process shown in FIG.
TIC-PRESSING J, MCICREPO
RT 11 (1977) P, p. 43), but as shown schematically in the same figure, the three materials to be joined 1.2.3 constituting the metal parts were subjected to HIP (hot isostatic heating). In order to integrate the materials by diffusion bonding using means (pressure), a container 7 equipped with a pipe 5 for vacuum degassing and a lid 6 is prepared, and each material 1.2.3 is heated as shown in the figure. When joining and integrating the shape, considering the shape of the final product, multiple separately manufactured cores 4 are placed in areas that are likely to be deformed by the HIP (hot isostatic pressing) process that will be performed later, as shown in the figure. The assembly of each of the materials 1 to 3 and the four groups of cores is charged into the container 7, covered with M6 and sealed with a welding seal or the like to bring the assembly into an enclosed state. Under this condition, the inside of the container 7 is vacuum degassed through the pipe 5, and with the pipe 5 sealed, the container is placed in a HIP (hot isostatic pressing) device 8 for hot pressurization. By peeling and removing the container 7 taken out and removing the core 4 by acid elution, a component 9 in which the materials 1 to 3 are integrally joined in an H shape is obtained.

上記した従来の技術においては、何れも内部空間を得る
ため、あるいは加圧変形を防ぐために中子C乃至4を用
い、加圧成形処理に中子を除去することが必要とされる
In all of the above-mentioned conventional techniques, cores C to 4 are used in order to obtain an internal space or to prevent pressure deformation, and it is necessary to remove the cores during the pressure molding process.

(発明が解決しようとする問題点) 前記した従来技術においては、次の点において問題があ
る。即ち従来技術において何れも中子を使用することは
、被処理材における物理的性質を損なうことのない範囲
の高温、高圧下でそのHIP(熱間等方加圧)処理を行
ない、同処理工程での生産性(素材の接合を確実かつ迅
速に行なうこと)が優先されているためであり、また一
方においては高温、高圧下では中子を使用しなければ、
被処理材に生じるべき内部空間が変形し、あるいは圧潰
するのが一般的と考えられているからと思料される。し
かし中子を使用すれば、次工程において中子を除去する
処理が必須とされる。また中子を使用するということは
、目的とする内部空間の形状が中子の取付は易い形状、
構造に特定されてしまうという点においても問題がある
。更には従来の技術において例示したような簡単な形状
、構造の内部空間は現実的でなく、その内部空間の形状
、構造の複雑なものに対して従来技術を適用可能とする
ことが望ましいにもかかわらず、中子の存在がその障害
となることは大きな問題点てある。
(Problems to be Solved by the Invention) The prior art described above has the following problems. In other words, in the prior art, the use of cores involves performing HIP (hot isostatic pressing) treatment on the material under high temperature and pressure within a range that does not impair the physical properties of the material to be treated. This is because productivity (joining materials reliably and quickly) is prioritized, and on the other hand, if a core is not used at high temperatures and high pressures,
This is thought to be because it is generally thought that the internal space that should be created in the treated material is deformed or crushed. However, if a core is used, the core must be removed in the next step. In addition, using a core means that the intended internal space has a shape that makes it easy to install the core.
There is also a problem in that it is specific to the structure. Furthermore, it is not realistic to have an internal space with a simple shape and structure as exemplified in the conventional technique, and it is desirable to be able to apply the conventional technique to an internal space with a complex shape and structure. Regardless, the presence of the core is a major problem.

(問題点を解決するための手段) 本発明は上記の問題点を解決するために、中子を使用し
なくても従来技術に比べ、その接合部の品質が保証され
かつ生産性を損なうことのないHIP(熱間等方加圧)
処理を、複雑な形状、構造をもつ内部空間を有する金属
部品に適用可能として有用性を拡大したものであり、発
明者は中子を用いずにHIP (熱間等方加圧)処理を
施しても、その内部空間が変形、圧潰しない処理条件を
見出すべき鋭意研究を重ねた結果、被処理材の0.2%
耐力値が、前記HIP (熱間等方加圧)時における内
部空間の変形発生の目安として適用可能であることに着
目し、内部空間が変形しない状態で被処理材同志の接合
が進行する加圧条件を特定し得ることに成功したもので
あり、具体的には、熱間加圧手段を用いて拡散接合によ
り内部空間を有する金属部品を製造するに当り、該部品
の構成素材である被接合部材に対する加圧力が、同加圧
施工時における処理温度下において、前記被接合部材の
0.2%耐力以下の範囲で、その熱間加圧を行なうこと
により、中子等の介入部材、構造を用いることなく内部
空間を有する製品を得ることにある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention aims to ensure the quality of the joints compared to the prior art without using a core, and to reduce productivity. HIP (Hot Isostatic Pressing)
This treatment has expanded its usefulness by being applicable to metal parts with internal spaces with complex shapes and structures, and the inventor applied HIP (hot isostatic pressing) treatment without using a core. As a result of intensive research to find processing conditions that do not deform or crush the internal space even when the material is
Focusing on the fact that the proof stress value can be applied as a guideline for the occurrence of deformation of the internal space during the above-mentioned HIP (hot isostatic pressing), This method succeeded in specifying the pressure conditions, and specifically, when manufacturing metal parts with internal spaces by diffusion bonding using hot pressing means, it was possible to specify the By performing hot pressurization in a range where the pressurizing force on the joining members is within the range of 0.2% proof stress of the members to be joined under the processing temperature during the pressurizing construction, intervention members such as cores, The object is to obtain a product with internal space without using any structure.

(作 用) 本発明の上記した技術的手段によれば、第1図において
示すように、接合面に相対応する形状の善導10a、 
10bを形成した対称形状の一対の被接合素材11a、
 llbを合体させて、両溝10a、 10bを合致さ
せて内部空間を板形成し、この合体した画素材11a、
 llbを、真空脱気用のパイプ12を具備したカプセ
ル13内に装入し、同カプセル13を溶接シール等によ
り密封した後、パイプ12によって内部の真空脱気処理
を行なって後、パイプ12を密閉して後、同カプセル1
3を既知のHIP (熱間等方加圧)装置(図示省略)
に入れて熱間等方加圧を高温、高圧下において行なうに
当り、本発明においては、その加圧力を、同加圧施行時
の処理温度下で、被接合素材11a、 llbの0.2
%耐力以下の範囲で行なうことにより、両溝10a、 
10bの合体による内部空間は全(変形、圧潰するおそ
れなく、かつ画素材11a、 llbの完全な接合一体
化が得られる。従ってHIP (熱間等方加圧)処理完
了後、同装置から取出したカプセル13のみを剥離除去
するのみで、図例のように内部で屈曲反復した形状、構
造の内部空間14を持つ金属部品15が容易に得られる
のである。
(Function) According to the above-mentioned technical means of the present invention, as shown in FIG.
A pair of symmetrically shaped materials 11a forming 10b,
llb are combined, and both grooves 10a and 10b are matched to form an internal space as a plate, and this combined picture material 11a,
Ilb is placed in a capsule 13 equipped with a pipe 12 for vacuum degassing, and the capsule 13 is sealed with a welding seal or the like. After vacuum degassing inside the pipe 12, the pipe 12 is After sealing, the same capsule 1
3 using a known HIP (hot isostatic pressing) device (not shown)
In performing hot isostatic pressurization at high temperature and high pressure, in the present invention, the pressurizing force is set to 0.2 of the welding materials 11a and llb at the processing temperature during the pressurization.
% proof stress or less, both grooves 10a,
The internal space created by combining the image materials 11a and 10b can be completely bonded and integrated without any risk of deformation or crushing.Therefore, after the HIP (hot isostatic pressing) process is completed, the image materials 11a and llb can be removed from the apparatus. By simply peeling off and removing only the capsule 13, it is possible to easily obtain a metal part 15 having an internal space 14 having a repeatedly bent shape and structure as shown in the figure.

上記した画素材11a、 llbが内部空間14の変形
を生じることなく完全に接合する接合条件の特定は以下
の研究内容によって得られたものである。
The specification of the bonding conditions under which the picture materials 11a and llb described above are completely bonded without causing any deformation of the internal space 14 was obtained through the following research.

即ち2個の被接合素材をHIP(熱間等方加圧)処理に
より接合する場合、第2図はHIP圧力と接合強度との
HIP温度下における特性を示したグラフ図であり、X
で示したのは接合強度の飽和値(最大値)を示すライン
であり、■〜■はHIP温度を示し、またA<B<C<
Dの関係にあり、横軸はHIP圧力、縦軸は接合強度で
あり、このさい処理時間は余り影響しないことが判明し
た。この特性グラフ図から、第3図に示すようにHIP
圧力とHIP圧力とからの接合強度飽和値Xの位置付け
が得られ、図示のXラインの図向って左側は接合不充分
領域EIであり、図向って右側は接合充分の領域E2と
なる。更に被接合素材の高温強さについて検討すれば、
第4図に示すように、横軸に温度を示し、縦軸に0.2
%耐力値を示す通り、0.2%耐力のラインYが得られ
る。従ってこの図から第5図に示すように、HIP温度
およびHIP圧力間における0、2%耐力値ラうンYの
位置付けが得られ、図におけるYラインの図向って左側
はHIP処理によって変形しない領域F−であり、図向
って右側はHIP処理によって変形する領域F2となる
。従って前記した第3図および第5図を合体させれば、
第6図が得られる。
In other words, when two materials to be joined are joined by HIP (Hot Isostatic Pressing) processing, Fig. 2 is a graph showing the characteristics of HIP pressure and joint strength under HIP temperature, and X
The line indicated by is the saturation value (maximum value) of the bonding strength, and ■ to ■ indicate the HIP temperature, and A<B<C<
It was found that the horizontal axis is the HIP pressure and the vertical axis is the bonding strength, and that the processing time does not have much effect on this. From this characteristic graph, HIP
The position of the bonding strength saturation value X is obtained from the pressure and the HIP pressure, and the left side of the X line shown in the drawing is the insufficient bonding region EI, and the right side of the drawing is the sufficient bonding region E2. Furthermore, if we consider the high temperature strength of the materials to be joined,
As shown in Figure 4, the horizontal axis shows temperature and the vertical axis shows 0.2
As shown in the % proof stress value, a line Y of 0.2% proof stress is obtained. Therefore, as shown in Figure 5 from this figure, the position of the 0 and 2% yield strength line Y between the HIP temperature and HIP pressure is obtained, and the left side of the Y line in the figure is not deformed by the HIP treatment. The area F- is the area F-, and the right side in the figure is an area F2 that is deformed by the HIP process. Therefore, if the above-mentioned figures 3 and 5 are combined,
Figure 6 is obtained.

即ちX%Yラインの相互にクロスする領域Zにおいては
、被接合素材が変形を生じることなく、充分な接合強度
が得られ、かつ一体化されることを示しており、同図で
横軸はHIP温度、縦軸はHIP圧力である。上記のよ
うにして得られた本発明に係る特定の加圧接合条件を、
具体的な特定金属材料に対して実験した例を以下に示す
In other words, in the region Z where the X%Y lines cross each other, the material to be joined is not deformed, sufficient joining strength is obtained, and the material is integrated. In the figure, the horizontal axis is The HIP temperature is the vertical axis, and the HIP pressure is the vertical axis. The specific pressure bonding conditions according to the present invention obtained as described above are
Examples of experiments performed on specific specific metal materials are shown below.

実施例I 使用金属  Ni基超超合 金分(重量比) 12.8Cr−18,1Co−3,4
4Mo、 −5,51Al1 4.48Ti −0,7
1V −残部N1 (a)接合強度 第7図および第8図に示す通りで、第7図は先に説示し
た第2図に該当し、第8図は同第3図に該当し、第7図
において横軸はHIP圧力(kg/aa)、縦軸は接合
強度(kg / d )を示し、また第8図において横
軸はHIP温度(℃)、縦軸はHIP圧力(kg/cd
)を示し、何れも具体的数値下に示しており、第2.3
図と同一符号は同一内容である。
Example I Metal used Ni-based super-superalloy content (weight ratio) 12.8Cr-18,1Co-3,4
4Mo, -5,51Al1 4.48Ti -0,7
1V - Remaining N1 (a) Joint strength As shown in Figures 7 and 8, Figure 7 corresponds to Figure 2 explained earlier, Figure 8 corresponds to Figure 3, and Figure 7 In the figure, the horizontal axis shows HIP pressure (kg/aa), the vertical axis shows bonding strength (kg/d), and in Fig. 8, the horizontal axis shows HIP temperature (℃), and the vertical axis shows HIP pressure (kg/cd).
), all of which are shown below the specific values, and Section 2.3.
The same reference numerals as in the figure indicate the same content.

(blNilNi全超合金強度 第9図に示す通りで、同図は先に示した第4図に該当す
るものであり、横軸は温度(℃)、縦軸は応力(kg 
/ j )であって、°何れも具体的数値下にYライン
を示している0便宜上第9図には第8図を重ねたものを
示しており、従って同図のXラインとYラインとの交叉
する領域Zは、先に述べた素材の変形なしにその完全な
接合が得られる領域であり、具体的な数値例としては処
理温度950℃において加圧力は1000kg/−が、
被接合素材の変形なく、その内部空間が確実に成形され
たものを、充分な接合強度のもとに得られる。
(blNilNi total superalloy strength as shown in Figure 9, which corresponds to Figure 4 shown earlier, where the horizontal axis is temperature (°C) and the vertical axis is stress (kg).
/ j ), and in each case the Y line is shown below the specific value. For convenience, Figure 9 shows Figure 8 overlaid, and therefore the X line and Y line in the same figure are The intersecting region Z is the region where perfect bonding can be obtained without deformation of the materials mentioned above, and as a specific numerical example, the processing temperature is 950°C and the pressing force is 1000 kg/-,
It is possible to obtain a material whose internal space is reliably formed without deformation of the materials to be joined, with sufficient joining strength.

実施例■ 使用金属  5S41 (軟鋼) 成分    一般的なため省略する。Example■ Metal used: 5S41 (mild steel) Ingredients Omitted as they are common.

ここでは第10図として、先に述べた第9図と同様に、
5S41 (軟l1l)の高温強度(0,2%耐力値の
Yライン)と、第7.8図と同様に同軟鋼の接合強度飽
和値のXラインとを重ねたものを示しており、図におい
て温度(1)と応力(kg/−)とを具体的数値下に横
軸および縦軸に示しており、この金属材料の場合、その
素材の変形を生じることなく充分な接合強度下の加圧成
形可能な領域2は図示の通りであり、具体的数値で1例
を示せば処理温度700℃下においてその加圧力は50
0 kg /−である。
Here, as Figure 10, like Figure 9 mentioned earlier,
The high temperature strength (Y line of 0.2% proof stress value) of 5S41 (soft l1l) and the X line of the welding strength saturation value of the same mild steel are superimposed as in Fig. 7.8. Temperature (1) and stress (kg/-) are shown on the horizontal and vertical axes with specific numerical values. The area 2 where pressure molding is possible is as shown in the figure, and to give an example of specific numerical values, the pressing force is 50 at a processing temperature of 700°C.
0 kg/-.

以上のように本発明によれば、被接合素材の変形なく、
その内部空間が確実に成形され、かつ充分な接合強度下
に一体化された処の、内部空間を有する金属部品が、全
く中子を用いることなく得られるのである。
As described above, according to the present invention, there is no deformation of the materials to be joined.
A metal part having an internal space whose internal space is reliably formed and integrated with sufficient bonding strength can be obtained without using a core at all.

(実施例) 本発明による適切な実施例の1つを、第11.12図に
ついて説示する。
EXAMPLE One suitable embodiment according to the invention is illustrated with respect to FIG. 11.12.

第11図に示すようにその接合面に略コ形の溝16を凹
入状に形成した、かつ5S41軟鋼材による被接合部材
17の2個を機械加工によって製作し、この両1−17
.17をその善導16.16が合致するように接合面同
志を重ねたものを、軟鋼製による先に第13図で示した
ようなカプセル内に封入し、300℃に加熱しながらカ
プセル内を10’Torrの真空下で1時間、脱気処理
した後、同カプセルにおける脱気用バイブを密封し、既
知のHIP装置内に装入して、その熱間処理温度700
℃、加圧力500 kg / dで、1時間に亘りHI
P (熱間等方加圧)処理を施した。HIP処理後、装
置から取出したカプセルを機械加工により除去し、第1
3図に示すように溝16.16が一体化したかつ内部に
延びる略コ形の内部空間18を持つ金属部品19が得ら
れた。このさい部材17.17の接合面は完全に接合し
強固な一体化が得られ、前記内部空間18の断面形状も
付記数値10×10鶴で全く変形なく、完全な4角断面
が形成されていた。尚第11図に示される付記数値は各
サイズをそれぞれ示している。実施例において熱間加圧
手段としては、)IIP (熱間等方加圧)手段の他に
、ホットプレス等を用いることも可能であるが、ガス圧
等で加圧するHIP方式の方が、複雑な形状、構造の部
品を得る上においては好適である0本発明によって得ら
れる製品対象としては、例えばガスタービン等のブレー
ド、射出成形機における冷却型シリンダ、各種冷却ジャ
ケットを有する金属部品等、多種多岐の製品に対して適
用可能である。
As shown in FIG. 11, two members 17 to be joined made of 5S41 mild steel and having substantially U-shaped grooves 16 formed in a concave shape on their joining surfaces are fabricated by machining.
.. 17 with their bonded surfaces aligned so that their good conductors 16.16 match, and then sealed in a capsule made of mild steel as shown in Fig. 13, and while heating it to 300°C, the inside of the capsule was heated to 10°C. After degassing for 1 hour under a vacuum of 'Torr, the degassing vibrator in the same capsule was sealed and placed in a known HIP device, and the hot treatment temperature was 700.
℃, pressure 500 kg/d, HI for 1 hour
P (hot isostatic pressing) treatment was performed. After HIP treatment, the capsule taken out from the device is removed by machining, and the first
As shown in FIG. 3, a metal part 19 was obtained which had grooves 16 and 16 integrated therein and a substantially U-shaped internal space 18 extending inside. At this time, the joint surfaces of the members 17 and 17 were completely joined and a strong integration was obtained, and the cross-sectional shape of the internal space 18 was also 10 x 10 squares, with no deformation at all, and a perfect square cross section was formed. Ta. Note that the appended numerical values shown in FIG. 11 indicate each size. In the examples, as the hot pressing means, it is also possible to use a hot press etc. in addition to the IIP (hot isostatic pressing) means, but the HIP method which pressurizes with gas pressure etc. is better. Suitable for obtaining parts with complex shapes and structures.Products obtained by the present invention include, for example, blades of gas turbines, cooling cylinders in injection molding machines, metal parts with various cooling jackets, etc. It is applicable to a wide variety of products.

(発明の効果) 本発明は、各種形状、構造の内部空間を持つ金属部品を
、熱間加圧手段を用いて拡散接合により得る方法におけ
る改善の1つとしてきわめて有利である。即ちその加圧
成形に当り全く中子や同効構造の介入を必要としないこ
とにおいて、その生産性はきわめて向上する。しかもこ
れによればきわめて複雑な凹凸、屈曲、曲面をもつ内部
空間を、更にはまた細い空間をも、自由に成形できるの
であり、例えば第15図に例示するような複雑かつ多段
に屈曲した内部空間20も支障なく、かつ変形、閉塞の
おそれなく実現可能である。仮りにこのような空間を機
械加工によって得ようとすれば、第16図に示すように
機械加工で直線的な貫通孔21を切削開孔し、その一端
を塞ぐような加工を反復することになり、曲面はほとん
ど得られないのであり、これが冷却媒体等の通過手段と
して用いられる時、両者の優劣はいうまでもなく明らか
である。
(Effects of the Invention) The present invention is extremely advantageous as one of the improvements in the method of obtaining metal parts having internal spaces of various shapes and structures by diffusion bonding using hot pressing means. In other words, the pressure molding does not require any intervention of a core or equivalent structure, which greatly improves productivity. Moreover, with this, it is possible to freely form interior spaces with extremely complicated unevenness, bends, and curved surfaces, and even narrow spaces. The space 20 can also be realized without any problems and without fear of deformation or blockage. If such a space were to be obtained by machining, it would be necessary to repeat the process of cutting a straight through hole 21 and closing one end of it by machining, as shown in Figure 16. Therefore, it is almost impossible to obtain a curved surface, and when this is used as a passage means for cooling medium, etc., the superiority and inferiority of the two is obvious.

しかも機械加工では細径の孔の加工は困難である。Moreover, it is difficult to form small diameter holes by machining.

また同じ<HIP装置を用いる従来方式のものでは、変
形防止のために孔内にセラミックス、金属あるいはこれ
らの粉末を充填せねばならず、加圧処理後、これを再び
除去する必要があって、工程的にも技術内容としても不
利であるし、同じく複雑な形状、構造の内部空間を得る
ことは困難である0本発明は被接合部材における0、2
%耐力値が、変形発生の目安となることを着目し、これ
によって内部変形の生じない熱間加圧条件の特定に成功
したことにより、従来では望み得なかった内部空間を持
つ各種金属部品を、しかも複雑な形状、構造のものでも
実現可能であり、その市場価値は大であり、かつ部品そ
のものの外形の複雑加工もこれによって容易化される等
、大きな利点を発揮できる。
In addition, in conventional methods using the same <HIP equipment, the holes must be filled with ceramics, metals, or powders thereof to prevent deformation, and this must be removed again after pressure treatment. It is disadvantageous in terms of process and technical content, and it is also difficult to obtain an internal space with a complicated shape and structure.
Focusing on the fact that the % proof stress value is a guideline for the occurrence of deformation, we succeeded in identifying the hot pressurization conditions that do not cause internal deformation, and as a result, we have been able to create various metal parts with internal spaces that were previously impossible to achieve. Moreover, it can be realized even with complicated shapes and structures, and its market value is large. It also facilitates complex machining of the external shape of the parts themselves, and can exhibit great advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法実施例の工程順説明図、第2.3図
は接合条件決定のための接合強度と加圧力との関係特性
を示す各グラフ図、第4.5図は被接合素材における高
温強度を示す各特性グラフ図、第6図は本発明による所
定温度と同温度下における最適加圧力範囲を示すグラフ
図、第7.8.9図はNi基超超合金材おける本発明の
所定温度下における最適加圧力範囲を示す各特性グラフ
図、第10図は5S41軟鋼材に対する所定温度下にお
ける最適加圧力範囲を示す各特性グラフ図、第11.1
2図は本発明方法実施例の素材および製品の各斜面図、
第13図はHIP (熱間等方加圧)手段による内部空
間を有する部品の従来技術の工程順説明図、第14図は
熱間加圧手段による接合部品製造従来例の工程順説明図
、第15.16図は本発明と従来技術による内部空間形
成技術の対比斜面図である。 10a、 10b・・−溝、lla、 1lb−被接合
素材(部材)、12・・・脱気用パイプ、13・・・カ
プセル、14・・・内部空間、15・・・金属部品(製
品)。 特 許 出 願 人  株式会社神戸製鋼所第1図 第2図 +−t+p万力 第3図 第4図       第5図 >(t                      
  )−Ifビ4酊支第9図 第2O図
Fig. 1 is an explanatory diagram of the process order of an embodiment of the method of the present invention, Fig. 2.3 is a graph showing the relationship between bonding strength and pressurizing force for determining bonding conditions, and Fig. 4.5 is a graph showing the relationship between bonding strength and pressurizing force for determining bonding conditions. Characteristic graphs showing the high temperature strength of the material, Fig. 6 is a graph showing the predetermined temperature and the optimum pressure range under the same temperature according to the present invention, and Fig. 7.8.9 is a graph showing the strength of Ni-based super-superalloy materials. Characteristic graphs showing the optimum pressurizing force range under a predetermined temperature of the invention, Fig. 10 are characteristic graphs showing the optimum pressurizing force range under a predetermined temperature for 5S41 mild steel, Fig. 11.1
Figure 2 is a perspective view of materials and products according to an embodiment of the method of the present invention;
FIG. 13 is an explanatory diagram of the process order of a conventional technique for manufacturing a component having an internal space by HIP (hot isostatic pressing) means, and FIG. Figures 15 and 16 are comparative perspective views of internal space forming techniques according to the present invention and the prior art. 10a, 10b...-groove, lla, 1lb-material to be joined (member), 12... deaeration pipe, 13... capsule, 14... internal space, 15... metal part (product) . Patent applicant Kobe Steel, Ltd. Figure 1 Figure 2 +-t+p Vise Figure 3 Figure 4 Figure 5
)-If B4 Drunkenness Figure 9 Figure 2O

Claims (1)

【特許請求の範囲】[Claims] (1)熱間加圧手段を用いて拡散接合により内部空間を
有する金属部品を製造するに当り、該部品の構成素材で
ある被接合部材に対する加圧力が、同加圧施行時におけ
る処理温度下において、前記被接合部材の0.2%耐力
以下の範囲で、その熱間加圧を行なうことにより、中子
等の介入部材、構造を用いることなく内部空間を有する
製品を得ることを特徴とする内部空間を有する部品の製
造方法。
(1) When manufacturing a metal part having an internal space by diffusion bonding using a hot pressurizing means, the pressurizing force against the welded member that is the constituent material of the part is lower than the processing temperature at the time of the pressurizing. The method is characterized in that a product having an internal space is obtained without using an intervening member or structure such as a core by hot pressing the member to be joined within a range of 0.2% proof stress or less. A method for manufacturing a part having an internal space.
JP10117487A 1987-04-23 1987-04-23 Manufacture of part with inside space Pending JPS63268580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117487A JPS63268580A (en) 1987-04-23 1987-04-23 Manufacture of part with inside space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117487A JPS63268580A (en) 1987-04-23 1987-04-23 Manufacture of part with inside space

Publications (1)

Publication Number Publication Date
JPS63268580A true JPS63268580A (en) 1988-11-07

Family

ID=14293642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117487A Pending JPS63268580A (en) 1987-04-23 1987-04-23 Manufacture of part with inside space

Country Status (1)

Country Link
JP (1) JPS63268580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505835A (en) * 2009-09-25 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for manufacturing a module with a hollow region by hot isostatic pressing
KR102014222B1 (en) * 2018-07-27 2019-10-21 이규근 Method And Apparatus For Manufacturing Cooling Module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102285A (en) * 1983-11-03 1985-06-06 ベ−ベ−ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボバリ・ウント・シ− Method of joining metallic member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102285A (en) * 1983-11-03 1985-06-06 ベ−ベ−ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボバリ・ウント・シ− Method of joining metallic member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505835A (en) * 2009-09-25 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for manufacturing a module with a hollow region by hot isostatic pressing
KR102014222B1 (en) * 2018-07-27 2019-10-21 이규근 Method And Apparatus For Manufacturing Cooling Module

Similar Documents

Publication Publication Date Title
US4351470A (en) Method of making a stiffened panel
CA1039008A (en) Method of superplastic forming with concurrent diffusion bonding
US3996019A (en) Fabrication method and fabricated article
JP2918722B2 (en) Manufacturing method of hollow metal products
US4117970A (en) Method for fabrication of honeycomb structures
US4934580A (en) Method of making superplastically formed and diffusion bonded articles and the articles so made
US5141146A (en) Fabrication of superplastically formed trusscore structure
US5115963A (en) Superplastic forming of panel structures
US4331286A (en) Method for pressure bonding metal members by utilizing eutectic reaction
US4526312A (en) Low cost method of making superplastically formed and diffusion bonded structures
US4141484A (en) Method of making a metallic structure by combined flow forming and bonding
JPH0615531A (en) Method for producing article by superplastic molding and diffusion joint
WO2019051979A1 (en) Forming method for modular metal construction
EP0466401B1 (en) Gear
US4509671A (en) Method of producing diffusion bonded superplastically formed structures
US5139887A (en) Superplastically formed cellular article
JP7005744B2 (en) Powder hot isotropic pressure pressurization
JPS63268580A (en) Manufacture of part with inside space
JP2005187942A (en) Apparatus and method of manufacturing article by consolidating powder material
US6039239A (en) Method of manufacturing structural parts, particularly for use in aircraft
JPS58141880A (en) Joining method of sintered hard alloy
FR2619034A1 (en) METHOD FOR MANUFACTURING BY COMPRESSION OF A POWDER A CONSTRUCTION ELEMENT COMPRISING PARTS WITH WALLS OF HIGHLY DIFFERENT THICKNESSES
JPS607590B2 (en) Product manufacturing method using diffusion bonding
JPH01289531A (en) Superplastic forging method
JP2580100B2 (en) Hot isostatic pressing method